高油脂微藻种质的筛选、鉴定及新品种培育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石化燃料日趋枯竭和环境压力的日益增强,迫使人类急切的寻找一种新型的、可再生的洁净能源。单细胞微藻的光合效率是油棕、水稻等作物的数十倍,而且生长快,含油量高,不与农作物争地,是具有很大应用前景的新能源植物。由于良种培育及高密度、低成本养殖等关键技术至今尚未解决,能源微藻(即油藻)产业化成本一直居高不下。故而,筛选高产、稳产、高含油量等优良农艺性状的新藻种、探索低成本培养条件是能源微藻能否产业化的关键,同时也是国内外研究的一大热点。本研究旨在通过试验,筛选高生物量、高含油量藻株,探索优势藻株生长及油脂积累条件,同时利用育种的方法培育新型油藻,为藻类的开发利用、生物质能源的深入研究奠定基础。
     本试验以尼罗红为染料,优化了尼罗红荧光染色检测微藻中油脂相对含量的条件,确定尼罗红染色质量浓度为1.0μg/ml,染色时间为6min,二甲基亚砜体积浓度为20%,待测藻液密度OD600=0.12~0.52时染色效果最佳,为大规模筛选高含油量微藻奠定了基础。
     以含油量高、生产率高为选育目标,用尼罗红染色荧光显微镜检测法对本实验室496株微藻进行了初步筛选,获得了40株油脂含量相对较高的藻株,通过生长和油脂动态积累情况进行跟踪检测,比较同一藻液吸光值(OD=0.35)时脂荧光强度、最高脂荧光强度和比平均生长速率等指标,初步确定编号La4-37、La2-14、SA2-1、SA2-17、SA2-8的藻株具有含油量高、生产率高等优良性状,具有作为生物柴油原料的潜力。重点对编号为La4-37的藻株进行了研究。通过细胞形态观察发现,La4-37细胞成球形,色素体为单个,绿色,杯状,细胞大小为3~10um,以孢子生殖为主;扩增18S rDNA,测序获得大小1756bp的DNA序列,通过生物信息学分析,确定La4-37为绿藻门(Chlorophyta),原球藻纲(Trebouxiophycea),小球藻科(Chlorellaceae),小球藻属(Chlorella), Chlo rella sorokiniana种。为更清楚了解La4-37生长及油脂积累情况,对藻株生长和油脂情况进行动态跟踪,发现藻株油脂在迟滞期有一个短暂积累,在指数生长后期和平稳期大量积累,最后通过检测La4-37平稳期生物量(1.072g/1),比平均生长速率(O.26d-1),脂荧光强度(8.71×10-5/cell),并与其它产油微藻比较发现,筛选得到的藻株La4-37具有含油量高,生物量高、生长速率快的优良性状,具有作为能源微藻开发的潜力。
     环境条件会严重影响微藻的生长和油脂产量,而氮浓度和初始pH值是影响微藻生长和油脂积累较关键的环境因子。不同氮浓度藻株生长和油脂积累情况跟踪试验发现:随着氮浓度的降低,藻细胞油脂积累能力增强,生长速度降低。La4-37的pH梯度试验表明:在初始pH值为7-8时生长最好,初始pH值较低的培养基中(pH值为4和5),藻株几乎不能生长,在初始pH值高达12的培养基中也有一定程度的生长(比平均生长速率为0.2d-1);油脂积累随着pH的升高而增强,初始pH值为1 2时最高。
     为进一步获得含油量和生长速率更高的藻株,采用紫外线辐射法对La4-37进行诱变处理,经过初步筛选,获得296株诱变藻株,通过尼罗红荧光检测法对获得的藻株脂进行荧光检测,并与同密度下原始藻株脂荧光强度比较,筛选获得相对含油量最大的诱变藻株M077和M040。通过对诱变株生长及脂荧光强度动态跟踪发现,诱变株生长周期和油脂积累时期基本一样,当达到平稳期时,诱变株油脂积累能力均有较大提高(脂荧光强度分别是原始藻株的6.2倍和1.7倍),但生物量略有下降,M077为原始藻株的49%, M040为原始藻株的93%。
A new and renewable clean energy was urgent to be searched because of the increasing depletion of fossil fuels and enhance of environmental stress. The photo synthetic efficiency of unicellular microalgae is several times of that of lipid palm, rice and other crops. The microalgae have been considered to be a ideal source of biodiesel for its fast growth and high lipid content. Because the key technologies of high-density and low-cost cultivation have not yet been resolved, the industrialization cost of the energy algae was very high. Therefore, screening new algae species with high yield and high lipid content and exploring low-cost culture condition are the key factors of the energy algae industry, which is a hotspot in the world. This study was designed to screen algae with high biomass production and lipid content, establish a core germplasm collection for energy microalgae, optimize the culture condition of preponderant algae and reduce the cost of industrial cultivation And the methods cultivating new lipid algae was the basic of algae utilization and biomass energy research.
     In this test, microalgae lipid can be qualitatively and quantitatively analyzed by Nile Red fluorescence staining method, through fluorospectro photometer and multifunctional ELIASA. The detection conditions was optimized:Nile Red dye concentration 1μg/ml, the dyeing time 6 min, DMSO concentration 20%, and tested algae density OD600=0.12~0.52. Large-scale primary screening of lip id-rich microalgae was researched by the multi-functional ELIASA. At the same time, lipid accumulation of the same algae at different culture condition and different develop period was observed by fluorospectro photometer.
     With highoil content and high productivity for the breeding goal,496 microalgae were screened preliminarily by Nile Red fluorescence staining method in our laboratory. And 40 strains with relatively high oil content were obtained.
     Lipid fluorescence intensity, maximum fluorescence intensity and the average growth rate of microalgae were compared at the same density (OD=0.35) by the dynamic growth and lipid accumulation. Preliminarily, microalgae named La4-37, La2-14, SA2-1, SA2-17 and SA2-8, which had high lipid content and high productivity, were the potential biodiesel feedstock. Algae named La4-37 was chosen to be identified. The cell morphologic observation indicated that the cell of La4-37 was spherical and sporogony, chromatoplast was single, green and goblet. The cell size of La4-37 was 3-10μm.1756bp DNA sequences of La4-37 were obtained by amplified 18S rDNA. The result of cell morphologic observation and 18S rDNA evaluation was indicated that La4-37 was indentified as Chlorella sorokiniana, Chlorella, Chlorellaceae, Trebouxiophycea, Chlorophyta. The growth and lipid accumulation of La4-37 were observed. As a result, a transient lipid accumulation at lag phase, but abundant lipid accumulation at the late and stationary phase of exponential growth. Finally, the biomass (1.072g/l), the average growth rate (0.26 d-1) and lipid fluorescence intensity (8.71×10-5/cell) of La4-37 were detected. Compared to other oil-producing microalgae, La4-37 with high lipid content and high biomass and high growth rate was a potential energy microalgae.
     Environmental condition would affect the microalgae growth and lipid production seriously. Growth and lipid accumulation of La4-37 indifferent nitrogen concentrations and different pH was tested. The results were showed that the lipid accumulation of La4-37 increased and the growth rate decreased with the reduction of nitrogen concentration The results of pH gradient test indicated that La4-37 grew best at pH 7~8, but couldn't grow barely at low pH (4-5). In addition, La4-37 could grow to a certain extent (the average growth rate 0.2 d-1) at pH 12. The lipid accumulation of La4-37 was increased with the increase of pH. When the pH was 12, the relative lipid content was the highest.
     In order to obtain algal strains with higher oil content and growth rate, La4-37 was treated with ultraviolet irradiation.296 mutagenic microalgae were obtained after preliminary screening. Two mutagenic microalgae M077 and M040 with relatively lipid content were isolated through the lipid fluorescence detection and the lipid fluorescence intensity at the same algal density by Nile Red fluorescence staining method
     The growth and lipid dynamic fluorescence intensity of mutagenic microalgae was showed that the growth cycle of mutant strains and the period of lipid accumulation were the same. When the mutagenic microalgae grew to the stationary phase, the lipid accumulation had improved greatly (the lipid fluorescence intensity of M077 and M040 was 6.2 and 1.7 times as that of La4-37, respectively). But, the biomasses of mutagenic microalgae were decreased. The biomass of M077 was 49% of La4-37, and the biomass of M040 was 93% of La4-37.
引文
1.葛蕴珊,李晓,吴思进等.餐饮废油制生物柴油的排放特性[J].北京理工大学学报,2004,24(4):290-293.
    2.陈昱,林锦明,刘广发.高脂杜氏藻的诱变筛选与分析[J].厦门大学学报(自然科学版),2008,47(3):397-401.
    3.陈红.马铃薯氮营养高效利用品种的筛选及其生理机制的研究[D].四川农业大学,2010.
    4.胡鸿钧,魏印心.中国淡水藻类[M].北京:科学出版社,2006.
    5.黄世玉,王志勇.紫外线辐射坛紫菜离体细胞的初步试验[J].集美大学学报,1997,2(1):25-30.
    6.洪娟.油菜氮高效种质的筛选及其生理机制的初步研究[D].华中农业大学,2007.
    7.华雪铭,周洪琪.温度和光照对微藻的生长、总脂肪含量及脂肪酸组成的影响[J].上海水产大学学报,1999,8(4):309-315.
    8.何启谦.遗传育种学[M].中央广播电视大学出版社,1999,106-110.
    9.季祥,张智慧,张雪艳等.小球藻培养条件的优化[J].安徽农业科学,2009,37(37):16763-16764.
    10.贾虎森,许亦农.生物柴油利用概况及其在中国的发展思路[J].植物生物学报,2006,30(2):221-230.
    11.蒋霞敏.温度、光照、氮含量对微绿球藻生长及脂肪酸组成的影响[J].海洋科学,2002,26(8):9-13.
    12.李建宏、郑卫、倪霞等.两株钝顶螺旋藻紫外诱变株特征[J],水产生物学报,2001,25(5):486-490.
    13.刘志媛.铁对几种不同代谢类型微藻的生长和油脂积累的影响[D].中国科学院海洋研究所,2008.
    14.马少波.生物柴油概述及前景[J].山东化工,2007,36,(12):23-28
    15.孟凡清,王德民,张大年.生物柴油技术在国内的研究进展[J]].上海化工,2003,(12):30-33.
    16.罗瑶忠.小球藻的培养及研究进展[J].农业科学,2009,11:117.
    17.秦京东,邵宁,施定基等.聚球藻7942高效泌氨突变种的获得及其泌氨、谷氨酰胺合 成酶活性、光合和生长[J].植物学报,1999,41(1):65-70.
    18.沈继红,林学政,李光友等.细胞融合构建新型微藻及融合子的筛选和鉴定[J].高技术通讯,2001,(6):9-11.
    19.时艳侠.小球藻藻种鉴定、株系筛选和培养条件优化[D].中国海洋大学,2007.
    20.松文.海藻生产生物柴油的潜力[J].2009,(1):17-19.
    21.宋东辉,侯李君,施定基.生物柴油原料资源高油脂微藻的开发利用[J].生物工程学报,2008,24(3):341-348.
    22.王金娜,严小军,周成旭等.产油微藻的筛选及中性脂动态积累过程的检测[J].生物物理学报,2010,26(6):472-480.
    23.魏东,张学成,邹立红等.细胞生长时期对两种海洋微藻总脂含量和脂肪酸组成的影响[J].青岛海洋大学学报,200,30(3):503-509.
    24.吴伟光,仇焕广,徐志刚.生物柴油发展现状、影响与展望[J].农业工程学报,2009,25(3):298-302.
    25.徐宏发,王静波.分子系统学研究进展[J].生态学杂志,2001,20(3):41-44.
    26.徐立,吴瑜端.有机氮化合物对海洋浮游植物的影响[J].厦门大学学报,1995,34(6):824-828.
    27.徐年军,张学成.温度、光照、pH值对后棘藻生长及脂肪酸含量的影响[J].青岛海洋大学学报,2001,31(4):541-547.
    28.于娟,唐学玺,李永祺.紫外线-p辐射对海洋微藻的生长效应[J].海洋科学,2002,26(2):6-8.
    29.扬世杰,王希善,李继芬等.螺旋藻培养初探[J].北京农业大学学报,1988,14(1):71-74.
    30.于贞,王长梅.小球藻培养条件的研究[J].烟台大学学报,2005,18(3):206-211.
    31.余杨.基于生物柴油制备的海洋高脂微藻筛选[D].厦门大学,2009.
    32.张包钊,郭凤华.面向21世纪的美国生物质能源[J].能源工程,1999,5,(2):9-11.
    33.张建民,刘新宁.可利用微藻的种类及其应用前景[J].资源开发与市场,2005,21(1):65-68.
    34.张学成,谭桂英.甲基磺酸乙酯对螺旋藻的诱变作用[J].海洋学报,1990,12(4):517-522.
    35.赵爱娟.海洋微藻的诱变育种及其脂肪酸的测定[D].南京理工大学,2005,5-8.
    36.赵萌萌,王卫卫.He-Ne激光对钝顶螺旋藻的诱变效应[J].光子学报,2005,34(3):400-403.
    37.赵学武,张闻迪等.激光对β-胡萝卜素的藻种一盐生杜氏藻(Dunaliella salina)诱变的影响[J].中国激光,1992,19(6):463-466.
    38.张学成,时艳侠,孟振.小球藻紫外线诱变及高产藻株筛选[J].中国海洋大学学报,2007,37(5):749-753.
    39.庄惠如,王明兹,陈必链等.雨生红球藻对紫外光处理的响应及高产藻株选育[J].福建师范大学学报(自然科学版),2001,17(3):76-80.
    40. Aaronson S L. Effect of incubation temperature on the macro molecular and lipid content of the phytoflagellate Ochromonas danica [J]. Phycol,1973,9:111-113.
    41. Ahlgren G, Hyenstrand P. Nitrogen limitation effects of different nitrogen sources on the nutritional quality of two freshwater organisms,Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae) [J]. J. Phycol.,2003,39:906-917.
    42. Alonzo F, Mayzaud P. Spectro fluorometric quantification of neutral and polar lipids in zooplankton using Nile red [J]. Mar Chem,1999,67:289-301.
    43. Apt K E, Behrens P W. Commercial developments in microalgal biotechnology [J]. Journal of Phycology,1999,35(2):215-226.
    44. Ayhan D. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods:a survey [J]. Energy Conversion and Manage- ment,2003,44(13):2093-2109.
    45. Berner T, Wyman K, Dubinsky Z, et al. Photoadaptation and the package effect in Dunaliella tertiolecta (Chlorophyceae) [J]. Journal of Phycology,1989,25:70-78.
    46. Bligh E G, Dyer W J. A rapid method for total lipid extraction and purification [J]. Canadian Journal of Biochemistry and Physiology,1959,37:911-917.
    47. Borowitzka M A, Borowitzka L J. Dunalialla in microalgal Biotechnology [M]. Cambridge University Press,1988.
    48. Bristow J, Bier D M, Lange L G Regulation of adult and fetal myocardial phosphofructok inase:Relief of cooperativity and competition between fructo see bisphosphate,ATP and citrate [J]. J boil Chem,1987,262:2171-2175.
    49. Brown M R, Dunstan G A, Norwood S J, et al. Effects of harvest stage and light on the biochemical composition of diatom Thalassiosira pseudonana [J]. J Phycol,1996,32:64-73.
    50. Cantrell K B, Ducey T, Ro K S, Hunt PG Livestock waste-to-bioenergy generation opportunities [J]. Bioresource Technology,2008,99(17):7941-7953.
    51. Chisti Y. Biodiesel from microalgae [J]. Biotechnology Advances,2007,25 (3):294-306.
    52. Chen W, Zhang C, Song L, et aL A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae [J]. J Microbiol Methods,2009,77(1):41-47.
    53. Cohen Z, Reungjitchachawali M, Siangdung W, et al. Herbicide-resistant lines of microalgae:Growth and fatty acid composition[J]. Phytochemistry,1993,34(4):973-978.
    54. Cole T A. Use of Nile red as a rapid measure of lipid contents in ciliates [J]. Europena Journal of protistology,2003,25:361-368.
    55. Cooksey K E, Guckert J B, Williams S A, et al. Fluorometric-determination of the neutral lipid-content of microalgal cells using nile red [J]. Journal of Microbiological Methods, 1987,6:333-345.
    56. Courchesne N M D, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches [J]. Journal of Bio-technology,2009,141:31-41.
    57. Dean A P, Sigee D C, Estrada B, et al. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalga [J]. Bioresource Technology,2010,101:4499-4507.
    58. Delajara A, Mendoza H, Molina C, et al. Flow cytometric determination of lipid content in a marine dinoflagellate Crythecodinium cohnii [J]. Journal of Applied Phycology,2003,15: 433-438.
    59. Deye J E, Berger T A, Anderson A G Nile Red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids [J]. Analytical Chemistry,1990,62:615-622.
    60. Dismukes G C, Carried D, Bennette N, et aL Aquatic phototrophs:efficient alternatives to land-based crops for bio fuels [J]. Current opinion in Biotechnology,2008,19(3):235-240.
    61. Dutta A K, Kamada K, Ohta K. Spectroscopic studies of Nile Red in organic solvents and polymers [J]. Journal of Photochemistry and PhotobiologyA:Chemistry,1996,98:57-64.
    62. Elsey D, Jameson D, Raleigh B, et al. Fluorescent measurement of microalgal neutral lipids [J]. J Microbiological Methods,2007,68:639-642.
    63. Fernandez-Reiriz M J, Labarta U, Albentosa M, et al. Lipid composition of Ruditapes philippinarum spat:Effect of ration and diet quality [J]. Biochemistry and Molecular Biology,2006,144(2):229-237.
    64. Fernandez-Reiriz M J, Perez-Camacho A, Ferreiro M J, et al. Biomass production and variation in the biochemical profile (total protein,carbohydrates,RNA,lipids and fatty acids)of seven species of marine microalgae [J]. Aquaculture,1989,83(2):17-37.
    65. Genicot Q Leroy JLMR, Van S A, et al. The use of a fluorescent dye:Nile red to evaluate the lipid content of single mammalian oocytes [J]. Theriogenology,2005,63:1181-1194.
    66. Gerpen J V. Business management for biodiesel producers. NREL Technical Report, NREL/SR-51036342,2004.
    67. Goldman J C, Carpenter E J. A kinetic approach to the effect of temperature on algal growth [J]. LimnolOceanogr,1974,19:756-766.
    68. Greenspan P, Fowler S D. Spectrofluorometric studies of the lipid probe, nile red [J]. The Journal of Lipid Research,1985,26:781-789.
    69. Guckert J B, Cooksey K E. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition [J]. J Phycol,1990,26: 72-79.
    70. Haag A L. Algae bloom again [J]. Nature,2007,447(31):520-521.
    71. Hirano A, Ueda R, Hirayama S, Ogushi Y. CO2 fixation and ethanol production with micro-algal photosynthesis and intracellular anaerobic fermentation [J]. Energy,1997,22(2-3): 137-142.
    72. Hsieh C H, Wu W T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation [J]. Bioresource Technology,2009,100(17):3921-3026.
    73. Hu Q, Sommerfeld M, Jarvis E, et al. Harnessing plant biomass for biofuels and biomaterials-microalgae triacylglycerols as feedstocks for biofuel production:perspectives and advances [J]. The Plant Journal,2008,54:621-639.
    74. Huang G H, Chen Q Chen F. Rapid screening method for lipid production in alga based on Nile red fluorescence [J]. Biomass&bioenergy,2009,33:1386-1392.
    75. Huntleym E, Redalje D G CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal [J]. Mitigation and Adaptation Strategies for Global Change,2007,12(4): 573-608.
    76. Izard J, Limberger RJ. Rapid screening method for quantitation of bacterial cell lipids from whole cells [J]. J Microbiol Methods,2003,55(2):411-418.
    77. Kimura K, Yamaoka M, Kamisaka Y. Rapid estimation of lipids in oleaginous funi and yeasts using Nile red fluorescence [J]. J Microbiol Methods,2004,56(3):331-338.
    78. Kok B. Experiments in photosynthesis by Chlorella in flash light, in algal culture from laboratory to pilot plant [J]. Institute of Washington Publ,1953:63-75.
    79. Kosaric N, