纳米多孔钯、钯—金和钯-钌电极的制备及电催化活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接液体燃料电池在手机、笔记本、音乐播放器等便携式电源领域具有广阔的应用前景,其能量转换效率高、对环境污染小、燃料来源范围宽广、储存以及运输方便等优点,已经得到世界范围内的重视和关注。如何降低贵金属用量、提高催化剂电活性以及寻找高效、价格低廉的非铂催化剂,是目前燃料电池商业化过程中亟待解决的核心问题。上世纪九十年代开始,有机小分子的电催化氧化研究就受到国内外许多科研机构的高度重视,深入研究有机小分子电催化氧化过程,对认识电化学现象,发展电极过程动力学,完善电化学氧化机理具有重要的科学与实践意义。铂、钯、金、银等贵金属对小分子的电催化性能已被广泛研究,探索电催化活性优良的修饰电极是一个十分重要的课题。
     本文开展了用于甲醇、乙醇、甲酸、甲醛氧化和过氧化氢还原的新型电催化剂探索和研究,从添加络合剂,选用不同的还原剂来改进电催化剂性能,制备出结构新颖,催化活性高的新型催化剂,并通过扫描电子显微镜(SEM)、能量散射光谱(EDS)、循环伏安法(CV)、恒电位阶跃(CA)、线性扫描法(LSV)、交流阻抗法(EIS)等分析测试技术,对催化剂的结构、形貌、电化学性能等进行了详细具体研究。
     本论文的主要内容和研究结论如下:
     1.对钯电极的应用、研究进展和制备方法进行概述,阐述了甲醇、乙醇、甲酸、甲醛等有机小分子的电催化氧化以及过氧化氢的还原机理,得出催化剂纳米化是当前开发催化剂的主要思路。
     2.确定了纳米钯系列催化剂的具体制备过程。本研究中以EDTA为添加剂,分别以甲醛、乙二醇、聚乙二醇为还原剂,利用水热法,通过改变溶液组成制备不同的纳米钯电极;以EDTA为络合剂和甲醛做还原剂制备出纳米钯电极,然后在此电极上恒电位沉积金,得到金修饰钯电极;以EDTA为络合剂、甲醛做还原剂制备出钯钌双金属电极。金属催化剂能够以纳米小颗粒直接沉积于钛基体表面,而且催化剂颗粒结构稳定。
     3.利用扫描电子显微镜(SEM)和能谱分析(EDS)测试技术,对所制备的nanoPd、Au/nanoPd、nanoPdRu电极的结构与成分进行了表征和分析,主要结论如下:
     (1)不同溶液组成制备的nanoPd电极:nanoPd/PEG催化剂颗粒大小不均匀,电极表面多孔结构也不是很明显,颗粒的边角轮廓模糊,整体感觉催化剂颗粒“淹没”于黑暗中。nanoPd-EDTA/PEG催化剂颗粒明显变小,粒子之间相互堆积连接到一起,呈现出较明显的蜂窝状结构,但仍有被“淹没”的痕迹。nanoPd-EDTA/HCHO电极纳米颗粒为大小均匀的球形,粒子直径约为60 nm,微小的钯催化剂颗粒在钛片表面紧密结合,形成纵横交错的立体多孔网状结构。nanoPd/EG电极也呈现出多孔网状结构,但催化剂颗粒大小不均匀。nanoPd/HCHO电极,催化剂颗粒之间孔隙较小,但粒径较大,平均粒径约为150 nm。
     (2)Au/nanoPd电极:未沉积Au之前的nanoPd电极,Pd颗粒在钛基表面紧密结合,颗粒相互牢固地连接在一起形成多孔蜂窝状结构,且众多孔穴的形成为金颗粒的附着提供了大量位点,可以保障Au/nanoPd催化剂颗粒的高度稳定性。能谱分析结果表明,Pd的特征能量峰在2.9 keV,Au的特征峰处于2.1 keV和9.7 keV。
     (3)PdRu电极:纳米颗粒在钛片表面相互连接形成三维立体网状结构,依附于钛基体表面紧密地覆盖一层催化剂颗粒,PdRu纳米粒子约100~150 nm,这种网状结构使电极拥有巨大的比表面积。
     4.采用CV、LSV、CA、EIS等测试方法,在碱性介质中研究了纳米钯电极对甲醇、乙醇、甲酸、甲醛氧化、以及过氧化氢还原的电催化活性,并对电极动力学过程进行了分析研究,同时研究了金修饰的纳米钯电极对甲酸的电氧化活性以及钯钌双金属电极对乙醇氧化的催化活性,主要结论如下:
     (1)在碱性溶液中循环伏安测试表明甲醇在nanoPd电极上氧化,起始氧化电位较低、阳极电流密度较大和抗CO毒化能力较强。电化学交流阻抗测试表明,甲醇在nanoPd电极上电氧化反应的阻抗值较低,甲醇浓度增加,电极阻抗值更低。
     (2)乙醇在纳米Pd电极上氧化表现出较负的起始氧化电位,其中nanoPd-EDTA/HCHO电极正向扫描起始氧化电位为-0.788 V,阳极峰电流密度达到151 mA cm-2。交流阻抗测试结果显示,nanoPd-EDTA/HCHO电极在碱性溶液中对乙醇氧化具有较低的电荷传递电阻。
     (3)利用循环伏安法研究了甲酸在不同反应液所制备的nanoPd电极上的电催化氧化,发现在1.0 mol L~(-1)NaOH+0.5 mol L~(-1)HCOOH溶液中,加入EDTA且以甲醛做还原剂的电极(nanoPd-EDTA/HCHO)上,甲酸氧化电流密度达132.00 mA cm-2,起始电位为-0.80V,表明电催化活性优于其它电极,同时研究了nanoPd-EDTA/HCHO电极对不同浓度甲酸电催化氧化,结果表明,在一定的甲酸浓度范围内,甲酸氧化的阳极电流密度随浓度的增加而增大。
     (4) CV、LSV、CA、EIS法研究表明,所制备的nanoPd电极在碱性条件下,对甲醛氧化具有较好的电流稳定性和较高的电催化活性。
     (5)nanoPd-EDTA/HCHO催化剂在1.0 mol L~(-1)NaOH溶液中对H2O2还原具有良好的电催化活性。这种nanoPd-EDTA/HCHO催化剂有望成为过氧化氢燃料电池的阴极催化剂。
     (6) CV和LSV结果显示,金在nanoPd表面的沉积促进了Pd对甲酸氧化的电催化活性,起始电位提前,电流密度增大。EIS研究也表明,Au/nanoPd电极上甲酸氧化反应的电荷传递电阻更低。所以这种金修饰纳米钯电极(Au/nanoPd)对甲酸氧化有较高的电催化活性。
     (7) CVs曲线显示所制备的电极(nanoPd, Pd_(99)Ru_1, Pd_(96)Ru_4, Pd_(87)Ru_(13)和Pd_(35)Ru_(75))在碱性溶液中对乙醇氧化具有很强的电催化活性,其中Pd87Ru13的氧化峰电流密度最大,峰电流平台最宽、起始氧化电位最负。进一步研究发现,随着乙醇浓度的增大(0.1-2.0 mol L~(-1)),电流密度平台呈增大的趋势。Pd_(87)Ru_(13)电极的阻抗值很低,乙醇在电极表面的氧化过程中电荷传递电阻较低。研究结果表明,Ru添加到Pd电极中改善了Pd对乙醇的电化学氧化活性。
     虽然目前对有机小分子电催化活性的研究报道较多,但制备性能优良的新型催化剂仍是这一领域的重要研究内容。本文所制备的纳米钯、钯金、钯钌电极,催化剂颗粒具有新颖的结构,对甲醇、乙醇、甲酸、甲醛氧化以及过氧化氢还原具有优异的电催化活性。此类新颖的电极材料对今后燃料电池阴阳两极催化剂的制备、以及新型电化学传感器的研究开发开辟了新的思路,为制备纳米电催化剂的研究工作提供了一定的理论指导与前期探索经验,对研究小分子的电催化活性在理论上具有一定的借鉴与指导意义。
The direct liquid fuel cells have been paid high attention and investigated widely, due to the high energy efficiency, low-pollution, abundant sources, easy storage and transportation of fuels. The direct liquid fuel cells have broadly application fields in the mobile phones, laptops, music players and other portable power sources. The core issues of their commercialization are how to reduce the consumption of precious metal, or to enhance the catalytic activity and to search for high efficient and low-cost non-platium catalyst. Since the 20th century, electrocatalytic oxidation of small molecules has been highly attented by foreign research institutions, and it has important scientific and practical significance to understand the electrochemical phenomena, develop electrode kinetics and improve electro-oxidation mechanism. Platium, palladium, gold, silver and other precious metals on the electro-catalytic properties of small molecules have been studied extensively to explore their excellent electro-catalytic activity. This is a much challenging work.
     In this work, we have prepared the novel electro-catalysts of nanoPd, Au/nanoPd and PdRu by the hydrothermal process using different reduction agents in the presence of EDTA. Then we have researched their electro- catalytic acfivity towards the oxidation of methanol, ethanol, formic acid, and formaldehyde and the reduction of hydrogen peroxide. The electro-activity has been investigated by the conventional electrochemical techniques including cyclic voltammetry(CV), chronoamperometric(CA), linear scanning voltammetry(LSV), electrochemical impedance spectroscopy(EIS), et al.The morphlogical stracture of the samples has been characterized by using the scanning electron micronscope(SEM) and energy scattering spectra(EDS).
     The principal contents and research conclusions of this thesis are as follows:
     1. The application, research progress and preparation of the Pd-coutaining catalysts are summarized, it is expounded the mechanism of small organic molecules oxidation such as methanol, ethanol, formic acid, formaldehyde and reduction activity like hydrogen peroxide. To develop nano catalysts is the main concept.
     2. Make sure the preparation process of palladium series nanometer catalysts. In this thesis, different nanometer palladium electrodes are fabricated by the hydrothermal process with adding EDTA through formaldehyde, glycol or polyethylene. The gold modified nanometer palladium catalyst is preparated by the constant potentioal deposition. The binary palladium ruthenium metal electrodes are obtained with EDTA as a complexing agent and formaldehyde as a reducing agent. Results show that nano-metal catalysts particles are directly deposited on the surface of titanium substrate, and the catalysts have high stability.
     3. Scanning electron microscopy(SEM), energy disperse spectroscopy (EDS), are employed to investigate the morphology and element compositions of nanoPd, Au/nanoPd, andPdRu.The main conclusions are as follows:
     (1) Morphologies of the prepared samples have been examined by scanning electro microscopy(SEM) and characterized by nanoporous network structures. The sizes of the Pd nanoparticles for the nanoPd/PEG, nanoPd-EDTA/PEG, nanoPd-EDTA/HCHO, nanoPd/EG, and nanoPd-HCHO are around 230, 130, 60, 80, and 150 nm, respectively. Their SEM images show that the Pd nanoparticles are connected with each other to form a three-dimensional texture which provides a considerably large real surface area.
