人工曝气强化技术对缓流重污染水体水质应急修复的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工曝气强化技术(The artificial aeration strengthening technology)经过多年发展广泛应用于各个工程中,对黑臭河道除污以及应急修复起到重大作用。课题以水体水质净化与长效保持为目的,通过人工曝气强化技术,来改变城镇污染河道黑臭现状。课题考察人工曝气强化技术对同心河应急修复及除污效果影响,研究在试验条件下,不同曝气强度与不同外源污染负荷对同心河水质人工曝气除污效果的影响。
     现场运行人工曝气系统,短时间内进行人工复氧,对去除水体有机物及营养盐无明显效果,仅对提高水体溶解氧、消除水体恶臭有一定作用。在限定水体范围内,曝气强度越大,水体溶解氧越容易短时间内升高,有利于提高河流水质,发挥曝气机应急处理作用。对同心河这样流动性较差的河流,曝气起到一定的推流作用。
     在相同工况条件下,水车式曝气机的复氧能力较强,服务范围大,对河底底泥扰动程度小,曝气后水体感官效果好。两种曝气机对水体中CODcr均有去除,水车式去除氨氮效果好于潜水式曝气机,但两种曝气机对溶解性磷酸盐均无去除效果。
     在限定范围水体、无外源污染进入的条件下,控制对水体恒定的充氧量,污染水体水质能得到好转。结果表明,当曝气强度为250L/(m~3.h)时即能有较好的除污效果,加大曝气强度污染水体除污率并没有提高。因此建议不需要加大曝气强度,避免浪费。
     在试验条件下,当水体CODcr容积负荷为0.02Kg/(m~3.d)、氨氮容积负荷为0.004Kg/(m~3.d)、TP容积负荷为0.00013Kg/(m~3.d),相当于同心河现在每日流进污水4000m~3左右时,对曝气去除污染物效果影响很大,应急修复效果较差;当水体CODcr容积负荷0.005Kg/(m~3.d)、氨氮容积负荷0.00082Kg/(m~3.d)、TP容积负荷0.00004Kg/(m~3.d),相当于同心河现在每日流进污水1000m~3左右时,人工曝气对污染物能起到较好的去除作用。
     建议昆山同心河每天排入污水量由4000m~3减少到959m~3(新增截流污水量3000吨)。截污后,进入同心河污染物总量分别为CODcr为220.57Kg/d、NH_4~+-N为14.58Kg/d、TP为3.45Kg/d。曝气运行对污染物削减量CODcr为220.69 Kg/d、NH_4~+-N为41.66Kg/d、TP为3.6Kg/d。新增截污后,以现有人工曝气条件下运行可达到短期治理目标。
     试验所有结论对同心河人工曝气应急修复及除污有着重要的理论和实践意义。
Artificial aeration strengthen technology what been widely appled in each project have developed many years, played an important function to defaecate the black smelly river course as well as emergency repair the water body. The goal of this topic is enhancing the water body water quality purification and the persistent effect well, changing the city polluted stream black smelly present situation by the artificial aeration strengthen technology. The topic have inspected the artificial aeration strengthen technology to the concentric river emergency repair and the defaecated effect influence; studied the different aeration intensity and different extraneous source pollution load to concentric river water quality artificial aeration defaecated effect influence under the small scale condition.
     Running the artificial aeration system in the scene movement, artificial reaerationon in a short time, to removes the water body organic matter and the nutrient salt not tangible effect, only to enhances the water body dissolved oxygen, to eliminate the water body odor to have certain function.In defines in the water body scope, the aeration intensity is bigger, the level of the water body dissolved oxygen is higher in the short time to elevate, advantageous in enhancing the rivers water quality, the display insolation internal combustion engine emergency processing function.As the concentric river such fluidity bad rivers, the aeration plays certain drift role.
     The waterwheel type aeration machine and the diving type aeration machine under the same operating mode condition, waterwheel type aeration machine reaerationon ability is stronger, smaller perturbation degree to the bottom mud of river bottom, after the aeration, the water body sense organ effect is better.Two kinds of aeration machine can reduce CODcr in the water body, the waterwheel type’s denitrogenation effect better than the diving type aeration machine, but two kinds of aeration machine do not have the elimination effect to the soluble phosphate.
     In a limited range of water body, the non-extraneous source pollution, controled artificial aeration to the water body constant oxygenizement quantity, Pollution water’s quality to be able to obtain the change for the better. The experiment discovered that when controled aeration intensity is 250L/(m~3.h) can have the good defaecating effect, increased the aeration intensity to pollute water body defaecating rate not be enhanced. Therefore, suggested it does not need to increase the aeration intensity, avoid wasting.
     Under the small scale condition, when influent CODcr volume load is 0.02Kg/(m~3.d), the ammonia nitrogen volume load is 0.004Kg/(m~3.d), the TP volume load is 0.00013Kg/(m~3.d), equal everyday influent about 4000m~3 water into concentric river now, to the aeration elimination pollutant effect influence is very big, emergency repair effect is poorer; When the influent CODcr volume load is 0.005Kg/(m~3.d), the influent ammonia nitrogen volume load is 0.00082Kg/(m~3.d), the influent TP volume load is 0.00004Kg/(m~3.d), to be equal everyday influent about 1000m~3 water into concentric river now, the artificial aeration to the pollutant elimination can play the good elimination role.
     It is suggested that Kunshan concentric river disperses into the volume of contaminated water waste to reduce from 4000m~3 to 959m~3 about (additional cut-off volume of contaminated water waste 3000 tons) every day. After truncation dirt, the total pollutant quantity what inflow into the concentric river respectively is CODcr=220.57Kg/d, NH_4~+-N= 14.58Kg/d, TP= 3.45Kg/d every day.The aeration machine can reduce the pollutant measures CODcr is 220.69 Kg/d, NH_4~+-N is 41.66Kg/d, TP is 3.6Kg/d. After additional truncation dirt, running the existing artificial aeration condition can achieve the short-term government goal.
     All conclusions of the experiments have the important theory and the practice significance to the concentric river artificial aeration emergency repair and defaecating.
引文
[1]王华东,王健明,刘永可等.水环境污染概论[M].北京师范大学出版社,1984:43-46.
    [2]张丙印,倪广恒.城市水环境工程[M].北京:清华大学出版社,2005.27-29,246-253.
    [3]李艳霞,王颖,张进伟等.城市河道水体生态修复技术的探讨[J],水利科技与经济,2006,12(11):762-764.
    [4]董存超,温正堂.河流湖泊污染现状及整治技术[J].能源与环境,2007,4:104-105.
    [5]伍燕南.江南某河道水污染原因及其防治对策分析[J].江南某科技学院学报,2006,23(1) :66-70.
    [6]彭近新.水质富营养化与防治[M].北京:中国环境科学出版社,1988,51-162.
    [7]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002.56-87
    [8]胡方,杨利,赵静.论生态型河道的建设与发展[J].山东水利,2008,6:49-51.
    [9]陈雪,徐海波,马继侠,马陈.生态型河道建设概述[J].市政工程设计,2006,77(4):78-80.
    [10]张同祺,李勇,李大鹏.江南某城镇河道水体污染现状分析及修复[J].水处理技术,2011,37(2):114-117.
    [11]高学平,赵世新,张晨,涂向阳.河流系统健康状况评价体系及评价方法[J].水利学报,2009,40(8):962-968.
    [12]Barbour M T,Gerritsen J,Snyder B D,et al.Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers:Periphyton,Benthic Macro invertebrates and Fish,Second Edition[M].Washington D.C:U.S. Environmental Protection Agency;Office of Water,1999.
    [13]罗海江,朱建平,蒋火华.我国河流水质评价污染因子选择方案探讨[J],中国环境监测,2002,18(4).
    [14]董存超,温正堂.河流湖泊污染现状及整治技术[J],能源与环境,2007(4):104-105.
    [15]《2006年中国环境状况公报》,国家环保部.
    [16]孙从军,张明旭.河道曝气技术在河流污染治理中的应用[J] .环境保护,2001,(4):12-14.
    [17]羊寿生.曝气的理论与实践.中国建筑工业出版社[M].1982:4-6,16-22,130-151.
    [18]陆豪.苏州城区景观河道生态修复试验研究[J].城市防洪2008年学术年会论文集.88-91.
    [19]向琴,史永红,曝气在环境工程水处理中的应用[J],湖北民族学院学报,2008,26(1):85—91.
    [20]谢海文,沈乐.河流曝气简介[J].水文.2009,29(3):59-64.
    [21]李伟杰,汪永辉,曝气充氧技术在我国城市中小河道污染治理中的应用[J].能源与环境.2007,2,36.
    [22]李开明,刘军等.古廖涌黑臭水体生物修复及维护试验[J].应用于环境生物学报,2005,,11(6):742-746.
    [23] Griffth I M, Lloyal P J. Mobile oxygenation in the Thames Estuary[J].Effluent and Treatment Journal,1985,(5).
    [24] USA company plays key role in waster clean up worldwide [D].Aire-O2 News,Aeration Industries Intl.,Inc.,1990,7(1):2-3.
    [25]陈伟,叶舜涛,张明旭.苏州河河道曝气富氧探讨[J].给水排水,200l,27(4):7-9.
    [26]潘涌璋,吕雯岚,张娜等.微生物菌剂净化富营养化景观水体的研究与应用[J].给水排水,2005,31(6):73-77.
    [27]李玲,李文朝,李海英,柯凡.曝气汲水技术用于污染水体生态修复的研究[J].中国给水排水.2009,25(17):39-42.
    [28]黄燕,黄民生,徐亚同等.上海城市河道治理工程简介[J].环境工程.2007,25(2):85-88.
    [29]陈伟叶,舜涛,张明旭.苏州河河道曝气复氧探讨[J].给水排水.2001,27(4).
    [30]徐续,操家顺.河道曝气技术在苏州地区河流污染治理中的应用[J].水资源保护.2006,22(1):30-33.
    [31] Viadimir Novotny,Klaus R. Imhoff,等. Karl Imhoff城市排水与污水处理手册[M].俞亚明等译.北京:中国建筑工业出版社,1992:125-128
    [32]赵振,孙从军,李小平.低强度曝气技术修复黑臭水体试验研究[J].水处理技术.2009,35(4):104-107.
    [33]谌伟,李小平,孙从军,赵振.低强度曝气技术修复河道黑臭水体的可行性研究[J].中国给水排水.2009,25(1):57-59.
    [34]赵振孙,从军,李小平.长期低强度曝气技术处理黑臭水体的可行性研究[J].上海环境科学.2008,27(6):238-241.
    [35]王化可,李文达等.富营养化水体底泥污染控制及生物修复技术探讨.能源与环境,2006(1):15-18.
    [36]李大鹏,黄勇,李伟光.底泥曝气改善城市河流水质的研究.中国给水排水.2007,23(5):22-25.
    [37]谌建宇,许振成,骆其金,廖柏寒,虢清伟,黄博.曝气复氧对滇池重污染支流底泥污染物迁移转化的影响.生态环境2008,17(6):2154—2158.
    [38]肖玲,王书转,张健,王利军,任桂镇.秦岭北麓主要河流的水质现状调查与评价.干旱区资源与环境.2008,22(1):56-59.
    [39]保金花,黄勇.水质综合评价方法研究综述[J].水利科技与经济,2008,14(8):639-642.
    [40]张同祺,李勇,张林.江南某高新区主要河道污染评价及生态建设.苏州科技学院院报(工程技术版)[J].2010,23(2):17-21.
    [41] Busayamas Pimpunchata, b,c, Winston L. Sweatmanc, Graeme C. Wake A mathematical model for pollution in a river and its remediation by aeration Applied Mathematics Letters 22 (2009) 304_308.
    [42]李亚新.活性污泥法理论与技术[M].中国建筑工业出版社.2007:220-238.125-158
    [43] GB 38382-2002中华人民共和国地表水环境质量标准[S].
    [44]谢丹平,李开明,江栋,刘爱萍.底泥修复对城市污染河道水体污染修复的影响研究.环境工程学报2009,3(8):1448-1453.
    [45]国家环保总局.水和废水监测分析方法.1997
    [46]袁金华,王有乐,清水充氧实验中饱和溶解氧值确定方法的探讨[J].水资源保护.2008,24(2)79—81.
    [47]赵静野,郑晓萌,高军.曝气充氧中氧总传质系数的探讨[J].北京建筑工程学院学报.2006,22(1):11—17.
    [48]汤丽华,孟广耀,水深对曝气过程中氧总转移系数的影响[J].同济大学学报.2007,35(6):760-763.
    [49]张闯,陶涛,李尔,谢荣焕.两种曝气设备的清水曝气充氧实验研究[J].环境污染与防治,2006,28(1):25-27.
    [50]孙从军,张明旭.组合推流反应器模型用于河道需氧量计算[J].中国给水排水.2002,18(9):16-19.
    [51]李开明,刘军,刘斌,江栋,刘思明,,黑臭河道生物修复中3种不同增氧方式比较研究.生态环境.生态环境2005, 14(6): 816-821.
    [52] Connie D. DeMoyer, Erica L. Schierholz, John S.Gulliver,Steven C. Wilhelms Impact of bubble and free surface oxygen transfer on diffused aeration systems Water Research 37 (2003) 1890–1904.
    [53] Leslie G C P等.废水生处理工程[M].张锡辉等译.北京:化学工业出版社,2003.
    [54]李燕城,吴俊奇.水处理实验技术[M].北京:中国建筑工业出版社,2004: 177-179.
    [55] Mauro F.,Daniela M.,Cristina M.Bacteria and organic matter dynamics during a bioremediation treatment of organic—rich harbour sediments.Marine Pollution Bulletin,2003,46(9):1164-1173.
    [56]高廷耀,顾国维,周琪等.水污染控制工程(下册)[M].高等教育出版社.2007:247-257.
    [57]张自杰,林荣忱等.排水工程(下册)[M].中国建筑工业出版社.2000:306-309.
    [58] H.Djelal, F. Larher , G.Martin, A.Amranea. Effect of the dissolved oxygen on the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions. Journal of biotechnongy (2006) 95–103.
    [59] Sukias J P,Craggs R J,TaImer C C Combined photoynthesis and mechanical aeration for nitrification in dairy waste stahilisation ponds Water Teehnol,2003,48(2):137~144.
    [60]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.178-192
    [61]沈耀良,王宝贞.废水生物处理新技术[M].中国环境科学出版,2006:184-196
    [62]北京市环境保护科学研究所.水污染防治手册[M].上海:上海科学技术出版社,1989.78-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700