基于Axin的活化复合体调节p53信号通路的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Daxx是一种重要的细胞死亡相关因子。近十年来的研究表明,Daxx通过其不同的功能结构域与多种参与细胞生理生化过程的蛋白相互作用而形成多蛋白复合体。这些多样的蛋白复合体,涉及了细胞增殖、生长与分化,细胞凋亡,转录调控以及病毒复制等许多细胞复杂的生命活动。尽管获得了大量实验数据,但是,对Daxx在诱导细胞凋亡的具体作用机理方面,至今仍存在一些争议。其中,有关系统揭示Daxx如何通过p53信号途径诱导细胞死亡的课题亟待研究。故此,本论文采用生物化学与分子生物学方法,系统阐明Daxx协同Axin/HIPK2/p53三聚复合体活化p53信号通路的分子机制及作用模型,从而强调出Daxx在促细胞凋亡方面的重要功能。本论文研究通过酵母双杂交实验发现了Daxx与Axin之间的相互作用。免疫共沉淀实验进一步验证了内源性的Daxx和Axin能在体内直接结合。并且,二者之间的这种相互作用,在细胞接受UV刺激条件下会明显增强。一系列实验结果均表明Daxx不能直接结合p53,但是Axin作为“桥梁”介导了Daxx与p53的结合。之后的研究证实了Daxx/Axin/p53复合体的作用,即尽管Daxx能够单独活化与HIPK2结合的p53,但Axin明显加强了这一作用,说明Daxx/Axin/HIPK2/p53复合体的形成能够导致p53活性的最大化,其功能相关性进一步被RNA干扰实验证明。而且,Daxx调节的细胞生长抑制依赖于功能性的Axin与p53,因为在克隆斑形成实验中,Daxx不能诱导Axin缺失细胞和p53缺失细胞的细胞死亡。敲除Daxx或Axin严重削弱了UV或p53诱导的凋亡,与Daxx/Axin/HIPK2/p53复合体能够诱导p53活性最大化的实验结论一致。有趣的是,Daxx和Axin似乎选择性地活化p53的靶向基因,强烈活化PUMA基因,而非p21和Bax基因。本论文还发现Daxx和Axin能够诱导细胞色素c的释放,这与两种蛋白均能诱导PUMA基因活化相吻合。所有这些结果显示出,Daxx能够调节Axin/HIPK2/p53复合体诱导细胞死亡,阐明了Daxx调控肿瘤抑制子p53活化以及发挥促凋亡功能的新机理,也提示出Daxx在DNA严重损伤条件下诱导细胞死亡的分子机制。
     Pirh2是一个RING结构域蛋白,先前已知它能够与p53相互作用,并作为其E3连接酶负调节p53的稳定性。在本论文研究中,我们通过酵母双杂交筛选,已确定Pirh2作为一个新的Axin相互作用蛋白。目前证据显示,Pirh2能够通过破坏基于Axin的p53活化复合体的形成而抑制UV刺激响应下的p53活化。通过结合Axin,Pirh2促使HIPK2从Axin复合体上解离,抑制了HIPK2蛋白激酶对p53的作用。不过,我们在研究中用Mdm2作为阳性对照,未发现Pirh2对p53显示出任何E3连接酶活性。当与Pirh2共转染时,p53的稳定水平并没有发生改变。并且,丧失E3活性的Pirh2突变体Pirh2 C145A未能削弱其对Axin或UV诱导下的p53第46位磷酸化的抑制功能。这些研究结果与先前的报道存在明显差异。此外,我们发现siRNA沉默Pirh2表达能够增强HIPK2与Axin的免疫共沉淀,以及Axin或UV诱导下的p53第46位磷酸化。结合之前的研究结果,我们发现在刺激响应下Pirh2能够通过基于Axin的活化复合体而调节p53信号通路,并不依赖于其E3连接酶活性。
Axin and p53 are tumor suppressors,controlling cell growth,apoptosis,anddevelopment.Axin has emerged as a major scaffold for many pathway,including Wntpathway,TGFβpathway and JNK signaling.p53 is positively or negatively regulatedby numerous stress signals including UV light,chemicals,and oncogenic stresses.The p53 activation mediated by many posttranslational modifications on multiple sites,and even in different combinations.Remarkably,depletion of Axin can attenuate p53signaling as assayed for p53-dependent transcription of reporter genes and apoptosisin response to UV light.Daxx,a death domain associated protein,has been implicatedin proapoptosis,antiapoptosis,and transcriptional regulation.Although it is clear thatDaxx may exert multiple functions,the underlying mechanisms remain far from clear.In fact,many initial reports remain controversial.A potential anti-apoptotic functionof Daxx came from Daxx knockout mouse embryos which display increased globalapoptosis.In contrast,pro-apoptotic functions of it have been obtained with tumor cellor transformed cells treated with diverse stimuli,such as UV,TGFβ,hydrogenperoxide,interferon-γand arsenite trioxide.In my present study,I show that Axin,originally identified for its scaffolding role to controlβ-catenin levels in Wntsignaling,strongly associates with Daxx at endogenous levels.Upon UV irradiation,Axin is translocated into the nucleus whereby it forms a large complex with Daxx andtwo pools of p53 (one directly bound to Axin,and the other occupied by HIPK2).Axin serves as a tethering factor for Daxx to associate with the tumor suppressor p53,and cooperates with Daxx,but not DaxxΔAxin,which is unable to interact with Axin,to stimulate HIPK2-mediated Ser46 phosphorylation and transcriptional activity ofp53.The Daxx/Axin/HIPK2/p53 complex formation is also enhanced by UV irradiation which indicates that the complex is physiologically regulated.Interestingly,Axin and Daxx seem to selectively activate certain target genes of p53,with strongactivation of PUMA,but not p21 or Bax.Daxx stimulated p53 transcriptional activitywas significantly diminished by small interfering RNA against Axin;Daxx fails toinhibit colony formation in Axin~(-/-) cells.Moreover,UV-induced cell death wasattenuated by the knockdown of Axin and Daxx.All these results show that Daxxcooperates with Axin to stimulate p53,and implicate a direct role for Axin,HIPK2,and p53 in the proapoptotic function of Daxx.
     Pirh2,a RING-domain protein,was previously shown to interact with p53 andnegatively regulate its stability as an E3 ligase.Here I found that Pirh2 exerts itsinhibitory role by modulating the dynamic assembly of the Axin-based p53 activationcomplex.Pirh2 interacted with Axin that is a positive p53 regulator by stimulatingHIPK2-catalyzed phosphorylation at Ser46.Pirh2 strongly abrogated p53 function inboth transcriptional activation and apoptosis induction;however,I found that Pirh2did not exhibit any ubiquitin E3 ligase activity towards p53,and that its p53-bindingactivity is not required for p53 inhibition.Rather,Pirh2 could effectively preventinteraction of HIPK2 with the complex of Axin and p53,rendering the Axin-boundp53 unphosphorylated.Similarly,Pirh2 could reduce the levels of p53co-immunoprecipitated with HIPK2.Consistently,Pirh2 siRNA resulted in higherlevels of HIPK2 co-immunoprecipitated with Axin,and increased Axin- orUV-induced p53 phosphorylation.Thus,my studies have established that Pirh2 is apotent negative regulator for the Axin-based p53 activation network and implicated itin the UV-triggered p53 signaling independently of its E3-ligase activity,and haveemphasized the critical role of Axin as a scaffold for p53 activation in stress responses.
     In sum,my studies have revealed several aspects of mechanism for Axin regulatingp53 pathway.My finding will provide new insights into how the the Axin-based p53activation complex to induce maximal activation of p53 and to regulate cell death.Pirh2 as a new interacting protein with Axin is a negatively regulator for the complex.
引文
[1]Xiaolu Yang, Roya Khosravi-Far, Howard Y. Chang, David Baltimore. Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis[J]. Cell, 1997,89; 1067-1076.
    [2]Jum Liang, Genhong Yao, Linsong Yang, Yayi Hou. Dehydroepiandrosterone induces apoptosis of thymocyte through Fas/Fas-L pathway[J]. International Immunopharmacology,2004,4; 1467-1475
    [3]Yibin Deng, Xiaoyang Ren, Lin Yang, Yahong Lin, Xiangwei Wu. A JNK-Dependent Pathway Is Required for TNFa-Induced Apoptosis[J]. Cell, 2003, 115; 61 -70
    [4]Qin Hui Tuo, Guo Zuo Xiong, Bing Yang Zhu, Jian Guo Cao, Duan Fang Liao. The effect of overexpressed Daxx in liver tumor cells on the apoptosis induced by oxidative stress[J]. Cell Biology International, 2008, 32; S34-S35
    [5]Kiriakidou M, Driscoll DA, Lopez-Guisa JM, Strauss 111 JF. Cloning and expression of primate Daxx cDNAs and mapping of the human gene to chromosome 6p21.3 in the MHC region[J]. DNA Cell Biol. 1997, 16; 1289-1298.
    [6]Pluta AF, Earnshaw WC, Goldberg IG. Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death[J]. J Cell Sci. 1998, 111; 2029-2041.
    [7]Zhong, S. et al. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis[J]. J. Exp. Med. 2000, 191; 631-640
    [8]Ishov, A.M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1[J].J. Cell Biol. 1999, 147; 221-234
    [9]Wang, Z.G. et al. PML is essential for multiple apoptotic pathways[J]. Nat. Genet. 1998, 20;266-272
    [10]Salomoni, P. , Pandolfi, P.P. The role of PML in tumor suppression[J]. Cell. 2002, 108;165-170
    [11]Ishov, A.M. et al. Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX[J]. J. Cell Sci. 2004, 117; 3807-3820
    [12]Xue, Y. et al. The ATRX syndrome protein forms a chromatinremodeling complex with D&xx and localizes in promyelocytic leukemia nuclear bodies[J]. Proc. Natl. Acad. Sci. USA. 2003, 100; 10635-10640
    [13]Pluta, A.F. et al. Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death[J]. J. Cell Sci. 1998, 111; 2029-2041
    [14]Charette, S.J., Landry, J. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosisfJ]. Ann. N. Y. Acad. Sci. 2000, 926; 126-131
    [15]Song, J.J. and Lee, Y.J. Effect of glucose concentration on activation of the ASK1-SEK1-JNK1 signal transduction pathway[J]. J. Cell. Biochem. 2003, 89; 653-662
    [16]Ko, Y.G. et al. Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm[J]. J. Biol. Chem. 2001, 276; 39103-39106
    [17]Song, J.J. and Lee, Y.J. Tryptophan 621 and serine 667 residues of Daxx regulate its nuclear export during glucose deprivation[J]. J. Biol. Chem. 2004, 279; 30573-30578
    [18]Perlman, R. et al. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation[J]. Nat. Cell Biol. 2001, 3; 708-714
    [19]Villunger A, Huang DC, Holler N, Tschopp J, Strasser A. Fas ligand-induced c-Jun kinase activation in lymphoid cells requires extensive receptor aggregation but is independent of DAXX, and Fas-mediated cell death does not involve DAXX, RIP, or RAIDD[J]. J Immunol. 2000, 165(3); 1337-43.
    [20]Michaelson JS, Bader D, Kuo F, Kozak C, Leder P. Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development[J]. Genes Dev. 1999, 13(15); 1918-23.
    [21]Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally[J]. Immunity. 1998, 9; 267-276.
    [22]Groves IJ, Sinclair JH. Knockdown of hDaxx in normally non-permissive undifferentiated cells does not permit human cytomegalovirus immediate-early gene expression[J]. J Gen Virol. 2007, 88; 2935-40.
    [23]Khelifi AF, D'Alcontres MS, Salomoni P. Daxx is required for stress-induced cell death and JNK activation[J]. Cell Death Differ. 2005, 12(7); 724-33.
    [24]Chang HY, Yang X, Baltimore D. Dissecting Fas signaling with an altered-specificity death-domain mutant: Requirement of FADD binding for apoptosis but not Jun N-terminal kinase activation[J]. Proc Natl Acad Sci USA. 1999, 96; 1252-1256.
    [25]Ishov AM, Sotnikov AG, Negorev D, et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1[J]. J Cell Biol. 1999, 147; 221-234.
    [26]Rafael AI, Almeida A, Santos P, Parreira I, Madeira VM, Alves R, Cabrita AM, Alpoim MC. A role for transforming growth factor-beta apoptotic signaling pathway in liver injury induced by ingestion of water contaminated with high levels of Cr(VI) [J]. Toxicol Appl Pharmacol. 2007, 224(2); 163-73.
    [27]Hofmann TG, Stollberg N, Schmitz ML, Will H. HIPK2 regulates transforming growth factor-beta-induced c-Jun NH(2)-terminal kinase activation and apoptosis in human hepatoma cells[J]. Cancer Res. 2003, 63(23); 8271-7.
    [28]Kawai T, Akira S, Reed JC. ZIP kinase triggers apoptosis from nuclear PML oncogenic domains[J]. Mol Cell Biol. 2003, 23(17); 6174-86.
    [29]Nieto-Miguel T, Gajate C, Gonzalez-Camacho F, Mollinedo F. Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy[J]. Oncogene. 2008, 27(12); 1779-87.
    [30]Ryo A, Hirai A, Nishi M, Liou YC, Perrem K, Lin SC, Hirano H, Lee S W, Aoki I. A suppressive role of the prolyl isomerase Pinl in cellular apoptosis mediated by the death-associated protein Daxx[J]. J Biol Chem. 2007, 282(50); 36671-81.
    [31] Kim DJ, Park C, Oh B, Kim YY. Association of TRAF2 with the short form of cellular FLICE-like inhibitory protein prevents TNFR1-mediated apoptosis[J]. J Mol Signal. 2008, 3; 2.
    [32]Charette SJ, Landry J. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis[J]. Ann N Y Acad Sci. 2000, 926; 126-31.
    [33]Ronai Z. Balancing Mdm2 - a Daxx-HAUSP matter[J]. Nat Cell Biol. 2006, 8(8); 790-1.
    [34]Wong HK, Tsokos GC. Fas (CD95) ligation inhibits activation of NF-kappa B by targeting p65-Rel A in a caspase-dependent manner[J]. Clin Immunol. 2006, 121(1); 47-53.
    [35]Mizuta H, Kuroda Y. Cloning and functional characterization of a rat Daxx that functions as a corepressor for the androgen receptor[J]. Cell Biol Int. 2004, 28(8-9); 609-14.
    [36]Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors[J]. Mol Cell. 2006, 24(3); 341-54.
    [37]Obradovi(?) D, Tirard M, N(?)methy Z, Hirsch O, Gronemeyer H, Almeida OF. DAXX, FLASH, and FAF-1 modulate mineralocorticoid and glucocorticoid receptor-mediated transcription in hippocampal cells-toward a basis for the opposite actions elicited by two nuclear receptors? [J]. Mol Pharmacol. 2004, 65(3); 761-9.
    [38]Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G. The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx[J]. Embo J. 1999, 18; 3702-3711.
    [39]Emelyanov AV, Kovac CR, Sepulveda MA, Birshtein BK. The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells[J]. J Biol Chem. 2002, 277(13); 11156-64.
    [40]Chang CC, Lin DY, Fang HI, Chen RH, Shih HM. Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4[J]. J Biol Chem. 2005, 280(11); 10164-73.
    [41]Chow K.U, Nowak D, Boehrer S, Ruthardt M, Knau A, Hoelzer D, Mitrou PS, Weidmann E. Synergistic effects of chemotherapeutic drugs in lymphoma cells are associated with down-regulation of inhibitor of apoptosis proteins (IAPs), prostate-apoptosis-response-gene 4 (Par-4), death-associated protein (Daxx) and with enforced caspase activation[J]. Biochem Pharmacol. 2003, 66(5); 711-24.
    [42]Kim EJ, Park JS, Urn SJ. Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML[J]. Nucleic Acids Res. 2003 , 31(18); 5356-67.
    [43]Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY, El-Deiry WS, Yang X. Critical role for Daxx in regulating Mdm2[J]. Nat Cell Biol. 2006, 8(8); 855-62.
    [44]Li R, Pei H, Watson DK, Papas TS. EAPl/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes[J]. Oncogene. 2000, 19(6); 745-53.
    [45]Boellmann F, Guettouche T, Guo Y, Fenna M, Mnayer L, Voellmy R. DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity[J]. Proc Natl Acad Sci USA. 2004, 101(12); 4100-5.
    [46]Muromoto R, Sugiyama K, Takachi A, Imoto S, Sato N, Yamamoto T, Oritani K, Shimoda K,Matsuda T. Physical and functional interactions between Daxx and DNA methyltransferase 1-associated protein, DMAP1[J].J Immunol. 2004, 172(5); 2985-93.
    [47]Muromoto R, Sugiyama K, Yamamoto T, Oritani K, Shimoda K, Matsuda T. Physical and functional interactions between Daxx and TSG101 [J]. Biochem Biophys Res Commun. 2004, 316(3); 827-33.
    [48]Jang MS, Ryu SW, Kim E. Modification of Daxx by small ubiquitin-related modifier-1[J]. Biochem Biophys Res Commun. 2002, 295(2); 495-500.
    [49]Junn E, Taniguchi H, Jeong BS, Zhao X, Ichijo H, Mouradian MM. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death[J]. Proc Natl Acad Sci USA. 2005, 102(27); 9691-6.
    [50]La M, Kim K, Park J, Won J, Lee JH, Fu YM, Meadows GG, Joe CO. Daxx-mediated transcriptional repression of MMPI gene is reversed by SPOP[J]. Biochem Biophys Res Commun. 2004, 320(3); 760-5.
    [51]Lin DY, Shih HM. Essential r ole of the 58-kDa microspherule protein in the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar sequestration[J]. J Biol Chem. 2002, 277(28); 25446-56.
    [52]Ecsedy JA, Michaelson JS, Leder P. Homeodomain-interacting protein kinase 1 modulates Daxx localization, phosphorylation, and transcriptional activity[J]. Mol Cell Biol. 2003, 23(3); 950-60.
    [53]Jun Tang, Howard Y. Chang, Xiaolu Yang. The death domain-associated protein modulates activity of the transcription co-factor Skip/NcoA62[J]. FEBS Letters, 2005, 579; 2883-2890
    [54]Hwang J, Kalejta RF. Proteasome-dependent, ubiquitin-independent degradation of Daxx by the viral pp71 protein in human cytomegalovirus-infected cells[J]. Virology. 2007, 367(2); 334-8.
    [55]Yeung PL, Chen LY, Tsai SC, Zhang A, Chen JD. Daxx contains two nuclear localization signals and interacts with importin alpha3[J]. J Cell Biochem. 2008, 103(2); 456-70.
    [56]Park J, Lee JH, La M, Jang MJ, Chae G W, Kim SB, Tak H, Jung Y, Byun B, Ahn JK, Joe CO. Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx[J]. J Mol Biol. 2007, 368(2); 388-97.
    [57]Jung YS, Kim HY, Kim J, Lee MG, Pouyss(?)gur J, Kim E. Physical interactions and functional coupling between Daxx and sodium hydrogen exchanger 1 in ischemic cell death[J]. J Biol Chem. 2008 , 283(2); 1018-25.
    [58]Ryu SW, Chae SK, Kim E. Interaction of Daxx, a Fas binding protein, with sentrin and Ubc9[J]. Biochem Biophys Res Commun. 2000, 279(1); 6-10.
    [59]Lalioti VS, Vergarajauregui S, Pulido D, Sandoval IV. The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1[J].J Biol Chem. 2002, 277(22); 19783-91.
    [60]Pluta AF, Earnshaw WC, Goldberg IG. Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death[J]. J Cell Sci. 1998, 111; 2029-41.
    [61]Xue Y, Gibbons R, Yan Z, Yang D, McDowell TL, Sechi S, Qin J, Zhou S, Higgs D, Wang W. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies[J]. Proc Natl Acad Sci USA. 2003, 100(19); 10635-40.
    [62]Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G. Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek[J]. J Cell Sci. 2002, 115; 3319-30.
    [63]Rochat-Steiner V, Becker K, Micheau O, Schneider P, Burns K, Tschopp J. FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation[J]. J Exp Med. 2000, 192(8); 1165-74.
    [64]Puto LA, Reed JC. Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation[J]. Genes Dev. 2008, 22(8); 998-1010.
    [65]Li XD, Makela TP, Guo D, Soliymani R, Koistinen V, Vapalahti O, Vaheri A, Lankinen H. Hantavirus nucleocapsid protein interacts with the Fas-mediated apoptosis enhancer Daxx[J]. J Gen Virol. 2002, 83; 759-66.
    [66]Genini D, Sheeter D, Rought S, Zaunders JJ, Susin SA, Kroemer G, Richman DD, Carson DA, Corbeil J, Leoni LM. HIV induces lymphocyte apoptosis by a p53-initiated, mitochondrial-mediated mechanism[J]. FASEB J. 2001, 15(1); 5-6.
    [67]Zhao LY, Colosimo AL, Liu Y, Wan Y, Liao D. Adenovirus ElB 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx[J]. J Virol. 2003, 77(21); 11809-21.
    [68]Greger JG, Katz RA, Ishov AM, Maul GG, Skalka AM. The cellular protein daxx interacts with avian sarcoma virus integrase and viral DNA to repress viral transcription[J]. J Virol. 2005 , 79(8); 4610-8.
    [69]Limjindaporn T, Netsawang J, Noisakran S, Thiemmeca S, Wongwiwat W, Sudsaward S, Avirutnan P, Puttikhunt C, Kasinrerk W, Sriburi R, Sittisombut N, Yenchitsomanus PT, Malasit P.Biochem Biophys Res Commun. Sensitization to Fas-mediated apoptosis by dengue virus capsid protein[J]. 2007 , 362(2); 334-9.
    [70]Torii S, Egan DA, Evans RA, Reed }C. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs) [J]. EMBO J. 1999, 18(21): 6037-49.
    [71]Raoul C, Barthelemy C, Couzinet A, Hancock D, Pettmann B, Hueber AO. Expression of a dominant negative form of Daxx in vivo rescues motoneurons from Fas (CD95)-induced cell death[J]. J Neurobiol. 2005, 62(2): 178-88.
    [72]L(?)schen S, Falk M, Scherer G, Ussat S, Paulsen M, Adam-Klages S. The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK[J].Exp Cell Res. 2005, 310(1); 33-42.
    [73]Xiao B, Bi FF, Hu YQ, Tian FF, Wu ZG, Mujlli HM, Ding L, Zhou XF. Edaravone neuroprotection effected by suppressing the gene expression of the Fas signal pathway following transient focal ischemia in rats[J]. Neurotox Res. 2007, 12(3); 155-62.
    [74]Gongora R, Stephan RP, Zhang Z, Cooper MD. An essential role for Daxx in the inhibition of B lymphopoiesis by type I interferons[J]. Immunity. 2001, 14(6); 727-37.
    [75]Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC. PML induces a novel caspase-independent death process. Nat Genet. 1998, 20; 259-265.
    [76]Weston, C.R. and Davis, R.J. The JNK signal transduction pathway[J]. Curr. Opin. Genet. Dev. 2002, 12; 14-21
    [77]Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas[J]. potentiation by ALS-linked SOD 1 mutations. Neuron. 2002, 35; 1067-1083
    [78]Muromoto R, Yamamoto T, Yumioka T, Sekine Y, Sugiyama K, Shimoda K, Oritani K, Matsuda T. Daxx enhances Fas-mediated apoptosis in a murine pro-B cell line, BAF3[J]. FEBS Lett. 2003, 540(1-3); 223-8.
    [79]Hwang JR, Zhang C, Patterson C. C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis[J]. Cell Stress Chaperones. 2005, 10(2); 147-56.
    [80]Nefkens I, Negorev DG, Ishov AM, Michaelson JS, Yeh ET, Tanguay RM, Muller WE, Maul GG. Heat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 and 25 differently. J Cell Sci. 2003, 116; 513-24.
    [81]Croxton R, Puto LA, de Belle I, Thomas M, Torii S, Hanaii F, Cuddy M, Reed JC. Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappaB[J]. Cancer Res. 2006, 66(18); 9026-35.
    [82]Kiriakidou M, Driscoll DA, Lopez-Guisa JM. Cloning and expression of primate Daxx cDNAs and mapping of the human gene to chromosome 6p21.3 in the MHC region[J]. DNA Cell Biol. 1997, 16(11); 1289-98.
    [83]Zeng L, Fagotto F, Zhang T, et al. The mouse Fused locus encodes axin, an inhibitor of the Wnt signalling pathway that regulates embryonic axis formation[J]. Cell. 1997, 90; 181-92.
    [84]Webster MT, Rozycka M, Sara E, Davis E, Smalley M, Young N, Dale TC, Wooster R: Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding[J]. Genes Chromo. Canc. 2000, 28; 443-453.
    [85]Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC, Tomlinson IP,Mortensen NJ, Bodmer WF: Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas[J]. Proc Natl Acad Sci USA. 2004, 101 ; 15992-7.
    [86]Perry W, Vasicek T, Lee J. Phenotyp ic and molecular analysis of a transgenic insertion allele of the mouse fused locus[J]. Genetics. 1995, 141(1); 321232.
    [87]Hamada F, Murata Y, Nishida A, et al. Identification and characterization of E2APC, a novel Drosophila homologue of the tumor suppressorAPC[J]. Genes Cells. 1999, 4(8); 4652474.
    [88]Luo W, Zou H Y, J in L H, et al. Axin contains three separable domains that confer intramolecular, homodimeric, and heterodimeric interactions involved in distinct functions[J]. J Biol Chem. 2005, 280(6); 505425060.
    [89]Taipale J, Beachy P A. The hedgehog and Wnt signaling pathways in cancer[J]. Nature. 2001, 411; 3492354.
    [90]Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1 [J]. Nat Genet. 2000, 24; 245-50.
    [91]Akiyama T. Wnt/beta-catenin signaling[J]. Cytokine Growth Factor Rev. 2000, 11; 273-82.
    [92]Wodarz A, Nusse, R. Mechanisms of Wnt signaling in development[J]. Annu Rev Cell Dev Biol. 1998, 14; 59-88.
    [93]Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling[J]. Cell. 2000, 103; 311-20.
    [94]Beliamy CO, Malcomson RD, Harrison DJ, et al. Cell death in health and disease: the biology and regulation of apoptosis[J]. Semin Cancer Biol. 1995, 6; 3-16.
    [95]Behrens J, Jerchow BA, Wurtele M, et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta[J]. Science. 1998, 280; 596-9.
    [96]Ikeda S, Kishida S, Yamamoto H, et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphoryiation of beta-catenin[J]. EMBOJ. 1998, 17; 1371-84.
    [97]Kishida S, Yamamoto H, Ikeda S, et al. Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin[J]. J Biol Chem. 1998, 273; 10823-6.
    [98]lkeda S, Kishida M, Matsuura Y, et al. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with axin[J]. Oncogene. 2000, 19; 537-45.
    [99]Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM. Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci USA. 2002 ,99(3); 1182-7.
    [100]Kadoya T, Yamamoto H, Suzuki T, Yukita A, Fukui A, Michiue T, Asahara T, Tanaka K, Asashima M, Kikuchi A. Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of beta-catenin[J]. Mol Cell Biol. 2002, 22(11); 3803-19.
    [101]Ratcliffe MJ, Itoh K, Sokol SY. A positive role for the PP2A catalytic subunit in Wnt signal transduction[J]. J Biol Chem. 2000, 275(46); 35680-3.
    [102]Leonard JD, Ettensohn CA. Analysis of dishevelled localization and function in the early sea urchin embryo[J]. Dev Biol. 2007, 306(1); 50-65.
    [103]Bryja V, Schulte G, Arenas E. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphoryiation of Dvl to activate beta-catenin[J]. Cell Signal. 2007, 19(3); 610-6.
    [104]Swiatek W, Kang H, Garcia BA, Shabanowitz J, Coombs GS, Hunt DF, Virshup DM. Negative regulation of LRP6 function by casein kinase I epsilon phosphorylation[J]. J Biol Chem. 2006, 281(18); 12233-41.
    [105]Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X. A mechanism for Wnt coreceptoractivation[J]. Mol Cell. 2004, 13(1); 149-56.
    [106]Logan CY, Nusse R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol. 2004; 20; 781-810.
    [107]Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies[J]. Nat Rev Gene. 2004, 5; 691-701.
    [108]Zorn AM. Wnt signaling: antagonistic dickkopfs[J]. Curr Biol. 2001, 11; R592-5.
    [109]Willed K, Shibamoto S, Nusse R. Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex[J]. Genes Dev. 1999, 13(14); 1768-73.
    [110]Rawadi G, Roman-Roman S. Wnt signaling pathway: a new target for the treatment of osteoporosis. Expert Opin Ther Targets[J]. 2005, 9; 1063-77.
    [111]Shutman M, Zhurinsky J, Simcha I, et al. The cyclin Dl gene is a target of the beta-catenin/LEF-1 pathway [J]. Proc Natl Acad Sci USA. 1999, 96; 5522-7.
    [112]Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis[J]. Develop Cell. 2005, 8; 739-50.
    [113]Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape[J]. Trends Genet. 2000, 16; 279-83.
    [114]Luo W, Lin SC. Axin: a master scaffold for multiple signaling pathways[J]. Neurosignals. 2004, 13(3); 99-113.
    [115]Zhang Y, Neo SY, Wang X, Han J, Lin SC. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling[J]. J Biol Chem. 1999, 274(49); 35247-54.
    [116]Luo W, Ng WW, Jin LH, Ye Z, Han J, Lin SC. Axin utilizes distinct regions for competitive MEKK1 and MEKK4 binding and JNK activation[J]. J Biol Chem. 2003, 278(39); 37451-8.
    [117]Wong CK, Luo W, Deng Y, Zou H, Ye Z, Lin SC. The DIX domain protein coiled-coit-DIXI inhibits c-Jun N-terminal kinase activation by Axin and dishevelled through distinct mechanisms[J]. J Biol Chem. 2004, 279(38); 39366-73.
    [118]Luo W, Zou H, Jin L, Lin S, Li Q, Ye Z, Rui H, Lin SC. Axin contains three separable domains that confer intramolecular, homodimeric, and heterodimeric interactions involved in distinct functions[J]. J Biol Chem. 2005, 280(6); 5054-60.
    [119]Zou H, Li Q, Lin SC, Wu Z, Han J, Ye Z. Differential requirement of MKK4 and MKK7 in JNK activation by distinct scaffold proteins[J]. FEBS Lett. 2007, 581(2); 196-202.
    [120]Abell AN, Granger DA, Johnson GL. MEKK4 stimulation of p38 and JNK activity is negatively regulated by GSK3beta[J]. J Biol Chem. 2007, 282(42); 30476-84.
    [121]Rui Y, Xu Z, Xiong B, Cao Y, Lin S, Zhang M, Chan SC, Luo W, Han Y, Lu Z, Ye Z, Zhou HM, Han J, Meng A, Lin SC. A beta-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by aida[J]. Dev Cell. 2007, 13(2); 268-82.
    [122]Rui HL, Fan E, Zhou HM, Xu Z, Zhang Y, Lin SC. SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling[J]. J Biol Chem. 2002, 277(45); 42981-6.
    [123]Takahashi Y, Kikuchi Y. Yeast PIAS-type Ull1/Sizl is composed of SUMO ligase and regulatory domains[J]. J Biol Chem. 2005, 280(43); 35822-8.
    [124]Nishida T, Kaneko F, Kitagawa M, Yasuda H. Characterization of a novel mammalian SUMO-1/Smt3-specific isopeptidase, a homologue of rat axam, which is an axin-binding protein promoting beta-catenin degradation[J]. J Biol Chem. 2001, 276(42); 39060-6.
    [125]Isogai S, Shirakawa M. Protein modification by SUMO[J]. Seikagaku. 2007, 79(12);1120-30.
    [126]Vertegaal AC. Small ubiquitin-related modifiers in chains[J]. Biochem Soc Trans. 2007 ,35; 1422-3.
    [127]Guo B, Yang SH, Witty J, Sharrocks AD. Signalling pathways and the regulation of SUMO modification[J]. Biochem Soc Trans. 2007, 35; 1414-8.
    [128]Watts FZ, Skilton A, Ho JC, Boyd LK, Trickey MA, Gardner L, Ogi FX, Outwin EA. The role of Schizosaccharomyces pombe SUMO ligases in genome stability[J]. Biochem Soc Trans. 2007, 35; 1379-84.
    [129]Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling[J]. Cell. 2000, 103; 311-20.
    [130]Galliher AJ, Neil JR, Schiemann WP. Role of transforming growth factor-beta in cancer progression[JX]. Future Oncol. 2006, 2(6); 743-63.
    [131]Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/Smad signal transduction[J]. CurrOpin Cell Biol. 2007, 19(2); 176-84.
    [132]Gambichler T, Skrygan M, Kaczmarczyk JM, Hyun J, Tomi NS, Sommer A, Bechara FG, Boms S, Brockmeyer NH, Altmeyer P, Kreuter A. Increased expression of TGF-beta/Smad proteins in basal cell carcinoma[J]. Eur J Med Res. 2007, 12(10); 509-14.
    [133]Savage-Dunn C. TGF-beta signaling[J]. WormBook. 2005, 9; 1-12.
    [134]Furuhashi M, Yagi K, Yamamoto H, et al. Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway[J]. Mol Cell Biol. 2001, 21; 5132-41.
    [135]ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling[J].Trends Biochem Sci.2004, 29(5); 265-73.
    [136]Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W, Zhou HM, Cheung PY, Wu Z, Ye Z, Li P, Han J, Lin SC. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation[J]. EMBO J.2004, 23(23); 4583-94.
    [137]Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D'Orazi G Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis[J]. Exp Cell Res. 2004, 293(2); 311-20.
    [138]Cecchinelli B, Porrello A, Lazzari C, Gradi A, Bossi G, D'Angelo M, Sacchi A, Soddu S. Ser58 of mouse p53 is the homologue of human Ser46 and is phosphorylated by HIPK2 in apoptosis[J]. Cell Death Differ. 2006, 13(11); 1994-7.
    [139]Dohlman HG. Thorner J. RGS proteins and signaling by heterotrimeric G proteins[J]. J Biol Chem. 1997, 272(7); 3871-4.
    [140]Stemmle LN, Fields TA, Casey PJ. The regulator of G protein signaling domain of axin selectively interacts with Galphal2 but not Galphal3[J]. Mol Pharmacol. 2006, 70(4); 1461-8.
    [141]Schmid G, Kramer MP, Maurer M, Wandl S, Wesierska-Gadek J. Cellular and organismal ageing: Role of the p53 tumor suppressor protein in the induction of transient and terminal senescence[J]. J Cell Biochem. 2007, 101(6); 1355-69.
    [142]Rinaldo C, Prodosmo A, Siepi F, Soddu S. HIPK2: a multitalented partner for transcription factors in DNA damage response and development[J]. Biochem Cell Biol. 2007, 85(4); 411-8.
    [143]Meulmeester E, Jochemsen AG. p53: a guide to apoptosis[J]. Curr Cancer Drug Targets. 2008 , 8(2); 87-97.
    [144]Ohtsu N, Nobuhisa I, Mochita M, Taga T. Inhibitory effects of homeodomain-interacting protein kinase 2 on the aorta-gonad-mesonephros hematopoiesis[J]. Exp Cell Res. 2007, 313(1);88-97.
    [145]Wei G, Ku S, Ma GK, Saito S, Tang AA, Zhang J, Mao JH, Appella E, Balmain A, Huang EJ. HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis[J]. Proc Natl Acad Sci USA. 2007, 104(32); 13040-5.
    [146]Kanei-Ishii C, Nomura T, Tanikawa J, Ichikawa-lwata E, Ishii S. Differential sensitivity of v-Myb and c-Myb to Wnt-1-induced protein degradation[J]. J Biol Chem. 2004,279(43); 44582-9.
    [147]Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S, Kokura K, Kurahashi T, Ichikawa-lwata E, Kim Y, Matsumoto K, Ishii S. Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK[J]. Genes Dev. 2004, 18(7); 816-29.
    [148]Kurahashi T, Nomura T, Kanei-Ishii C, Shinkai Y, Ishii S. The Wnt-NLK signaling pathway inhibits A-Myb activity by inhibiting the association with coactivator CBP and methylating histone H3[J]. Mol Biol Cell. 2005, 16(10); 4705-13.
    [149]Kim EA, Noh YT, Ryu MJ, Kim HT, Lee SE, Kim CH, Lee C, Kim YH, Choi CY. Phosphorylation and transactivation of Pax6 by homeodomain-interacting protein kinase 2[J]. J Biol Chem. 2006, 281(11); 489-97.
    [150]Tomasini R, Satnir AA, Carrier A, Isnardon D, Cecchinelli B, Soddu S, Malissen B, Dagorn JC, Iovanna JL, Dusetti NJ. TP53INPls and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity[J]. J Biol Chem. 2003, 278(39); 37722-9.
    [151]Lee SW, Kim EJ, Urn SJ. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2[J]. Biochem Biophys Res Commun. 2006, 339(4): 1056-62.
    [152]Aikawa Y, Nguyen LA, Isono K, Takakura N, Tagata Y, Schmitz ML, Koseki H, Kitabayashi 1. Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation[J]. EMBOJ. 2006, 5(17); 3955-65.
    [153]Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S, Aikawa Y, Kimura A, Kitabayashi I. Mutations of the H1PK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription[J]. Oncogene. 2007, 26(51); 7231-9.
    [154]Harada J, Kokura K, Kanei-Ishii C, Nomura T, Khan MM, Kim Y, Ishii S. Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation[J]. J Biol Chem. 2003, 278(40);38998-9005.
    [155]Huang Y, Gu B, Wu R, Zhang J, Li Y, Zhang M. Development of a rabbit monoclonal antibody group against Smads and immunocytochemical study of human and mouse embryonic stem cells[J]. Hybridoma (Larchmt). 2007, 26(6); 387-91.
    [156]Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads[J]. J Biol Chem. 1999, 274(49); 35269-77.
    [157]Wang W, Mariani FV, Harland RM, Luo K. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells[J]. Proc Natl Acad Sci USA. 2000, 97(26); 14394-9.
    [I58]M(?)ller A, Sirma H, Hofmann TG, Staege H, Gresko E, L(?)di KS, Klimczak E, Dr(?)ge W, Will H, Schmitz ML. Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression[J]. Oncogene. 2003, 22(54); 8731-7.
    [159]Di Stefano V, Soddu S, Sacchi A. D'Orazi G. H1PK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21 Wafl after nonapoptotic DNA damage[J]. Oncogene.2005, 24(35); 5431-42.
    [160]Choi CY, Kim YH, Kim YO, Park SJ, Kim EA, Riemenschneider W, Gajewski K, Schulz RA, Kim Y. Phosphorylation by the DHIPK2 protein kinase modulates the corepressor activity of Groucho[J].J Biol Chem.2005, 280(22); 21427-36.
    [161]Choi CY, Kim YH, Kwon HJ, Kim Y. The homeodomain protein NK-3 recruits Groucho and a histone deacetylase complex to repress transcription[J]. J Biol Chem. 1999. 274(47); 33194-7.
    [162]Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors[J]. J Biol Chem. 1998, 273(40); 25875-9.
    [163]D'Orazi G, Sciulli MG, Di Stefano V, Riccioni S, Frattini M, Falcioni R, Bertario L, Sacchi A,Patrignani P. Homeodomain-interacting protein kinase-2 restrains cytosolic phospholipase A2-dependent prostaglandin E2 generation in human colorectal cancer cells. Clin Cancer Res. 2006 , 12; 735-41.
    [164]Hofmann TG, Mincheva A, Lichter P, Droge W, Schmitz ML. Human homeodomain-interacting protein kinase-2 (HIPK2) is a member of the DYRK family of protein kinases and maps to chromosome 7q32-q34[J]. Biochimie. 2000, 82(12): 1123-7.
    [165]D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, Gostissa M, Coen S,Marchetti A, Del Sal G, Piaggio G, Fanciulli M, Appella E, Soddu S. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis[J]. Nat Cell Biol. 2002, 4(1); 11-9.
    [166]Wang SY, lordanov M, Zhang Q. c-Jun NH2-terminal kinase promotes apoptosis by down-regulating the transcriptional co-repressor CtBP[J]. J Biol Chem. 2006, 281(46); 34810-5.
    [167]Di Stefano V, Blandino G, Sacchi A, Soddu S, D'Orazi G. H1PK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function[J]. Oncogene. 2004 , 23(30); 5185-92.
    [168]Rinaldo C, Prodosmo A, Mancini F, lacovelli S, Sacchi A, Moretti F, Soddu S. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis[J].Mol Cell. 2007, 25(5); 739-50.
    [169]Fedele M, Pierantoni GM, Berlingieri MT, Battista S, Baldassarre G, Munshi N, Dentice M, Thanos D, Santoro M, Viglietto G, Fusco A. Overexpression of proteins HMGA1 induces cell cycle deregulation and apoptosis in normal rat thyroid cells[J]. Cancer Res. 2001, 61(11); 4583-90.
    [170]Kim EA, Noh YT, Ryu MJ, Kim HT, Lee SE, Kim CH, Lee C, Kim YH, Choi CY. Phosphorylation and transactivation of Pax6 by homeodomain-interacting protein kinase 2[J]. J BiolChem. 2006, 281(11); 489-97.
    [171]Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S, Fusco A. High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2[J]. J Clin Invest. 2007, 117(3); 693-702.
    [172]Zhang Q, Wang Y. Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA la at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity[J]. J Proteome Res. 2007 , 6(12); 4711-9.
    [173]Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP[J]. Cell. 2003 , 115(2); 177-86.
    [174]Zhang Q, Nottke A, Goodman RH. Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis[J]. Proc Natl Acad Sci USA. 2005, 102(8); 2802-7.
    [175]Zhang J, Pho V, Bonasera SJ, Holtzman J, Tang AT, Hellmuth J, Tang S, Janak PH, Tecott LH, Huang EJ. Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons[J]. Nat Neurosci. 2007, 10(1); 77-86.
    [176]Kagey MH, Melhuish TA, Powers SE, Wotton D. Multiple activities contribute to Pc2 E3 function[J]. EMBO J. 2005, 24(1); 108-19.
    [177]Cecchinelli B, Lavra L, Rinaldo C, lacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, Trovato M, Piaggio G, Bartolazzi A, Soddu S, Sciacchitano S. Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis[J]. Mol Cell Biol. 2006, 26(12); 4746-57.
    [178]Wiggins AK, Wei G, Doxakis E, Wong C, Tang AA, Zang K, Luo EJ, Neve RL, Reichardt LF, Huang EJ. Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival[J]. J Cell Biol. 2004, 167(2); 257-67.
    [179]Doxakis E, Huang EJ, Davies AM. Homeodomain-interacting protein kinase-2 regulates apoptosis in developing sensory and sympathetic neurons[J]. Curr Biol. 2004, 14(19); 1761-5.
    [180]Zhang J, Pho V, Bonasera SJ, Holtzman J, Tang AT, Hellmuth J, Tang S, Janak PH, Tecott LH, Huang EJ. Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons[J]. Nat Neurosci. 2007, 10(1); 77-86.
    [181]Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review[J]. Pharmacol Ther 2008 , 117(2); 244-79.
    [182]Pistritto G, Puca R, Nardinocchi L, Sacchi A, D'Orazi G. HIPK2-induced p53Ser46 phosphorylation activates the KILLER/DR5-mediated caspase-8 extrinsic apoptotic pathway[J]. Cell Death Differ. 2007, 14(10); 1837-9.
    [183]Wesierska-Gadek J, Schmitz ML, Ranftler C. Roscovitine-activated H1P2 kinase induces phosphorylation of wt p53 at Ser-46 in human MCF-7 breast cancer cells[J]. J Cell Biochem. 2007, 100(4); 865-74.
    [184]Rui Y, Xu Z, Lin S, Li Q, Rui H, Luo W, Zhou HM, Cheung PY, Wu Z, Ye Z, Li P, Han J, Lin SC. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation[J]. EMBO J. 2004, 23(23); 4583-94.
    [185]Giraud S, Diaz-Latoud C, Hacot S, Textoris J, Bourette RP, Diaz JJ. US11 of herpes simplex virus type 1 interacts with HIPK2 and antagonizes HIPK2-induced cell growth arrest[J]. J Virol. 2004 , 78(6); 984-93.
    [186]Wang Y, Marion Schneider E, Li X, Duttenhofer I, Debatin K, Hug H. HIPK.2 associates with RanBPM[J]. Biochem Biophys Res Commun. 2002, 297(1); 148-53.
    [187]Di Stefano V, Rinaldo C, Sacchi A, Soddu S, D'Orazi G. Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis[J]. Exp Cell Res. 2004, 293(2); 311-20.
    [188]Dauth I, Kr(?)J, Hofmann TG. Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM[J]. Cancer Res. 2007, 67(5); 2274-9.
    [189]Choi DW, Seo YM, Kim EA, Sung KS, Ahn JW, Park SJ, Lee SR, Choi CY. Ubiquitination and degradation of homeodomain-interacting protein kinase 2 by WD40 repeat/SOCS box protein WSB-l[J].J Biol Chem.2008, 283(8); 4682-9.
    [190]Engelhardt OG, Boutell C, Orr A, Ullrich E, Haller O, Everett RD. The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML[J]. Exp Cell Res. 2003, 283(1); 36-50.
    [191]Gresko E, Moller A, Roscic A, Schmitz ML. Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability[J]. Biochem Biophys Res Commun. 2005, 329(4); 1293-9.
    [192]Roscic A, Moller A, Calzado MA, Renner F, Wimmer VC, Gresko E, L(?)di KS, Schmitz ML. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2[J].Mol Cell. 2006, 4(1); 77-89.
    [193]Kim YH, Sung KS, Lee SJ, Kim YO, Choi CY, Kim Y. Desumoylation of homeodomain-interacting protein kinase 2 (HIPK2) through the cytoplasmic-nuclear shuttling of the SUMO-specific protease SENP1[J].FEBS Lett. 2005, 579(27); 6272-8.
    [194]Hofmann TG, Jaffray E, Stollberg N, Hay RT, Will H. Regulation ofhomeodomain-interacting protein kinase 2 (HIPK2) effector function through dynamic small ubiquitin-related modifier-l[J]. J Biol Chem. 2005, 280(32); 29224-32.
    [195]Das S, Boswell SA, Aaronson SA, Lee SW. P53 promoter selection: choosing between life and death[J]. Cell Cycle. 2008, 7(2); 154-7.
    [196]Dey A, Verma CS, Lane DP. Updates on p53: modulation of p53 degradation as a therapeutic approach[J].Br J Cancer. 2008, 98(1); 4-8.
    [l97]O'NeilN, Rose A. DNA repair[J]. WormBook. 2006, 13; 1-12.
    [198]Ohnishi T. The role of the p53 molecule in cancer therapies with radiation and/or hyperthermia[J]. J Cancer Res Ther. 2005 , 1(3): 147-50.
    [199]Garner E, Raj K. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death[J]. Cell Cycle. 2008 , 7(3); 277-82.
    [200]Sakamoto A, Oda Y, Tsuneyoshi M, Iwamoto Y. Expression of the UV-induced molecule, Gadd45, in atypical fibroxanthoma[J]. Histopathology. 2007, 50(7); 939-41.
    [201]Vitiello PF, Staversky RJ, Keng PC, O'Reilly MA. PUMA inactivation protects against oxidative stress through p21/Bcl-XL inhibition of bax death[J]. Free Radic Biol Med. 2008, 44(3); 367-74.
    [202]legg HV, Itahana K, Zhang Y. Unlocking the Mdm2-p53 loop: ubiquitin is the key[J]. Cell Cycle. 2008, 7(3); 287-92.
    [203]Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation[J]. Cell. 2003 , 112(6); 779-91.
    [204]Karlidag T, Cobanoglu B, Keles E, Alpay HC, Ozercan I, Kaygusuz I, Yalcin S, Sakallioglu O. Expression of Bax, p53, and p27/kip in patients with papillary thyroid carcinoma with or without cervical nodal metastasis[J]. Am J Otolaryngol. 2007, 28(1); 31-6.
    [205]Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer celIs[J]. Mol Cell. 2001, 7(3); 673-82.
    [206]Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53[J]. Mol Cell. 2001, 7(3); 683-94.
    [207]Yoon KA, Nakamura Y, Arakawa H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses[J]. J Biol Chem. 1988, 263(25); 12751-8.
    [208]Dai DL, Martinka M, Bush JA, Li G. Reduced Apaf-1 expression in human cutaneous melanomas[J]. Br J Cancer. 2004, 91(6); 1089-95.
    [209]Gonzalez-Campora R, Davalos-Casanova G, Beato-Moreno A, Garcia-Escudero A, Pareja Megia MJ, Montironi R, Lopez-Beltran A. BCL-2, TP53 and BAX protein expression in superficial urothelial bladder carcinoma[J]. Cancer Lett. 2007, 250(2); 292-9.
    [210]Ekoff M, Kaufmann T, Engstr(?)m M, Motoyama N, Villunger A, J(?)nsson JI, Strasser A, Nilsson G. The BH3-only protein Puma plays an essential role in cytokine deprivation induced apoptosis of mast cells[J]. Blood. 2007, 110(9); 3209-17.
    [211]Liu X, Yue P, Khuri FR, Sun SY. Decoy receptor 2 (DcR2) is a p53 target gene and regulates chemosensitivity[J]. Cancer Res. 2005, 65(20); 9169-75.
    [212]Duiker EW, Mom CH, de Jong S, Willemse PH, Gietema JA, van der Zee AG, de Vries EG The clinical trail of TRAIL[J]. Eur J Cancer. 2006, 42(14):2233-40.
    [213]Uberti D, Ferrari-Toninelli G, Bonini SA, Sarnico I, Benarese M, Pizzi M, Benussi L, Ghidoni R, Binetti G, Spano P, Facchetti F, Memo M. Blockade of the tumor necrosis factor-related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity[J].Neuropsychopharmacology. 2007, 32(4); 872-80.
    [214]Hsu CL, Lo WH, Yen GC. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas- and mitochondrial-mediated pathway[J]. J Agric Food Chem. 2007, 55(18); 7359-65.
    [215]Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells[J]. Nat Med. 2001, 7(10); 1111-7.
    [216]Kimura Y, Furuhata T, Urano T, Hirata K, Nakamura Y, Tokino T. Genomic structure and chromosomal localization of GML(GPI-anchored molecule-like protein), a gene induced by p53[J]. Genomics. 1997, 41(3); 477-80.
    [217]Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, Skaliter R, Gudkov AV, Chumakov PM, Feinstein E. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability[J]. Oncogene. 2002, 21(39); 6017-31.
    [218]Neuberg M, Buckbinder L, Seizinger B, Kley N. The p53/IGF-l receptor axis in the regulation of programmed cell death[J]. Endocrine. 1997, 7(1); 107-9.
    [219]Hofer-Warbinek R, Schmid JA, Mayer H, Winsauer G, Orel L, Mueller B, Wiesner Ch, Binder BR, de Martin R. A highly conserved proapoptotic gene, IKIP, located next to the APAF1 gene locus, is regulated by p53[J]. Cell Death Differ. 2004, 11(12); 317-25.
    [220]Fernandez-Salas E, Suh KS, Speransky VV, Bowers WL, Levy JM, Adams T, Pathak KR, Edwards LE, Hayes DD, Cheng C, Steven AC, Weinberg WC, Yuspa SH. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53[J]. Mol Cell Biol. 2002, 22(11); 3610-20.
    [221]Han J, Goldstein LA, Hou W, Rabinowich H. Functional linkage between NOXA and Bim in mitochondrial apoptotic events[J]. J Biol Chem. 2007, 282(22); 16223-31.
    [222]Urano T, Nishimori H, Han H, Furuhata T, Kimura Y, Nakamura Y, Tokino T. Cloning of P2XM, a novel human P2X receptor gene regulated by p53[J]. Cancer Res. 1997, 57(15); 3281-7.
    [223]Wang X, Wang F, Taniguchi K, Seelan RS, Wang L, Zarfas KE, McDonnell SK, Qian C, Pan K, Lu Y, Shridhar V, Couch FJ, Tindall DJ, Beebe-Dimmer JL, Cooney KA, Isaacs WB, Jacobsen SJ, Schaid DJ, Thibodeau SN, Liu W. Truncating variants in p53AIPl disrupting DNA damage-induced apoptosis are associated with prostate cancer risk[J]. Cancer Res. 2006, 66(21); 10302-7.
    [224]Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y, Monden M, Nakamura Y. p53DINPI, a p53-inducible gene, regulates p53-dependent apoptosis[J]. Mol Cell. 2001, 8(1); 85-94.
    [225]Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes[J]. Oncogene. 1999, 18(1); 127-37.
    [226]Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genesfJ]. Oncogene. 1999, 18(1); 127-37.
    [227]Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet. 2000, 26(1); 122-7.
    [228]Gorgoulis VG, Liloglou T, Sigala F, Korkolis D, Yannoukakos D, Papalambros E, Asimacopoulos PJ, Papavassiliou AG, Kotsinas A. Absence of association with cancer risk and low frequency of alterations at a p53 responsive PIG3 gene polymorphism in breast and lung carcinomas[J]. Mutat Res. 2004, 556(1-2); 143-50.
    [229]Gu Z, Gilbert DJ, Valentine VA, Jenkins NA, Copeland NG, Zambetti GP. The p53-inducible gene EI24/PIG8 localizes to human chromosome 11q23 and the proximal region of mouse chromosome 9[J]. Cytogenet Cell Genet. 2000, 89(3-4); 230-3.
    [230]Ohiro Y, Garkavtsev I, Kobayashi S, Sreekumar KR, Nantz R, Higashikubo BT, Duffy SL, Higashikubo R, Usheva A, Gius D, Kley N, Horikoshi N. A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF) [J]. FEBS Lett. 2002, 524(1-3); 163-71.
    [231]Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R. Somatic mutations of PTEN in giioblastoma multiforme[J]. Cancer Res. 1997, 57(19); 4183-6.
    [232]Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells[J]. Mol Cell. 2001, 7(3); 673-82.
    [233]Adachi K, Toyota M, Sasaki Y, Yamashita T, Ishida S, Ohe-Toyota M, Maruyama R, Hinoda Y, Saito T, Imai K, Kudo R, Tokino T. Identification of SCN3B as a novel p53-inducible proapoptotic gene[J]. Oncogene. 2004, 23(47); 7791-8.
    [234]Bourdon JC, Renzing J, Robertson PL, Fernandes KN, Lane DP. Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane[J]. J Cell Biol. 2002, 158(2); 235-46.
    [235]Fortin A, MacLaurin JG, Arbour N, Cregan SP, Kushwaha N, Callaghan SM, Park DS, Albert PR, Slack RS. The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors p53 and E2F 1[J], J Biol Chem. 2004, 279(27); 28706-14.
    [236]Ng CC, Koyama K, Okamura S, Kondoh H, Takei Y, Nakamura Y. Isolation and characterization of a novel TP53-inducible gene, TP53TG3[J]. Genes Chromosomes Cancer. 1999, 26(4); 29-35.
    [237]Sax JK, El-Deiry WS. Idervtiflcation and characterization of the cytopiasmic protein TRAF4 as a p53-regulated proapoptotic gene[J]. J Biol Chetn. 2003, 278(38); 36435-44.
    [238]Fujimoto H, Onishi N, Kato N, Takekawa M, Xu XZ, Kosugi A, Kondo T, Imamura M, Oishi I, Yoda A, Minami Y. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wipl phosphatase[J]. Cell Death Differ. 2006, 13(7); 1170-80.
    [239]Tomiyama A, Serizawa S, Tachibana K, Sakurada K, Samejima H, Kuchino Y, Kitanaka C. Critical role for mitochondrial oxidative phosphorylation in the activation of tumor suppressors Bax and Bak[J]. J Natl Cancer Inst. 2006,98(20); 1462-73.
    [240]Ekoff M, Kaufmann T, Engstr(?)m M, Motoyama N, Villunger A, J(?)nsson JI, Strasser A, Nilsson G The BH3-only protein Puma plays an essential role in cytokine deprivation induced apoptosis of mast cells[J]. Blood. 2007, 110(9); 3209-17.
    [241]Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis[J]. Science. 2004, 303(5660); 1010-4.
    [242]Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53[J]. Science. 2005, 309(5741); 1732-5.
    [243]Zilfou JT, Spector MS, Lowe S W. Slugging it out: fine tuning the p53-PUMA death connection[J]. Cell. 2005, 123(4); 545-8.
    [244]Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM, Look AT. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma[J]. Cell. 2005, 123(4); 641-53.
    [245]Roma MG, Sanchez Pozzi EJ. Oxidative stress: a radical way to stop making bile[J]. Ann Hepatol. 2008, 7(1); 16-33.
    [246]Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes[J]. Oncogene. 1999, 18(1); 127-37.
    [247]Brasoveanu LI, Altomonte M, Gloghini A, Fonsatti E, Coral S, Gasparollo A, Montagner R, Cattarossi I, Simonelli C, Cattelan A. Expression of protectin (CD59) in human melanoma and its functional role in cell- and complement-mediated cytotoxicity[J]. Int J Cancer. 1995, 61(4); 548-56.
    [248]Han X, Chesney RW. Mechanisms of regulation of taurine transporter activity: a complex interplay of regulatory systems[J].Adv Exp Med Biol. 2006, 583; 79-90.
    [249]Liu G, Chen X. The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis[J]. Oncogene. 2002, 21(47); 7195-204.
    [250]Bourdon JC, Renzing J, Robertson PL, Fernandes KN, Lane DP. Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane[J]. J Cell Biol. 2002, 158(2); 235-46.
    [251]Liu X, Yue P, Khuri FR, Sun SY. p53 upregulates death receptor 4 expression through an intronic p53 binding site[J]. Cancer Res. 2004, 64(15); 5078-83.
    [252]Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y, Monden M, Nakamura Y. p53DINPl, a p53-inducible gene, regulates p53-dependent apoptosis[J]. Mol Cell. 2001, 8(1); 85-94.
    [253]Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53[J]. Nature. 1995, 377(6550); 646-9.
    [254]Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation[J]. Cell. 1992, 69(7); 1237-45.
    [255]Coates PJ. p53 and Mdm2: not all cells are equal[J]. J Pathol. 2007, 213(4); 357-9.
    [256]Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N, Prives C. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity[J]. EMBO J.2007, 26(1); 90-101.
    [257]Ameyar-Zazoua M, Wisniewska MB, Bakiri L, Wagner EF, Yaniv M, Weitzman JB. AP-1 dimers regulate transcription of the pl4/pl9ARF tumor suppressor gene[J]. Oncogene. 2005, 24(14); 2298-306.
    [258]Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, White RL, Matsunami N. Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein[J]. Mol Cell. 2001, 7(5):927-36.
    [259]Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D. Monoallelically expressed gene related to p53 at 1 p36, a region frequently deleted in neuroblastoma and other human cancers[J]. Cell. 1997,90(4); 809-19.
    [260]Lara MF, Paramio JM. The Rb family connects with the Tp53 family in skin carcinogenesis[J]. Mol Carcinog. 2007, 46(8); 618-23.
    [261]Giono LE, Manfredi JJ. Mdm2 plays a positive role as an effector of p53-dependent responses[J]. Cell Cycle. 2007, 6(17); 2143-7.
    [262]Laurie NA, Schin-Shih C, Dyer MA. Targeting MDM2 and MDMX in retinoblastoma. Curr Cancer Drug Targets[J]. 2007, 7(7); 689-95.
    [263]Strachan GD, Rallapalli R, Pucci B, Lafond TP, Hall DJ. A transcriptionally inactive E2F-1 targets the MDM family of proteins for proteolytic degradation[J]. J Biol Chem. 2001, 276(49); 45677-85.
    [264]Sabbatini P, McCormick F. MDMX inhibits the p300/CBP-mediated acetylation of p53[J]. DNA Cell Biol. 2002, 21(7); 519-25.
    [265]Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA. Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity[J]. J Mol Endocrinol. 2002, 29(1); 41-60.
    [266]Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradationfj]. Cell. 2003 , 112(6); 779-91.
    [267]Logan IR, Sapountzi V, Gaughan L, Neal DE, Robson CN. Control of human PIRH2 protein stability: involvement of TIP60 and the proteosome[J]. J Biol Chem. 2004, 279(12); 11696-704.
    [268]Cheon KW, Baek KH. HAUSP as a therapeutic target for hematopoietic tumors[J]. Int J Oncol. 2006, 28(5); 1209-15.
    [269]Zhang L, Li J, Wang C, Ma Y, Huo K. A new human gene hNTKL-BP1 interacts with hPirh2[J]. Biochem Biophys Res Commun. 2005, 330(1); 293-7.
    [270]Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops[J]. Oncogene. 2005 , 24(17); 2899-908.
    [271]Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN, Ronai Z. JNK targets p53 ubiquitination and degradation in nonstressed cells[J]. Genes Dev. 1998, 12(17); 2658-63.
    [272]Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, Taya Y, Imai K. p53-inducible wipl phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation[J]. EMBO J. 2000, 19(23); 6517-26.
    [273]Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA. The Wipl Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop[J]. Cancer Cell. 2007, 12(4); 342-54.
    [274]Levav-Cohen Y, Goldberg Z, Zuckerman V, Grossman T, Haupt S, Haupt Y. C-Abl as a modulator of p53[J]. Biochem Biophys Res Commun. 2005, 331(3); 737-49.
    [275]Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell. 2005, 121(7); 1071-83.
    [276]Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL. Repression of p53 activity by Smyd2-mediated methylationfj]. Nature. 2006, 444(7119); 29-32.
    [277]Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F 3rd, Reinberg D, Barlev NA. Methylation-acetylation interplay activates p53 in response to DNA damage[J]. Mol Cell Biol. 2007, 27(19); 6756-69.
    [278]Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL. Repression of p53 activity by Smyd2-mediated methylationfj]. Nature. 2006 , 444(7119); 629-32.
    [279]Harper JW. Neddylating the guardian; Mdm2 catalyzed conjugation of Nedd8 to p53[J]. Cell. 2004 , 118(1); 2-4.
    [280] Wu JT, Chan YR, Chien CT. Protection of cullin-RING E3 ligases by CSN-UBP12[J]. Trends Cell Biol. 2006, 16(7); 362-9.
    [281] Dohmesen C, Koeppel M, Dobbelstein M Specific inhibition of Mdm2-mediated neddylation by Tip60[J]. Cell Cycle. 2008, 7(2); 222-31.
    [282] Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA. Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity[J]. J Mol Endocrinol. 2002, 29(1); 41-60.
    [283] Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation[J]. Cell. 2003 , 112(6); 779-91.
    [284] Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP. Structure of the Cull-Rbxl-Skpl-F boxSkp2 SCF ubiquitin ligase complex[J]. Nature. 2002, 416(6882); 703-709.
    [285] Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001, 70; 503-533 [24]Pagano M. Control of DNA synthesis and mitosis by the Skp2-p27-Cdk1/2 axis[J]. Mol Cell. 2004, 14(4); 414-416.
    [286] Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Deshaies RJ, Shevchenko A, Deshaies RJ. Cdc53/cullin and the essential Hrtl RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34[J]. Genes Dev. 1999, 13(12); 1614-26.
    [287] Abe K, Hattori T, Isobe T, Kitagawa K, Oda T, Uchida C, Kitagawa M. Pirh2 interacts with and ubiquitylates signal recognition particle receptor beta subunit[J]. Biomed Res. 2008 , 29(1); 53-60.
    [288] Hattori T, Isobe T, Abe K, Kikuchi H, Kitagawa K, Oda T, Uchida C, Kitagawa M. Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kipl [J]. Cancer Res. 2007, 67(22); 10789-95.
    [289]Logan IR, Gaughan L, McCracken SR, Sapountzi V, Leung HY, Robson CN. Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer[J]. Mol Cell Biol. 2006, 26(17); 6502-10.
    [290]Maruyama S, Miyajima N, Bohgaki M, Tsukiyama T, Shigemura M, Nonomura K, Hatakeyama S. Ubiquitylation of epsilon-COP by PIRH2 and regulation of the secretion of PSA[J]. Mol Cell Biochem. 2008, 307(1-2); 73-82.
    [291]Duan W, Gao L, Wu X, Zhang Y, Otterson GA, Viilalona-Calero MA. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells[J]. Exp Cell Res. 2006, 312(17); 3370-8.
    [292]Su Y, Bai M, Zhu LP, Jin Y, Zhang XJ, Zhou Q. Pirh2 shRNA mediated by psiRNA-hH1 vector plasmid effectively inhibits the proliferation of lung carcinoma cells: in vitro and in vivo experiments[J]. Zhonghua Yi Xue Za Zhi. 2007, 87(17); 1199-203.
    [293]Logan IR, Gaughan L, McCracken SR, Sapountzi V, Leung HY, Robson CN. Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer[J]. Mol Cell Biol. 2006, 26(17); 6502-10.
    [294]Logan IR, Sapountzi V, Gaughan L, Neal DE, Robson CN. Control of human PIRH2 protein stability: involvement of TIP60 and the proteosome[J]. J Biol Chem. 2004, 279(12); 11696-704.
    [295]Duan S, Yao Z, Hou D, Wu Z, Zhu WG, Wu M. Phosphorylation of Pirh2 by calmodulin-dependent kinase II impairs its ability to ubiquitinate p53[J]. EMBO J. 2007, 26(13); 3062-74.
    [296]Zheng G, Ning J, Yang YC. PLAGL2 controls the stability of Pirh2, an E3 ubiquitin ligase for p53[J]. Biochem Biophys Res Commun. 2007, 364(2); 344-50.
    [297]Kas K, Voz ML, Hensen K, Meyen E, Van de Ven WJ. Transcriptional activation capacity of the novel PLAG family of zinc finger proteins[J]. J Biol Chem. 1998, 273(36); 23026-32.
    [298]Meuimeester E, Maurice MM, Boutell C, Te(?)nisse AF, Ovaa H, Abraham TE, Dirks RW, Jochemsen AG. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2[J]. Mol Cell. 2005, 18(5); 565-76.
    [299]Chen M, Cortay JC, Logan IR, Sapountzi V, Robson CN, Gerlier D. Inhibition of ubiquitination and stabilization of human ubiquitin E3 ligase PIRH2 by measles virus phosphoprotein[J]. J Virol. 2005, 79(18); 11824-36.
    [300]Fogal V, Gostissa M, Sandy P, Zacchi P, Stemsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C, Del Sal G. Regulation of p53 activity in nuclear bodies by a specific PML isoform[J]. EMBO J.2000, 19(22); 6185-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700