     (2) For the preparation of the Au-modified nanoPd electrode: The porous structure of the nanoPd electrode offers plenty of sites and provides stable immobilization of the gold particles. Energy dispersed spectra of these samples indicate characteristic energy peaks of gold at ca. 2.1 and 9.7 keV, and palladium at ca. 3.1 and 3.25 keV.
     (3) All samples present a similar three-dimensional texture which is formed by the interconnection of the particles on the Ti surface. A typical SEM image of samples shows that a porous network structure is observed and the size of the particles(PdRu) is ca. 100 ~150 nm. This porous structure provides a considerably large real surface area of the samples. Energy dispersed spectra of these samples indicate characteristic energy peaks of palladium at ca. 3.1 and 3.25 keV, and ruthenium at ca. 2.2 keV. In addition, the energy peak at around 4.5 keV is ascribed to the substrate Ti.
     4 Electro-catalytic activity of the nanoPd for the oxidation of methanol, ethanol, formic acid, formaldehyde and the reduction of hydrogen peroxide in alkaline solution has been studied using CV, CA, LSV and EIS, and the catalytic activiyu of the electrode kinetic process is analyzed. In addition electro-oxidation of formic acid on the gold modified palladium and ethanol oxidation on palladium ruthenium electrode have bee n investi gated. The mai n results are as follows:
     (1) Cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) have been applied to evaluate the electrocatalytic acitivity of the nanoPd/Ti electrode towards methanol oxidation in alkaline solution. CV results show that the nanoPd /Ti electrode exhibits high anodic peak densities and a low onset potential for methanol oxidation. Also nanoPd /Ti electrode shows excellent CO tolerance during the oxidation of methanol. Nyquist and Bode plots of electrochemical impedance show that methanol electro-oxidation on the nanoPd /Ti exhibits low impedance values, and that with the increase of methanol concentrations, the impedance value for methanol electrooxidation decreases. The prepared nanoporous Pd electrode shows the significantly high electroactivity for methanol oxidation.
     (2) The oxidation of ethanol on the nanoPd-EDTA/HCHO exhibits a high anodic peak(151mA cm~(-2)) and a low onset potential of -0.788V. According to the analysis for elecreochemial impedance spectra(EIS), the nanoPd-EDTA/HCHO shows very low charge transfer resistances in 1.0 mol L~(-1)NaOH cantaining various concentrations of ethanol.
     (3) The electro-oxidation of formic acid on these Pd electrodes has been studied with cyclic voltammograms(CV) in the 1.0 mol L~(-1)NaOH+0.5 mol L~(-1)HCOOH solution. During the positive potential scan formic acid oxidation on the Pd-EDTA/HCHO exhibits a high anodic peak (132.0 mA cm-2) and a low onset potential of -0.98V , showing better electrocatalytic activity for formic acid oxidation than others. Effect of formic acid concentration on electrochemical characteristics of the nanoPd-EDTA/HCHO electrode is also investigated.
     (4) Electrocatalytic activity of the nanoPd towards formaldehyde oxidation in alkaline media has been evaluated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). Electrooxidation of formaldehyde on the nanoPd electrode takes place at a low onset potential of ca. -0.85 V (vs SCE) and large anodic current densities. Chronoamperometric data of the nanoPd electrode show high and stable anodic currents for formaldehyde oxidation. It is also observed that the steady-state current density shows a well linear increment with formaldehyde concentration in the range of 0 to 20 mmol L~(-1)formaldehyde. EIS investigation at different formaldehyde concentrations presents very low values of charge transfer resistances for formaldehyde oxidation on the nanoPd. Results show that the prepared nanoPd electrode is a highly efficient catalyst for formaldehyde oxidation in alkaline media.
     (5) Electroactivity of the nanoPd-EDTA/HCHO catalyst towards the electroreduction of hydrogen peroxide in 1.0 mol L~(-1)NaOH solution has been evaluated by voltammetric techniques. Both linear scan voltammetric and chronoamperometric data present significantly large steady-state reduction current density with regard to the hydrogen peroxide electroreduction on the prepared nanoPd-EDTA/HCHO catalyst. Results show that the prepared nanoPd-EDTA/HCHO catalyst is a much more effective electrocatalyst for the electroreduction of hydrogen peroxide in alkaline media.
     (6) Electrocatalytic activity of the nanoPd and Au/nanoPd towards formic acid in alkaline solution is evaluated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS). CV results reveal that Au/nanoPd presents a low onset potential and high anodic peak densities, showing that the deposited gold on nanoPd electrode can enhance palladium catalyst for formic acid electrooxidation activity. Also Nyquist plots indicate that formic acid electrooxidation on the Au/nanoPd exhibits low impedance values. Results show that the prepared Au/nanoPd electrode is an effective electrocatalyst towards formic acid oxidation in alkaline media.
     (7) CVs of the prepared electrocatalysts (nanoPd, Pd99Ru1, Pd96Ru4, Pd87Ru13 and Pd35Ru75) in alkaline media present extremely high anodic peaks towards ethanol oxidation. Among the prepared catalysts, Pd87Ru13 displays the (relatively) largest anodic peak current density, a wide peak current plateau and a most negative onset potential for ethanol oxidation. It is further found that the peak current plateau on the Pd87Ru13 catalyst becomes wider with the increase of ethanol concentration in the range of 0.1 to 2.0 mol L~(-1). This wide peak current plateau is also observed at higher potential scan rates. This would be ascribed to the different reaction rates between the oxidation of Pd itself and ethanol oxidation on the Pd87Ru13 catalyst. Nyquist plots of the Pd87Ru13 catalyst present low impedance values, showing that ethanol oxidation on the Pd87Ru13 catalyst has a low charge transfer resistance. The study demonstrates that the addition of an appropriate amount of Ru to Pd improves the electrocatalytic activity of the Pd catalyst for ethanol oxidation. The prepared porous Pd87Ru13 catalyst could be a good choice for the ethanol oxidation in the promising alcohol fuel cell.
     Although the electro-catalytic activity of the small organic molecules has been extensively investigated, the new catalyst preparation is still an important work in this field. In the thesis the novel structure of porous palladium, palladium gold, pallaium ruthenium catalysts have been successfully prepared. Our study will be of signifacance in the development of direct liquid fuel cells and in the electrochemical study on the electro-oxidation of small molecules.
引文
[1]顾宁,付德刚.纳米技术及应用[M],上海:人民邮电出版社, 2002. 16-18.
    [2] Kubo R.. Electronic properties of metallic fine particles. I. J. Phys. Japan, 1962, 17(6): 975-986.
    [3] Kreibig U., Vollmer M.. Optical properties of metal clusters, berlin: Springer-Verlag, 1995. 1-12.
    [4]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社, 2002. 7-8.
    [5] Fiedler S., Shirley S. G., Schnelle T., et al. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem., 1998, 70(9): 1905-1915.
    [6] Rucoux A., Schulz J., Patin H.. Reduced transition metal colloids: A novel family of reusable catalysts. Chem. Rev., 2002, 102(10): 3757-3778.
    [7] Sun S., Anders S., Haman H. F., et al. Polymer mediated self-assembley of magnetic nanoparticles. J. Am. Chem. Soc., 2002, 124(12): 2884-2885.
    [8] Bogdanovskaya V. A., Evstefeeva Y. E., Tarasevich M. R., et al. Bioelectrocatalysis by immobilized peroxidase: The effects caused by the carbon black surface coverage with the anzyme and by the enzyme-Nafion composition on the activity in the hydrogen peroxide reduction. Russ. J. Electrochem., 1997, 33(10): 137-141.
    [9]Cheng F., Yi F., Kong J. M., et al. DNA-templated preparation of palladium nanoparticles and their application[J]. Sens. Actua. B, 2007, 126(2): 684-690.
    [10] Ha S., Larsen R., Masel R. I.. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J. Power Sources, 2005, 144(1): 28-34
    [11] Yang C. C., Kumar A. S. Zen J. M.. Electrocatalytic reduction and determination of dissolved oxygen at a preanodized screen-printed carbon electrode modified with palladium nanoparticles[J]. Electroanalysis., 2006, 18(1): 64-69.
    [12] Wang B. X., Li X. Y.. Electrcatalytic properties of nitrous oxide and its vltammetric detection at palladium electrodeposited on a glassy carbon electrode[J]. Anal. Chem, 1998, 70(10): 2181-2187.
    [13]孙美丽,曹殿学,王贵领,等.纳米Pd上H2O2的电催化还原反应[J].物理化学学报, 2008, 24(2): 323-327.
    [14] Ball P., Garwin L.. Science at the atomic scale[J]. Nature, 1992, 355: 761-766.
    [15]张阳德.纳米生物材料北京[M]:化学工业出版社, 2005, 25-26.
    [16] Piping L., Hdjipanayis G. C., Sorensenk C. M., et al. Magnetic properties of fine cobalt particles prepared by metal atom reduction[J]. J. Appl. Phys., 1990, 67(9): 4502-4504.
    [17] Cavicchi P. E., Silsbee R. H.. Coulmb suppression of tunneling rate from small metal particles[J]. Phys.Rev. Lett., 1984, 52: 1453-1456.
    [18]董忠良.纳米化工产品生产技术[M].北京:化学工业出版社, 2006, 3
    [19] Henglein A.. Small-particles research: physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chem. Rev., 1989, 89: 1861-1873.
    [20] Halperin W. P.. Quantum sized effects in metalparticles[J]. Rev. Moder Phys., 1986, 58(3): 533-606.
    [21] Cavicchi P. E., Silsbee R. E.. Coulomb suppression of tunneling rate from small metal particles[J]. Phys. Rev. Leyy., 1984, 52: 1453-1456.
    [22] Feynman R. P.. The development of the space-time view of quantum electrodynamics[J]. Science, 1966, 153(37): 699-708
    [23] Victor F. P., Krishnan K. M., Alivisatos A. P.. Colloidal nanocrystal shape and sized control: The case of cobalt[J]. Science, 2001, 291: 2115-2117.
    [24] Grove W. R.. On voltaic series and the combination of gases by platinum. London and Edinburgh Philosophical Magazine and Journal of Science. Series 3, 1989, 14: 127-130.
    [25] Sundmacher K., Schultz T., Zhou S., Scott K., et al. Dynamics of direct methanol fuel cell(DMFC): experiments and model-based analysis[J]. Chem. Engineering Scie., 2001, 56(2): 333-341.
    [26]韩飞,刘长鹏,邢巍,等.直接甲醇燃料电池的研究进展[J].应用化学, 2004, 21(9): 865-871.
    [27] Blum A., Duvdevani T., Philosoph M., Rudoy N., Peled E. Water-neutral micro direct-methanol fuel cell(DMFC) for portable applications[J]. J. Power Sources, 2003, 117(1-2): 22-25.
    [28] Baglio V., Arico A. S., Blasi Di., et al. Nafion-TiO2 composite DMFC membranes:physico-chemical properties of the filler versus electrochemical performance[J]. Electrochimica. Acta., 2005, 50(5): 1241-1 246.
    [29] Hamnett A.. Fuel cells and their development[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 1996, 354(1712): 1653-1669.
    [30] Lamy C., Lima A., Lerhun V., et al. Recent advances in the development of direct alcohol fuel cells(DAFC)[J]. J. Power Sources, 2002, 105(2): 283-296.
    [31] Yamauchi A., Ito T., Takeo Y., et al. Low methanol crossover and high performance of DMFCs achieved with a pore-filling polymer electrolyte membrane[J]. J. Power Sources, 2007, 174(1): 170-175.
    [32] Hammnett A.. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catal. Today, 1997, 38(4): 445-457.
    [33] Adzic R. R., Avramov-Ivic M. L., Tripkovic A. V.. Stuctural effects in electrocatalysis: oxidation of formaldehyde on gold and platium single crystal electrodes in alkaline solution[J]. Electrochim. Acta., 1984, 29(10): 1353-1357.
    [34] Arico A. S., Srinivasan S., Antonucci V.. DMFCs: from fundamental aspects to technology development[J].Fuel Cell, 2001, 1(2): 133-161.
    [35] Jamie L. C., David J. V., Abruna H. D.. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes[J]. Phys. Chem. Chem. Phys., 2007, 9(1): 49-77.
    [36] Yi Q. F., Zhang J.J., Chen A. C., et al. Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol[J]. J Appl. Electrochem. 2008, 38(5): 695–701.
    [37] Holt-Hindle P., Yi Q. F, Wu G. S., et al. Electrocatalytic Activity of Nanoporous Pt–Ir Materials toward Methanol Oxidation and Oxygen Reduction[J]. Journal of the Electrochemical Society, 2008, 155 (1): K5-K9.
    [38]易清风,CHEN Aicheng,章晶晶,等.一种新型的钛基纳米多孔网状铂电极对甲醇氧化反应的电催化活性研究.高等学校化学学报, 2007, 28(9): 1768-1770.
    [38] Koczkur K., Yi Q. F., Chen A. C.. Nanoporous Pt-Ru networks and their electrcatalytical properties[J]. Advanced Materials, 2007, 19: 2648-2652.
    [40] Oliveira Neto A., Franco E. G. Arico E., et al. Electro-oxidation of methanol and ethonal on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by bonnemann,s methad[J]. Journal of the European Ceramic Society, 2003, 23(15): 2987-2992.
    [41] Villullas H. M., Mattos-Costa F. I., Bulhoes Luis O. S.. Electrochemical oxidation of methanol on Pt nanoparitcles dispersed on RuO2[J]. J. Phys. Chem, 2004, 108(34): 12898-12903.
    [42] Purnakala V. Samant, Julio B. Fernandes, Carmen M. Rangel. Carbon xerogel supported Pt and Pt-Ni catalysts for electro-oxidation of methanol in basic medium[J]. Catalysis Today, 2005, 102-103(15): 173-176.
    [43] Stalnionis G., Tamasauskaite-Tamasiunaite L., Pautieniene V., et al. Modification of a Pt surface by spontaneous Sn deposition for electrocatalytic application. 2. oxidation of CO, formaldehyde, formic acid, and methanol[J]. J. Solid State Electrochem., 2004, 8(11): 900-907.
    [44] Hogarth M. P., Hards G. A.. Direct methanol fuel cell[J]. Platium Metals Rev., 1996, 40(4): 150-152
    [45] Macak J. M., Barczuk P. J., Tsuchiya H, et al. Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: enhancement of the electrocatalytic oxidation of methanol[J]. Electrochem. Commun., 2005, 7(12): 1417-1422
    [46] Choi Jong-ho., Jeong Kyoung-jin, Dong Yujung, et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J]. J Power Sources, 2006, 163(1): 71-75
    [47] Shen P. K., Xu C. W.. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts[J]. Electrochem. Commun., 2006, 8(1): 184-188
    [48] Singh R. N., Singh, Anindita. Electrocatalytic activities of binary and ternary composite electrodes of Pd, nanocarbon and Ni for electro-oxidation of methanol in alkaline medium[J]. J. Solid Electrochem., 2009, 13(8):1 259-1265
    [49] Ha S., Larsen R., Masel R. I.. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J. Power Sources, 2005, 144(1): 28-34
    [50]牛凤娟,易清风.新型纳米钯催化剂对甲醇的电催化活性[J].电化学, 2011, 17(1): 67-71.
    [51] Jeremy K, William A, Goddard III. Oxidation of methanol on 2nd and 3rd row group VIII trasition metals(Pt, Ir, Os, Pd, Rh, and Ru): application to direct methanol fuel cells[J]. J Am. Chem. Soc., 1999, 121: 10928-10941
    [52] Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger J-M. Recent advances in the development of direct alcohol fuel cells(DAFC)[J]. J. Power Source, 2002, 105(2): 283-296
    [53] Maillard F., Lu G. Q., Wieckowski A., et al. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation[J]. J. Phys. Chem. B, 2005, 109(34): 16230-16243.
    [54] Gurau B., Viswanathan R., Liu R., et al. Structural and electrochemical characterization of binary, ternary, and quaternary platium alloy catalysts for methanol electro-oxidation[J]. J. Phys. Chem. B, 1998, 102(49): 9997-10003.
    [55] Liu F., Yan Q., Zhou W. J., et al. High regularity porous oxophilic metal films on Pt as model bifunctional catalysts for methanol oxidation[J]. Chem. Mater., 2006, 18(18): 4328-4335.
    [56] Rolison D. R., Hagans P. L., Swider K. E., et al. Ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity[J]. Langmuir., 1999, 15(3): 774-779.
    [57] Iwasita T., Hoster H., John-Anacker A., et al. Methanol oxidation on PtRu elctrodes. Influence of surface structure and Pt-Ru atom distribution[J]. Langmuir., 2000, 16(2): 522-529.
    [58] Zhang L., Jin J., Abruna H. D.. Direct pbservation of electrocatalytic synergy[J]. J. Am. Chem. Soc., 2007, 129(36): 11033-11035.
    [59] Liu S. H., Yu W. Y., Chen C. H., et al. Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell[J]. Chem. Mater., 2008, 20(4): 1622-1628.
    [60] Shimodaira Y., Tanaka T., Miura T., et al. Density functional theort study of anode reactions Pt-based alloy electrodes[J]. J. Phys. Chem. C, 2007, 111(1): 272-279.
    [61] Teng X., Maksimuk S., Frommer S., et al. Three-dimensional PtRu nanostructures[J]. Chem. Mater., 2007, 19(1): 36-41.
    [62] Arico A. S., Bruce P., Scrosati B., et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater., 2005, 4(5): 366-377.
    [63] Zhang L., Jin J., Abruna H. D.. Direct observation of electrocatalytic synergy[J]. J. Am. Chem. Soc., 2007,129(36): 11033-11035.
    [64] Borkowska Z., Tymosiak-Zielinska A., Nowakowski R.. High catalytic activity of chemically activated gold electrodes towards electro-oxidation of methanol[J]. Electrochim Acta., 2004, 49(16): 2613-2621.
    [65] Burke L. D., Nugent P. F.,.The electrochemistry of gole: II the electrocatalytic behaviour of the metal in aqueous media[J]. Gold Bull, 1998, 31(2): 39-50.
    [66] Mott D., Luo J., Nioki P. N., et al. Synergistic activity of gold-platium alloy nanoparticle catalysts[J]. Catal. Today, 2007, 122(3-4): 378-385.
    [67] Luo J., Njoki P. N., Lin Y., et al. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction[J]. Langmuir., 2006, 22(6): 2892-2898.
    [68] Hayden B. E., Pletcher D., Suchsland J. P.. Enhanced activity for electrocatalytic oxidation of carbon monoxide on titania-supported gold nanoparticles[J]. Angew. Chem. Int. Ed., 2007, 46(19): 3530-3532.
    [69] Haruta M., Yamada N., Kobayashi T., et al. Gold catalysts prepared by coprecipitation for low–temperature oxidation of hydrogen and of carbon monoxide[J]. J. Catal., 1989, 115(2): 301-309.
    [70] Choi J. H., Park K. W., Park I. S., et al. A PtAu nanoparticles electrocatalyst for methanol electro-oxidation in direct methanol fuel cells[J]. J. Electrochem. Soc., 2006, 153(10): A1812-A1817.
    [71] Choi J. H., Jeong K. J., Dong Y., et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J]. J. Power Sources, 2006, 163(1): 71-75.
    [72] Zhao D., Xu B. Q.. Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles[J]. Angew. Chem. Int. Ed., 2006, 45(30): 4955-4959.
    [73] Leger J. M.. Mechanistic aspects of methanol oxidation on platium-based electrocatalysts[J]. J. Applied Electrochemistry., 2001, 31: 767-771.
    [74] Fujiwara N., Fridrich K. A., Stimming U.. Ethanol oxidation on PtRu electrodes studied by different electrochemical mass spectrometry[J]. J. Electrocatalytical Chemistry.,1999, 472(2): 120-125.
    [75] Xue X. Z., Ge J. J., Tian T., et al, Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process[J]. J. Power Sources, 2007, 172(2): 560-569.
    [76] Antolini E., Salado J. R. C., Gonzalez E. R.. The methanol oxidation reaction on platinum alloys with the first row transition metal: The case of Pt-Co and–Ni alloy electrocatalysts for DMFCs: A short review[J]. Applied Catalysis B: Environmental, 2006, 63(1-2): 137-149.
    [77] Bommersbach P., Mohamedi M., Guay D.. Electro-oxidation of ethoanl at sputter-deposited platinum-tin catalysts[J]. J. Electrochem. Soc., 2007, 154(8): B876-B882.
    [78] Neto A. O., Dias R. R., Tusi M. M., et al. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol reduction process[J]. J. Power Sources, 2007, 166: 87-91.
    [79] Jiang L. H., Zhou Z. H., Li W. Z., et al. Effects of treatment in different atmosphere on Pt3Sn/C electrocatalysts for ethanol electro-oxidation[J]. Energ Fuel, 2004, 18(3): 866-871.
    [80] Tsiakaras P. E.. PtM/C (M=Sn, Ru, Pd, W) based anode direct ethanol-PEMFCs: structural characteristics and cell performance[J]. J. Power Sources, 2007: 171(1): 107-112.
    [81] Li G. C., Pickup P. G.. The promoting effect of Pb on carbon supported Pt and PtRu/C catalysts for electro-oxidation of ethanol[J]. Electrochim-Acta, 2006, 52: 1033-1037.
    [82] Antolini E., Colmati F., Gonzalez E. R.. Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt-Sn alloy catalysts[J]. Electrochem. Commun, 2007, 9(3): 398-404.
    [83] Li H. Q., Sun G. Q., Cao L., et al. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation[J]. Electrochim Acta, 2007, 52(24): 6622-6629
    [84] Antolini E.. Catalysts for direct ethanol fuel cells[J]. J. Power Sources, 2007, 170(1): 1-12.
    [85] Song S. Q., Wang Y., Tsiakaras P., et al. Direct alcohol fuel: A novel non-platinum and alcohol inert ORR electrocatalyst[J]. Appl. Catal. B: Environ., 2008, 78(3-4): 381-387.
    [86] Chen Y. G., Zhuang L., Lu J. T., Non-Pt anode catalysts for alkaline direct alcohol fuel cells[J]. Chin. J. Catal., 2007, 28(10): 870-874.
    [87] Liu J. P., Ye J. Q., Xu C. W., et al. Kinetics of ethanol electrooxidation at Pd electrodeposited On Ti[J]. Electrochem. Commun., 2007, 9(9): 2334-2339.
    [88] Liang Z. X., Zhao T. S., Xu J. B., et al. Methanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim. Acta, 2009, 54(8): 2203-2208.
    [89] Dimitratos N., Villa A., Wang D., et al. Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols[J]. J. Catal., 2006, 244(1): 113-121.
    [90] Hou W. B., Dehm N. A., Scott R. W.. Alcohol oxidation in aqueous solution using Au, Pd, and bimetallic AuPd nanoparticle catalysts[J]. J. Catal., 2008, 253(1): 22-27.
    [91] Shen P. K., Xu C. W.. Alcohol oxidation on nanocrytalline oxide Pd/C promoted electrocatalysts[J], Electrochem. Commun., 2006, 8(1): 184-188.
    [92] Xu C. W., Shen P. K., Liu Y. L.. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide[J]. J. Power Sources, 2007, 164(2): 527-531.
    [93] Xu C. W., Cheng L. P., Shen P. K.. Methanol and ethanol electrooxidation On Pt and Pd supported on carbon microspheres in alkaline media, Electrochem[J]. Commun., 2007, 9(5): 997-1001.
    [94] Cheng F. L., Wang H., Sun Z. H., et al. Electrodeposited fabrication of highly ordered Pd nanowire arrays for alcohol electrooxidation[J]. Electrochem. Commun., 2008, 10(5): 798-801.
    [95] Bambagioni V., Bianchini C., Marchionni A., et al. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells wih an anion–exchange me rane(alcohol=methanol, ethanol, glycerol) [J], J. Power Sources, 2009, 190(2): 241-251.
    [96] Xu C.W., Tian Z. Q., Chen Z. C., et al. Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media[J]. Electrochem. Commun., 2008, 10(2): 246-249.
    [97] Hu F. P., Ding F. W., Song S. Q., et al. Pd electrocatalyst supported on carbonized TiO2 nantube for ethanol oxidation[J]. J. Power Sources, 2006, 163(1): 415-419.
    [98] Kadirgan F., Beyhan S., Atilan T.. Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation[J]. Inter. J. Hydrogen Energy, 2009, 34(10): 4312-4320.
    [99] Singh R. N., Singh A., Anindita. Electrocatalytic activity of binary anf ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solution[J], Carbon, 2009, 47(1): 271-278.
    [100] Singh R. N., Singh A., Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, PartⅡ: Methanol electrooxidation in 1 M KOH[J]. Inter. J. Hydrogen Energy, 2009, 34(4): 2052-2057.
    [101] Nirmala G. A., Pandian K.. Pt, Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes-A potent electrocatalyst towards the oxidation of glycerol[J]. Electrochem. Commun., 2006, 8(8):1340-1348.
    [103] Chu D. D., Wang J., Wang S. X., et al. High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol[J]. Catal. Commun., 2009, 10(6): 955-958.
    [103] Serra D., McElwee-White L.. Electrochemical oxidation of methanol using alcohol-soluble Ru/Pt and Ru/Pd catalysts[J]. Inorg. Chim. Acta, 2008, 361(11): 3237-3246.
    [104] Xu C. W., Tian Z. Q., Shen P. K., et al. Oxide(CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media[J]. Electrochim, Acta., 2007, 53(5): 2610-2618.
    [105] Miao F. J., Tao B. R., Sun L., et al. Preparation and characterization of novel nickel-palladium electrodes supprted by silicon microchannel plates for direct methanol fuel cells[J]. J. Power Sources, 2010, 195(1): 146-150.
    [106] Nguyen S. T., Law H. M., Nguyen H. T., et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media[J]. Appl. Catal. B: Environ., 2009, 91(1-2): 507-515.
    [107] Hu F. P., Chen C. L., Wang Z. Y., et al. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst[J]. Electrochim. Acta, 2006, 52(3): 1087-1091.
    [108] Lu J., Lu S., Wang D., et al. Nano-structrured PdxPt1-x/Ti anodes prepared by electrodeposition for alcohol electrooxidation[J]. Electrochim. Acta., 2009, 54: 5486-5491.
    [109] Attwood P. A. Mcniwl B. D., Short R. T..Temperature programmed reduction and cyclic voltammertry of Pt/carbon-fiber paper catalyst for methanol electrooxidation[J]. J. Cata. 1987, 67: 287-295.
    [110] Iwasita T., Natr F. C..Identification of methanol adsorbates on platium on In situ FT-IR investigation[J]. J. Elctroanalytical Chemistry. 1991, 317(1-2): 291-298.
    [111] Taraserich M. R., Karichev Z. R., Bogdanrovskaya V. A., et al. Kinetics of ethanol electrooxidation at RuNi catalysts[J]. Electrochem. Commun., 2005, 7(2): 141-146.
    [112] Beden B., Lay C., Bewick A., et al, Electrosorption of methanol on a platium electrode/IR spectroscopic evident for adsorbed CO species[J]. J. Electroanalytical Chemistry. 1981, 121: 343-351.
    [113] Ocon E. P., Leger J. M., Lamy C., et al. Electrocatalytic oxidation of methanol on platium dispersed in polyaniline conductiong polymers[J]. J. Applied Electrochemistry. 1989, 19(3): 462-464.
    [114]彭程,程璇,张颖等.直接甲醇燃料电池中阳极催化剂的研究进展[J].电源技术. 2003, 27: 470-474.
    [115] Burstein G. T., Barntt C. J., Kucernak A. R. J., et al. Anodic oxidation of methanol using a new base electrocatalyst[J]. J. Electrochemical Society. 1996, 143(7): L139-L140.
    [116] Iwasita T., Rasch B., Cattanel E., et al. A sniftirs study of ethanol oxidation on platium[J]. Electrochim. Acta. 1989, 34(8): 1073-1079.
    [117] Souza J. P. I., Botelho R. F. J., Moraes D., et al. Performance of a co-electrodeposited Pt-Ru electrode for the elctro-oxidation of ethanol studied by in site FTIR spectroscopy[J]. J. Electroanal. Chem.. 1997, 420: 17-20.
    [118] Delime F., Leager J. M., Lamy C.. Optimization of platium dispersion in Pt-PEM electrodes: application to the electrooxidation of ethanol[J]. J. Appl. Electrochem.. 1997, 28(1): 27-35.
    [119] Hikita S., Yamane K., Nakajima Y.. Influence of cell perssure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel[J]. Review of Automotive Engineering. 2002, 23(): 133-135.
    [120] Prabhuram J., Manoharan R.. Investigation of methanol oxidation on unsupported platium electrodes in strong alkal and acid[J]. J. Power Sources. 1998, 74(1): 54-61.
    [121] Hammett A., Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catalysis Today. 1997, 38(4): 445-457.
    [122] Kardash D., Huang J., Korzeniewski C.. Surface electrochemistry of CO and methanol at 25-75℃probed in situ by infrared spectroscopy[J]. Langmuir.. 2000, 16(4): 2019-2023.
    [123] Kabbabi A., Faure R., Durand R., et al. In site FTIRS study of the elctrocatalytic oxidation of carbon monoxide and methanol at platium-ruthenium bulk alloy electrodes[J]. J. Elctroanal. Chem.. 1998, 444(1): 41-53.
    [124]陈煜.直接醇类燃料电池阳极催化剂的研究: [南京师范大学硕士学位论文].南京:南京师范大学.2006, 20-21
    [125]牛凤娟,易清风.纳米多孔钯催化剂对乙醇的电催化活性.湖南省第三届研究生创新论坛,湖南长沙
    [126] Qingfeng Yi, Fengjuan Niu, Lizhi Sun. Fabrication of novel porous Pd particles and their electroactivity towards ethanol oxidation in alkaline media[J]. Fuel, 2011, 90(8): 2617-2623. .
    [127] Demirci U. B.. How green are the chemicals used as liquids fuels in direct liquid-feed cells[J]. Environment International. 2009, 35(3): 626-631.
    [128] Rice C., Ha S. Y., Masel R. I., et al. Catalysts for direct formic acid fuel cells[J]. J. Power Sources. 2003, 115(2): 229-235.
    [129] Rice C., Ha S. Y., Masel R. I., et al. Direct formic acid fuel cells[J]. J. Power Sources. 2002, 111(1): 83-89.
    [130] Andrian S. V., Meusinger J.. Process analysis of a liqud-feed direct methanol fuel cell system[J]. J. Power Sources. 2000, 91: 193-201.
    [131] Rhee Y. W., Ha S., Rice C., et al. Crossover of formic acid through nafion membranes[J]. J. Power Sources. 2003, 117(1-2): 35-38.
    [132] Spendelow J. S., Lu G. Q., Kenis P. J. A., Wieckowski A.. Electoxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline and comparison with results from acidic media[J]. J Electroanal.Chem., 2004, 568 (1): 215-224.
    [133] Prabhuram J., Manoharan R.. Investigation of methanol oxidation on unsupported platinum electrodes in strong Alkali and strong acid[J]. J Power Sources, 1998, 74(1): 54-61
    [134] Mclean G. F., Niet T., Prince-Richard S., Djilali N.. An assessment of alkaline fuel technology[J]. Int. J. Hydrogen Energy, 2002, 27(5): 507-526.
    [135] Tripkovic A. V., Popovic K. Dj.. Lovic J. D., et al. Methanol oxidation at platium electrodes in alkaline solution: comparison between supported catalysts and model systems[J]. J.Electroanal.Chem., 2004, 572(1): 119-128.
    [136]Zhang L. J., Wang Z. Y., Xia D. G..Bimetallic PtPb for formic acid electro-oxidation[J]. J. Alloys Compounds. 2006, 426(1-2): 268-271.
    [137]Tian Na., Zhou Z. Y., Sun S. G., et al. Synthesis of tetrahexshedral platinum nanocrystals with high electro-oxidation activity[J]. Science. 2007, 316(5825): 732-735.
    [138] Lu G. Q., Crown A., Wieckowski A.. Formic acid decomposition on polystalline platium and palladized platium electrodes[J]. J Phys Chem B, 1999, 103(44): 9700-9711
    [139] Xu W. F., Gao Y., Lu T. H., et al. Kinetic study of formic acid oxidation on highly dispersed carbonsupported Pd-TiO2 electrocatalyst[J]. Catal. Lett., 2009, 130(3-4): 312-317
    [140] Arenz M., Stamenkovic V., Schmidt T. J., et al. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces[J]. Phys Chem Chem Phys, 2003, 5(19): 4242-4251
    [141]Hoshi N., Kida K., Nakamura M., et al. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium[J]. J. Phys. Chem. B, 2006, 110(25): 12480-12484.
    [142]Yi Q. F., Huang W., Liu X. P., et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. J. Electroana. Chem., 2008, 619~620(15): 197-205.
    [143] Ha S., Larsen R., Masel R. I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J. Power sources, 2005, 144(1): 28-34
    [144] Zhang S. X., Qing M., Zhang H., et al. Electrocatalytic oxidation of formic acid on functional MWCNTs supported nanostructured Pd-Au catalyst[J]. Eletrochemi. Commun., 2009, 11:2249-2252
    [145] Zhang L. L., Tang Y. W., Bao J. C., et al. A carbon-support Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell[J]. J Power sources, 2006, 162(1): 177-179
    [146] Yi Q. F., Huang W., Liu X. P., et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. J. Electroana chem, 2008, 619~620(15): 197-205
    [147] Arenz M., Stamenkovic V., Ross P. N., et al. Surface (electro-)chemistry on Pt(Ⅲ) modified by a pseudomorphic Pd monolayer[J]. Surface Science. 2004, 573(1): 57-66.
    [148] Ayman K., Travis C., Abhaya D.. The role of PdZn alloy formation and particles size on the selectivity for steam reforming of methanol[J]. J. Cata. 2006, 243(2): 420-427.
    [149] Thomas F. S., Masel R. I.. Formic acid decomposition on palladium-coated Pt(110)[J]. Surface Science. 2004, 573(2): 169-175.
    [150] Ryszard P., Roman S.. Infiluce of external streching on hydrogen electromigration in Pd and PdCu, PdAg alloys[J]. Physica B : Condensed Matter. 2005, 367 : 165-171.
    [151] Zhou W. J., Lee J. Y.. Highly active core-shell Au@Pd catalyst for formic acide electrooxidation[J]. Electrochem. Commun.. 2007, 9(7): 1725-1729.
    [152] Diaz R., Arbiol J., Corera A., et al. Electroless addition of catalytic Pd to SnO2 nanopowers[J]. Chemi. Mater. 2001, 13 : 4362-4366.
    [153] Capon A., Parsons R.. The oxidation of formic acid at noble metal elctrodes PartⅢ.Intermediates and mechanism on platinum electrodes[J]. J. Electrochem. Soc.. 1973, 45: 205-231. [154] Markovic N. M., Gasterger H. A., Philip N. R.. Electro-oxidation methanisms of methanol and formic acid Pt-Ru alloy surface[J]. Electrochim. Acta., 1995, 40(1): 91-98.
    [155] Wieckwski A., Sobkowski J.. Comparative study of adsorption and oxidation of formic acid and methanolon platinized electrodes in acidic solution[J]. J. Electrochem. Soc.. 1975, 63: 365-377.
    [156] Choi J-H., Jeong K-J., Dong Y. J., et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J]. J. Power Source, 2006, 163(1): 71-75.
    [157] Mrozek N. F., Luo H., Weaver M. J.. Formic acid electrooxidation on platinum-group metal: is adsorbed carbon monoxide solely a catalytic poison[J]. Langmuir, 2000, 16(22): 8463-8469.
    [158] Pavese A., Solís V.. Comparative investigation of formic acid and formaldehyde oxidation on palladium by a rotating ring-disc electrode and on-line mass spectroscopy in acidic solutions[J]. Journal of Electroanalytical Chemistry, 1991, 301(1-2): 117-127.
    [159] Manzanares M. I., Pavese A. G., Solis V. M.. Comparative investigation of formic acid and formaldehyde electro-oxidation on palladium in acidic medium: Effect of surface oxides[J]. Journal of Electroanalytical Chemistry, 1991, 310(1-2): 159-167.
    [160] Yang H., Lu T. H., Xue K. H., et al. Electrocatalytic mechanism for formaldehyde oxidation on the highly dispersed gold microparticles and the surface characteristics of the electrode[J]. Journal of Molecular Catalysis A: Chemical, 1999, 144(2): 315-321.
    [161] Nishimura K., Kunimatsu K., Machida K., et al. Electrocatalysis of Pd + Au alloy electrodes: Part IV. IR spectroscopic studies on the surface species derived from formaldehyde and formate in alkaline solutions[J]. Journal of Electroanalytical Chemistry, 1989, 260(1): 181-192.
    [162] Yahikozawa K., Nishimura K., Kumazawa M., et al. Electrocatalytic properties of ultrafine gold particles supported onto glassy carbon substrates toward formaldehyde oxidation in alkaline media [J]. Electrochimica Acta, 1992, 37(3): 453-455.
    [163] Ramanauskas R., Jurgaitien? I., Vaskelis A.. Electrocatalytic oxidation of formaldehyde on copper single crystal electrodes in alkaline solutions [J]. Electrochimica Acta, 1997, 42(2): 191-195.
    [164] Yi Q. F., Huang W., Liu X. P., et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. Journal of Electroanalytical Chemistry, 2008, 15(1): 619-620.
    [165] Yi Q. F., Zhang J. J., Chen A. C., et al. Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol[J]. Journal of Applied Electrochemistry, 2008, 38: 695–701.
    [166] Safavi A., Maleki N., Farjami F., et al. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode[J]. Journal of Electroanalytical Chemistry, 2009, 626(1-2): 75–79.
    [167]杨辉,陆天红,薛宽宏,等.循环伏安和现场反射光谱研究甲醛在金电极上的氧化[J].物理化学学报, 1996, 129, (6): 527-531.
    [168] Manzanares M. I., Pavese A. G., Solis V. M.. Comparative investigation of formic acid and formaldehyde electro-oxidation on palladium in acidic medium : Effect of surface oxides[J]. Journal of Electroanalytical Chemistry, 1991, 310(1-2): 159-167.
    [169] Pavese A., Solis V.. Comparative investigation of formic acid and formaldehyde oxidation on palladium by a rotating ring-disc electrode and on-line mass spectroscopy in acidic solutions[J]. Journal of Electroanalytical Chemistry, 1991, 301(1-2): 117-127.
    [170] Nisimura K., Kunimatsu K., Machida K., et al. Electrocatalysis of Pd + Au alloy electrodes: Part IV. IR spectroscopic studies on the surface species derived from formaldehyde and formate in alkaline solutions[J]. Journal of Electroanalytical Chemistry, 1989, 260(1): 181-192.
    [171]杨玉花,袭著革,晁福寰.甲醛污染与人体健康研究进展[J].解放军预防医学杂志, 2005, 63(1):68- 71.
    [172] Parsons R., Noot T. V.. The oxidation of small organic molecules: A survey of recent fuel cell related research[J]. Journal of Electroanalytical Chemistry, 1988, 257(1-2): 9-45
    [173] Frelink T., Visscher W., Veen J. A. R.. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt[J]. Surface Science, 1995, 335: 353-360.
    [174] He Z. B., Chen J. H., Liu D. Y., et al. Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation[J]. Diamond and Related Materials, 2004, 13(10): 1764-1770.
    [175] Shim J., Lee C. R., Lee H. K., et al. Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2001, 102(1-2): 172-177.
    [176] Chen Y., K. Chen Y., Tseung A. C. C.. An electrochemical alcohol sensor based on a co-electrodeposited Pt /WO3 electrode[J]. Journal of Electroanalytical Chemistry, 1999, 471(2): 151-155.
    [177] Mu Y. Y., Liang H. P., Hu J. S., et al. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells[J]. J. Phys. Chem. B, 2005, 109 (47): 22212–22216.
    [178] Stadler R., Jusys Z., Baltruschat H.. Hydrogen evolution during the oxidation of formaldehyde on Au: The influence of single crystal structure and Tl-upd[J]. Electrochimica Acta, 2002, 47(28): 4485-4500.
    [179] Lima R. B. de, Massafera M. P., Batista E. A., et al. Catalysis of formaldehyde oxidation by electrodeposits of PtRu[J]. Journal of Electroanalytical Chemistry, 2007, 603(1): 142-148.
    [180]杨宏洲,邓友全. Au/PAni/GC电极的制备及对甲醛的电催化氧化研究[J].化学学报, 2002, 60(4): 569-573.
    [181] Seidl P. A., Anders A., Bieniosek F. M., et al. Progress in beam focusing and compression for warm-dense matter experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 2009,606(1-2): 75-82.
    [182]毛宗强.燃料电池[M].北京:化学工业出版社, 2005, 212: 144
    [183] Luo N., Miley G. H., Shrestha P. J.. H2O2 fuel cells for air-independent power systems[P]. USP: 2004/007044A 1, 2004-04-15.
    [184] Ma J., Choudhury. N. A., Sahai. Y.. A conprenhensive of direct borohydride fuel cells[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 183-199.
    [185] Prater D. N., Rusek. J. J.. Energy density of a methanol/hydrogen-peroxide fuel cell[J]. Applied Energy , 2003, 74(1-2): 135-140.
    [186] Choudhury N. A., Raman R. K., Sampath S., et al. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidanr[J]. J. Power Sources, 2005, 143(1-2): 1-8.
    [187] Denggerile A., Awad. M., I, Okajima. T., et al. Effect of electrode materials on the kinetics of the eletro-reduction of peroxyacetic acid[J]. Electrochimica Acta, 2004, 49(24): 4135-4141.
    [188] Doblhofer K., Flatgen G., Horswell S., et al. Autocatalysis by the intermadiate surface hydroxide formed during hydrogen peroxide reduction on silver electrodes[J]. Surface Science, 2009, 603(10-12): 1900-1903.
    [189] Blackburn T. R, Lingane J. J.. A study of the chronopotentiometic reduction of oxygen and hydrogen peroxide at a palladium electrode[J]. J. Electroanal. Chem.,1963, 5(6): 216-235.
    [190] Yamazaki. S.-ichi, Siroma. Z, Senoh. H, Ioroi. T, Fujiwara. N, Yasuda. K, J. Power Sources 178(2008):20-25
    [191] Merkulova N. D., Zhutaeva G. V., Shumilova N..A., et al. Reaction of hydrogen peroxide on a silver electrode in alkaline solution[J]. Electrochim. Acta, 1973, 18(2): 169-174
    [192] Pournaghi-Azar. M. H., Ahour. F., Pournaghi-Azar. F.. Simple and rapid amperometric monitoring of hydrogen peroxide in salivary samples of dentistry patients exploiting its electro-reduction on the modified/palladized aluminum electrode as an improved electrocatalyst[J]. Sensors and Actuators B: Chem., 2010,145(1): 334-339.
    [193] Cai L. T., Chen H. Y.. Electrocatalytic reduction of hydrogen peroxide aat platinum microparticles dispersed in a poly(ophenylenediamine) film[J]. Sensors and Actuators B: Chem., 1999, 55(1): 14-18.
    [194] Gu. L. F., Luo. N., Miley G. H.. Cathode electrocatalyst selection and deposition for a diect borohydride/hydrogen peroxide fuel cell[J]. J. Power Sources, 2007, 173(1): 77-85
    [195] Cao. D. X., Gao. Y. Y., Wang. G. L., et al. A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes[J]. Inter. J. Hydrogen Energy, 2010, 35(2): 807-813
    [196] Calvo. E. J., Schiffrin. D. J. . The reduction of hydrogen peroxide on passive iron in alkaline solution[J]. J. Electroanal. Chem., 1984, 163(1-2): 257-275.
    [197] Cere. S., Vazquez. M., Sanchez. S. R, Schffrin. D. J.. Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper-nickel alloys[J]. J. Electroanal. Chem., 1999, 470(1): 31-38.
    [198] Cox. J. A. , Jaworski. R. K.. Mechanism of the mediated reduction of hydrogen peroxide at an electrode modified with a film containing a basic form of iridium oxide[J]. J. Electroanal. Chem., 1990, 281(12): 163-170.
    [199] Sun L., Cao D., Wang. G.. J. Pd-Ru/C as the elctrocatalyst for hydrogen peroxide reduction[J]. Appl. Electrochem., 2008, 38(10): 1415-1419.
    [200] Prater D. N., Rusek J. J.. Investigation of energy density for a methanol/hydrogen peroxide fuel cell[A]. Energex 2002 Conference[C]. Poland, 2002, 135-140.
    [1]日根文男(日),安家驹等译.电解槽工学[M].北京:化学工业出版社,1985.
    [2]马淳安.有机电化学合成导论[M].北京:科学出版社, 2002, 58-59.
    [3]周伟航等,电化学测量[M].上海:上海科学技术出版社,1985.
    [4]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社, 2006, 15-16.
    [5]南安普顿电化学小组(英),柳厚田等译.电化学中的仪器方法[M].上海:复旦大学出版社, 1992.
    [6]李荻.电化学原理[M].北京:北京航天航空大学出版社,1989.
    [7]杨辉,卢文庆.应用电化学[M].北京:科学出版社,2002.
    [8]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [9]阿伦.J.巴德,拉里.R.福克纳著,邵元华,朱果逸,董献堆等译.电化学方法原理和应用(第二版) [M].北京:化学工业出版社,2005.
    [10]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [11]易清风,李东艳.环境电化学研究方法[M].北京:科学出版社,2006.
    [1] Yi L. S., Chen M. T., Li T., et al. Preparation of rhombic MgO nanoflakes from dolomites[J]. Acta Phys. Chim. Sin., 2007, 23(3): 433-437.
    [2] Li C. H., Liu J. R., Zhang Y. Z., et al. Preparation for monodisperse nanosized strontium sulfate[J]. J. Chemical industry and engineering, 2004, 55(1): 116-120.
    [3] Zhang M., li X. H., Hu Q. G., et al. Synthesis of barium sulfate particles by complexation method in presence of EDTA[J]. Chi. J. nonferrous metaks, 2009, 19(8): 1511-1516.
    [4] Antolini E., Salado J. R. C., Gonzalez E. R.. The methanol oxidation reaction on platinum alloys with the first row transition metal: The case of Pt-Co and–Ni alloy electrocatalysts for DMFCs: A short review[J]. Appl. Catal. B: Environ., 2006, 63(1-2): 137-149.
    [5] Xue X. Z., Ge J. J., Tian T., et al, Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process[J]. J. Power Sources, 2007, 172(2): 560-569.
    [6] Chen Y. G., Zhuang L., Lu J. T.. Non-Pt anode catalysts for alkaline direct alcohol fuel cells[J]. Chin. J. Catal., 2007, 28(10): 870-874.
    [7] Song S. Q., Wang Y., Tsiakaras P., Shen P. K.. Direct alcohol fuel: A novel non-platinum and alcohol inert ORR electrocatalyst[J]. Appl. Catal. B: Environ., 2008, 78(3-4): 381-387.
    [8] Liu J. P., Ye J. Q., Xu C. W., et al. Kinetics of ethanol electrooxidation at Pd electrodeposited On Ti[J]. Electrochem. Commun., 2007, 9(9): 2334-2339.
    [9] Liang Z. X., Zhao T. S., Xu J. B., et al. Methanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim. Acta, 2009, 54(8): 2203-2208.
    [10] Shen P. K., Xu C. W.. Alcohol oxidation on nanocrytalline oxide Pd/C promoted electrocatalysts[J]. Electrochem. Commun., 2006, 8(1): 184-188.
    [11] Xu C. W., Cheng L. P., Shen P. K.. Methanol and ethanol electrooxidation On Pt and Pd supported on carbon microspheres in alkaline media[J], Electrochem. Commun., 2007, 9(5): 997-1001.
    [12] Xu C. W., Shen P. K., Liu Y. L.. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide[J]. J. Power Sources, 2007, 164(2): 527-531.
    [13] Bambagioni V., Bianchini C., Marchionni A., et al. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells wih an anion–exchange me rane(alcohol=methanol, ethanol, glycerol) [J]. J. Power Sources, 2009, 190(2): 241-251.
    [14] Xu C.W., Tian Z. Q., Chen Z. C., et al. Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media[J]. Electrochem. Commun., 2008, 10(2): 246-249.
    [15] Cheng F. L., Wang H., Sun Z. H., et al. Electrodeposited fabrication of highly ordered Pd nanowire arraysfor alcohol electrooxidation[J]. Electrochem. Commun., 2008, 10(5): 798-801.
    [16] Hu F. P., Ding F. W., Song S. Q., et al. Pd electrocatalyst supported on carbonized TiO2 nantube for ethanol oxidation[J]. J. Power Sources, 2006, 163(1): 415-419.
    [17] Kadirgan F., Beyhan S., Atilan T.. Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation[J]. Inter. J. Hydrogen Energy, 2009, 34(10): 4312-4320.
    [18] Nirmala G. A., Pandian K.. Pt, Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes-A potent electrocatalyst towards the oxidation of glycerol[J]. Electrochem. Commun., 2006, 8(8): 1340-1348.
    [19] Singh R. N., Singh A., Anindita. Electrocatalytic activity of binary anf ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solution[J]. Carbon, 2009, 47(1): 271-278.
    [20] Singh R. N., Singh A., Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, PartⅡ: Methanol electrooxidation in 1 M KOH[J]. Inter. J. Hydrogen Energy, 2009, 34(4): 2052-2057.
    [21] Serra D., McElwee-White L.. Electrochemical oxidation of methanol using alcohol-soluble Ru/Pt and Ru/Pd catalysts[J]. Inorg. Chim. Acta, 2008, 361(11): 3237-3246.
    [22] Chu D. D., Wang J., Wang S. X., et al. High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol[J]. Catal. Commun., 2009, 10(6): 955-958.
    [23] Xu C. W., Tian Z. Q., Shen P. K., et al. Oxide(CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media[J]. Electrochim, Acta., 2007, 53(5): 2610-2618.
    [24] Nguyen S. T., Law H. M., Nguyen H. T., et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media[J]. Appl. Catal. B: Environ., 2009, 91(1-2): 507-515.
    [25] Miao F. J., Tao B. R., Sun L., et al. Preparation and characterization of novel nickel-palladium electrodes supprted by silicon microchannel plates for direct methanol fuel cells[J]. J. Power Sources, 2010, 195(1): 146-150.
    [26] Hu F. P., Chen C. L., Wang Z. Y., et al. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalys[J]. Electrochim. Acta, 2006, 52(3): 1087-1091.
    [27] Lu J., Lu S., Wang D., et al. Nano-structrured PdxPt1-x/Ti anodes prepared by electrodeposition for alcohol electrooxidation[J]. Electrochim. Acta., 2009, 54: 5486-5491.
    [28] Yi Q. F., Huang W., Liu X. P., et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards towards formic acid oxidation[J]. J. Electroanal. Chem., 2008, 619-620(15): 197-205.
    [29] Robinson D. B., Fares S. J., Ong M. D., et al. Scalable synthesis of nanoporous palladium powders[J]. Inter. J. Hydrogen Energy, 2009, 34(13): 5585-5591.
    [30] Wang X. G., Wang W. M., Qi Z., et al. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid[J]. Electrochem. Commun, 2009, 11(10): 1896-1899.
    [31] Hakamada M., Mabuchi M.. Fabrication of nanoporous palladium by dealloying and its thermal coarsening[J]. J. Alloys and Compounds, 2009, 479(1-2): 326-329.
    [32] Ding D. Y., Chen Z., Lu C.. Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides[J]. Sensors and Actuators B: Chemical. , 2006, 120(1): 182-186.
    [33] Spendelow J. S., Lu G. Q., Kenis P. J. A., Wieckowski A.. Electoxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline and comparison with results from acidic media[J]. J Electroanal.Chem., 2004, 568 (1) 215-224.
    [34] Mclean G, F,, Niet T,, Prince-Richard S,, Djilali N,. An assessment of alkaline fuel technology[J]. Int. J. Hydrogen Energy, 2002, 27(5): 507-526.
    [35] Prabhuram J., Manoharan R.. Investigation of methanol oxidation on unsupported platinum electrodes in strong Alkali and strong acid[J]. J. Power Sources, 1998, 74(1): 54-61.
    [36] Tripkovic A. V., Popovic K. Dj., Lovic J. D, et al. Methanol oxidation at platium electrodes in alkaline solution: comparison between supported catalysts and model systems[J]. J. Electroanal.Chem., 2004, 572(1): 119-128.
    [37] Lu G. Q., Crown A., Wieckowski A.. Formic acid decomposition on polystalline platium and palladized platium electrodes[J]. J. Phys. Chem. B, 1999, 103(44): 9700-9711.
    [38] Arenz M., Stamenkovic V., Schmidt T. J., et al. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces[J]. Phys. Chem. Chem. Phys., 2003, 5: 4 242-4 251.
    [39] Xu W. F., Gao Y., Lu T. H., et al. Kinetic study of formic acid oxidation on highly dispersed carbon supported Pd-TiO2 electrocatalyst[J]. Catal. Lett,. 2009, 130: 312-317.
    [40] Zhang L. L., Tang Y. W., Bao J. C., et al. A carbon-support Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell[J]. J. Power sources, 2006, 162(1): 177-179.
    [41] Ha S., Larsen R., Masel R. I.. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J. Power sources, 2005, 144(1): 28-34.
    [42] Zhang S. X., Qing M., Zhang H., et al. Electrocatalytic oxidation of formic acid on functional MWCNTs supported nanostructured Pd-Au catalyst[J]. Eletrochemi. Commun., 2009, 11:2249-2252.
    [43] Yi Q. F., Huang W., Liu X. P., et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. J. Electroana. Chem., 2008, 619~620(15): 197-205.
    [44] Yi Q. F., Huang W., Zhang J. J., et al. A novel titanium-supported nickel electrocatalyst for cyclohexanol oxidation in alkaline solution[J]. J. Electronal. Chem., 2007, 610(2): 163-170.
    [45] Yi Q. F., Yu W. Q., Niu F. J.. Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation[J]. Electroanalysis, 2010, 22(5): 556-563.
    [46] Zhou W. P., Lewera A., Larsen R., et al. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid[J]. J. Phys. Chem., 2006, 110(27): 13 393-13 398.
    [47] Sundmacher K, Schultz T, Zhou S, Scott K, et al. Dynamics of direct methanol fuel cell(DMFC): experiments and model-based analysis[J]. Chem. Engineering Scie., 2001, 56(2): 333-341.
    [48] Blum A, Duvdevani T, Philosoph M, Rudoy N, Peled E. Water-neutral micro direct-methanol fuel cell(DMFC) for portable applications[J]. J. Power Sources, 2003, 117(1-2): 22-25.
    [49] Baglio V, Arico A S, Blasi Di, et al. Nafion-TiO2 composite DMFC membranes:physico-chemical properties of the filler versus electrochemical performance[J]. Electrochimica. Acta., 2005, 50(5): 1241-1246
    [50] Hogarth M P, Hards G A. Direct methanol fuel cell[J]. Platium. Metals Rev., 1996, 40(4): 150-152.
    [51] Macak J M, Barczuk P J, Tsuchiya H, et al. Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: enhancement of the electrocatalytic oxidation of methanol[J]. Electrochem. Commun., 2005, 7(12): 1417-1422.
    [52] Choi Jong-ho, Jeong Kyoung-jin, Dong Yujung, et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J]. J. Power Sources, 2006, 163(1): 71-75.
    [53] Adzic R R, Avramov-Ivic M L, Tripkovic A V. Stuctural effects in electrocatalysis: oxidation of formaldehyde on gold and platium single crystal electrodes in alkaline solution[J]. Electrochim. Acta., 1984, 29(10): 1353-1357.
    [54] Yi Q F, Huang W, Zhang J J, Liu X P, Li L. Methanol oxidation on titanium-supported nano-scale Ni flakes[J]. Catalysis. Commun., 2008, 9(10): 2053-2058.
    [55] Yi Q F, Li L, Yu W Q, Liu X P, Zhou Z H, Ni H D. Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation[J]. Rare Metals, 2010, 29(1): 26-31.
    [56] Li B, Brakash Jai. Oxygen reduction reaction on carbon supported Palladium–Nickel alloys in alkaline media[J]. Electrochem. Commun., 2009, 11(6): 1162-1165.
    [57] Shen P K, Xu C W. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts[J]. Electrochem. Commun., 2006, 8(1): 184-188.
    [58] Ha S, Larsen R, Masel R I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J. Power Sources, 2005, 144(1): 28-34.
    [59] Singh R N, Singh, Anindita. Electrocatalytic activities of binary and ternary composite electrodes of Pd, nanocarbon and Ni for electro-oxidation of methanol in alkaline medium[J]. J. Solid Electrochem., 2009, 13(8): 1259-1265.
    [60] Jeremy K, William A, Goddard III. Oxidation of methanol on 2nd and 3rd row group VIII trasition metals(Pt, Ir, Os, Pd, Rh, and Ru): application to direct methanol fuel cells[J]. J Am. Chem. Soc., 1999, 121: 10928-10941.
    [61] Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger J-M. Recent advances in the development of direct alcohol fuel cells(DAFC)[J]. J. Power Source, 2002, 105(2): 283-296.
    [62] Zhang K. F., Guo D. J., Liu X., et al. Vanadium oxide nanotubes as the support of Pd catalysts for methanol oxidation in alkaline solution[J]. J. Power Sources, 2006, 162(2): 1077-1081.
    [63] Sun Z. P., Zhang X. G., Liu R. L., et al. A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation[J]. J. Power Sources, 2008, 185(2): 801-806.
    [64] Xu C. W., Cheng L. Q., Shen P. K., et al. Methanol and ethanoloxidation on Pt and Pd supported on carbon microsphospheres in alkaline media[J]. Electrochem. Commun., 2007, 9(5): 997-1001.
    [65] Yi Q F, Huang W, Liu X P, et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid[J]. J. Electroana. Chem., 2008, 619~620(15): 197-205.
    [66] Cao C. N. (曹楚南), Zhang J. Q.(张鉴清). An introduction to electrochemical impedance spectroscopy(电化学阻抗谱导论)[M]. Beijing: Science Press, 2002: 81-83.
    [67] Wang J., Pamidi P., Cepria G.. Electrocatalysis and amperometric detection of aliphatic aldehydes at platinum-palladium alloy coated glassy carbon electrode[J]. Anal. Chim. Acta.. 1996, 330(2-3): 151-158.
    [68] Herschkoviz Y., Eshkenazi I., Campbell C. E., et al. An electrochemical biosensor for formaldehyde[J]. J. Electroanal. Chem.. 2000, 491(1-2): 182-187.
    [69] Zhang L., Hu J. F., Song P.. Formaldehyde-sensing characteristics of perovskite La0.68Pb0.32FeO3 nano-materials[J]. Physica. B. 2005, 370(1-4): 259-263.
    [70] Knake R., Jacquinot P., Hauser C.. Amperometric detection of gaseous formaldehydein the ppb range[J]. Electroanal.. 2001, 13(8-9): 631-634.
    [71] Wang Z., Zhu Z. Z., Shi J., et al. Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyniline composite film[J]. App. Sur. Sci.. 2007, 253: 8811.
    [72] Ma C. A., Li M. C., Zheng Y. F., et al. Eletro-oxidation of formaldehyde on polyaniline prepared in 1-ethylimidazolium trifluoracetate[J]. Electrochem. Solid-State. Lett. 2005, 8: G12.
    [73] Park S., Xie Y., Michael J. W.. Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-sized dependent rates of methanol, formic acid, and formaldehyde electrooxidation[J]. Langmuir. 2002, 18(15): 5792-5798.
    [74] Vullullas H.M., Mattos-Coata. F.I., Nascente P.A.P., et al. Anodic oxidation of formaldehyde onPt-modified SnO2 thin film eletrodes prepared by a sol-gel methode[J]. Electrochim. Acta. 2004, 49(22-23): 3909-3916.
    [75] Burke L. D., Oleary W. A.. The importance of superficial(adatom) surface oxidation in the electrocatalytic behaviour of noble metals in aqueous media[J]. J. Appl. Electrochem. 1989, 19(5): 758-767.
    [76] Yu W. Q., Yi Q. F.. Electrocatalytic oxidation of Formaldehyde on a novel titanium-supported nanoporpous gold electrode[J]. Chinese Journal of Inorganic Chemistry. 2010, 26(3): 459-463.
    [77] Nishimura K., Yamaguti K., Machida K. I.. Competitive oxidation of Formaldehyde and formate on amorphous copper-palladium-zirconium alloy electrodes in alkaline media[J]. J Appl. Electrochem. 1988, 18(2): 183-187.
    [78] Enyo M.. Anodic formaldehyde oxidation on Pt, Pd, Au and Pd-Au alloy electrodes in NaOH and NaCO3 solutions[J]. J. Appl. Electrochem.. 1985, 15(6): 907-911.
    [79] Wang R. H., Li J. H.. OMS-2 catalysts for Formaldehyde oxidation: effects of Ce and Pt on structure and performance of the catalysts[J]. Catal. Lett.. 2009, 131(3-4): 500-505.
    [80] Yang X. H., Shen Y. N., Bao L. L., et al. oxidation of lean Formaldehyde in air over an Au/CeO2 catalyst and its kinstics[J]. React. Kinet. Catal. Lett.. 2008, 93(1): 19-25.
    [81] Zhou Z. L., Kang T. F., Zhang Y., et al. Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a nafiion-modified glassy carbon electrode[J]. Microchim. Acta. 2009, 164(1-2): 133-138.
    [82] Afsaneh S., Norouz M., Fatemeh F., et al. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode[J]. J. Electroanal. Chem.. 2009, 626(1-2): 75-79.
    [83] Stadler R., Jusys Z., Baltruschat H.. Hydrogen evolution during the oxidation of formaldehyde on Au:: the influence of single crystal structure and ti-upd[J]. Electrochim. Acta. 2002, 47(28): 4485-4500.
    [84] Yi Q. F., Huang W., Liu X. P., et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. J. Electroanal. Chem.. 2008, 7(619-620): 197-205.
    [85] Blackburn T. R, Lingane J. J.. A study of the chronopotentiometic reduction of oxygen and hydrogen peroxide at a palladium electrode[J]. J. Electroanal. Chem.,1963, 5(6): 216-235.
    [86] Yamazaki. S.-ichi, Siroma. Z, Senoh. H, et al. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J]. J. Power Sources, 2008,178(1): 20-25.
    [87] Merkulova N. D., Zhutaeva G. V., Shumilova N..A., et al. Reaction of hydrogen peroxide on a silver electrode in alkaline solution[J]. Electrochim. Acta, 1973, 18(2): 169-174.
    [88] Pournaghi-Azar. M. H., Ahour. F., Pournaghi-Azar. F.. Simple and rapid amperometric monitoring of hydrogen peroxide in salivary samples of dentistry patients exploiting its electro-reduction on themodified/palladized aluminum electrode as an improved electrocatalyst[J]. Sensors and Actuators B: Chem., 2010,145(1): 334-339.
    [89] Cai L. T., Chen H. Y.. Electrocatalytic reduction of hydrogen peroxide aat platinum microparticles dispersed in a poly(ophenylenediamine) film[J]. Sensors and Actuators B: Chem., 1999, 55(1): 14-18.
    [90] Gu. L. F., Luo. N., Miley. G. H.. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell[J]. J. Power Sources, 2007, 173(1): 77-85.
    [91] Cao D. X., Gao. Y. Y., Wang. G. L., et al. A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes[J]. Inter. J. Hydrogen Energy, 2010, 35(2): 807-813.
    [92] Calvo. E. J., Schiffrin. D. J. . The reduction of hydrogen peroxide on passive iron in alkaline solution[J]. J. Electroanal. Chem., 1984, 163(1-2): 257-275.
    [93] Cere. S., Vazquez. M., Sanchez. S. R, Schffrin. D. J.. Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper-nickel alloys[J]. J. Electroanal. Chem., 1999, 470(1): 31-38.
    [94] Cox. J. A. , Jaworski. R. K.. Mechanism of the mediated reduction of hydrogen peroxide at an electrode modified with a film containing a basic form of iridium oxide[J]. J. Electroanal. Chem., 1990, 281(12): 163-170.
    [95] Gu. L. F., Luo. N., Miley. G. H.. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell[J]. J. Power Sources, 2007, 173(1): 77-85.
    [96] Cao D. X., Gao. Y. Y., Wang. G. L., et al. A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes[J]. Inter. J. Hydrogen Energy, 2010, 35(2): 807-813.
    [97] Calvo. E. J., Schiffrin. D. J. . The reduction of hydrogen peroxide on passive iron in alkaline solution[J]. J. Electroanal. Chem., 1984, 163(1-2): 257-275.
    [98] Cere. S., Vazquez. M., Sanchez. S. R, Schffrin. D. J.. Surface redox catalysis and reduction kinetics of hydrogen peroxide on copper-nickel alloys[J]. J. Electroanal. Chem., 1999, 470(1): 31-38.
    [99] Cox. J. A. , Jaworski. R. K.. Mechanism of the mediated reduction of hydrogen peroxide at an electrode modified with a film containing a basic form of iridium oxide[J]. J. Electroanal. Chem., 1990, 281(12): 163-170
    [100] Sun L., Cao D., Wang. G.. J. Pd-Ru/C as the elctrocatalyst for hydrogen peroxide reduction[J]. Appl. Electrochem., 2008, 38(10): 1415-1419.
    [1] Rice C., Ha S., Masel R. I., et al. Direct formic acid fuel cells[J]. J. Power Source, 2002, 111(1): 83-89.
    [2] Markovic N. M., Gasterger H. A., Philip N. R.. Electro-oxidation methanisms of methanol and formic acid Pt-Ru alloy surface[J]. Electrochim. Acta., 1995, 40(1): 91-98.
    [3] Mrozek N. F., Luo H., Weaver M. J.. Formic acid electrooxidation on platinum-group metal: is adsorbed carbon monoxide solely a catalytic poison[J]. Langmuir, 2000, 16(22): 8463-8469.
    [4] Choi J-H., Jeong K-J., Dong Y. J., et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells[J]. J. Power Source, 2006, 163(1): 71-75.
    [5] Arenz M., Stamenkovic V., Schmidt T. J., et al. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces[J]. Phys. Chem. Chem. Phys., 2003, 5: 4242-4251.
    [6] Hoshi N., Kida K., Nakamura M., et al. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium[J]. J. Phys. Chem. B, 2006, 110(25): 12480-12484.
    [7] Zhang L. L., Tang Y. W., Bao J. C., et al. A carbon-support Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell[J]. J. Power sources, 2006, 162(1): 177-179.
    [8] Yi Q F, Huang W, Liu X P, et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. J Electroana chem, 2008, 619~620(15): 197-205.
    [9] Ha S., Laraen R., Masel R. I.. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J. Power sources, 2005, 144(1): 28-34.
    [10] Zhang S. X., Qing M., Zhang H., et al. Electrocatalytic oxidation of formic acid on functional MWCNTs supported nanostructured Pd-Au catalyst[J]. Eletrochemi. Commun., 2009, 11:2249-2252.
    [11] Yi Q. F., Yu W. Q., Niu F. J.. Novel nanoporous binary Au-Ru electrocatalysts for glucose oxidation[J]. Electroanalysis., 2010, 22(5): 556-563.
    [12]于文强,易清风.钛基纳米多孔金电极对甲醛氧化的电催化活性[J].无机化学学报. 2010, 26(3): 459-463.
    [13] Arenz M., Stamenkovic V., Schmidt T. J., et al. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces[J]. Phys. Chem. Chem. Phys., 2003, 5: 4242-4251.
    [14] Xu W. F., Gao Y., Lu T. H., et al. Kinetic study of formic acid oxidation on highly dispersed carbon supported Pd-TiO2 electrocatalyst[J]. Catal. Lett., 2009, 130: 312-317.
    [15] Zhou W. P., Lewera A., Larsen R., et al. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid[J]. J. Phys. Chem., 2006, 110(27): 13393-13398.
    [16] Sun Z. P., Zhang X. G., Liu R. L., et al. A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation[J]. J. Power Sources, 2008, 185(2): 801-806.
    [17]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002: 90.
    [1] Antolini E., Salgado J. R.C., Gonzalez E. R.. The methanol oxidation reaction on platium alloys with the first row transition metals: The case of Pt-Co and–Ni alloys electrocatalysts for DMFCs: A short review[J]. Applied Catalysis B: Environmental, 2006, 63(1-2): 137–149.
    [2] Xue X., Ge J., Tian T., et al. Enhancement of the electrooxidiation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process[J]. J. Power Sources, 2007, 172(2): 560–569.
    [3] Chen Y., Zhuang L., Lu J.. Non-Pt anode catalysts for alkaline direct alcohol fuel cells[J]. J. Catal., 2007, 28(10): 870-874.
    [4] Song S., Wang Y., Tsiakaras P., et al. Direct alcohol fuel cells:A novel non-platinum and alcohol inert ORR electrocatalyst[J]. Appl.Catal. B: Environmental, 2008,78(3-4): 381-387.
    [5] Liu J., Ye J., Xu C., et al. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti[J].Electrochem. Commun., 2007,9(9): 2334–2339.
    [6] Liang Z. X., Zhao T. S., Xu J. B., et al. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochimica Acta, 2009, 54(8): 2203-2208.
    [7] Shen P. K., Xu C.. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts[J]. Electrochem. Commun., 2006,8(1):184-188.
    [8] Xu C., Shen L. C., Liu P. Y.. Methanol and ethanol eletrooxidation on Pt and Pd supported on carbon microspheres in alkaline media[J]. Electrochem. Commun., 2007, 9(5): 997-1001.
    [9] Xu C. W., Shen P. k., Liu Y. L.. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide[J]. J. Power Source, 2007, 164(2): 527-531.
    [10]. Bambagioni V., Bianchini C., Marchionni A., et al. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange[J]. J. Power Sources, 2009, 190(2): 241-251.
    [11] Chen X., Lin Z., Jia T., et al. A facile synthesis of palladium nanoparticles supported on funcational carbon nanotubes and its novel catalysis for ethanol electrooxidation[J]. Chim. Acta, 2009, 650(1):54-58.
    [12] Xu C., Tian Z., Chen Z.,et al. Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media[J]. Electrochem. Commun., 2008, 10(2): 246-249.
    [13] Cheng F., Wang H., Sun Z., et al. Electrodeposited fabrication of highly ordered Pd nanowire arrays for alcohol electrooxidation[J]. Electrochem. Commun., 2008, 10(5): 798-801.
    [14] Hu F., Ding F., Song S., et al. Pd electrocatalyst supported on carbonized TiO2 nanatube for ethanol oxidation [J]. J. Power Sources, 2006, 163(1): 415-419.
    [15] He Q., Chen W., Mukerjee S., et al. Carbon-supported PDM (M=Au and Sn) nanocatalysts forelectrooxidation of ethanol in high pH media[J]. Power Sources, 2009,187(2): 298-304.
    [16] Kadirgan F., Beyhan S., Atilan T.. Preparation and characterization of nano-sized Pt-Pd/C catalysts and conparison of their electro-activity toward methanol and ethanol oxidation[J]. Hydrogen Energy, 2009, 34(10): 4312-4320.
    [17] Nirmala Grace A., Pandian K.. Pt,Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline eletrodes–A potent electrocatalys towards the oxidation of glycerol[J].Electrochem. Commun., 2006, 8(7): 1340-1348.
    [18] Singh R.N., Singh A., Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni for ethanol electro-oxidation in alkaline solution[J]. Carbon, 2009, 47(1): 271-278.
    [19] Singh R.N., Singh A., Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH[J]. Inter. J. Hydrogen Energy, 2009, 34(4): 2052-2057.
    [20] Serra D., McElwee.-White L.. Electrochemical oxidation of methanol using alcohol-soluble Ru/Pt and Ru/Pd catalysts[J]. Inorg. Chim. Acta 2008, 361(11): 3237-3246.
    [21] Chu D., Wang J., Wang S., et al. High activity of Pd-In2O3/CNTS electrocatalyst for electro-oxidation of ethanol[J]. Catal. Commun., 2009, 10(6): 955-958.
    [22] Xu C., Tian Z., Shen P. K., et al. Oxide(CeO2,NiO,Co3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation alkaline media[J]. Electrochim. Acta, 2008, 53(5): 2610-2618.
    [23] Nguyen S. T., Law H. M., Nguyen H. T., et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media[J]. Appl. Catal. B: Environmental., 2009, 91(1-2: 507-515.
    [24] Miao F., Tao B., Sun L., et al. Amperometric glucose sensor based on 3D ordered nickel-palladium nanomateral supported by silicon MCP array[J]. J. Power Sources, 2009, 141(1): 338-342.
    [25] Hu F., C. Chen, Z. Wang, G. Wei, P. K. Shen, Mechanisitic study of ethanol oxidation on Pd-NiO/C electrocatalyst[J]. Electrochim. Acta, 2006, 52(3): 1087-1091.
    [26] Lu J., S. Lu, Wang D., Yang M., et al. Jiang, Nano-structured PdxPt1-x/Ti anodes prepared by electrodeposition for alcohol electrooxidation[J]. Electrochim. Acta, 2009,54(23): 5486-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700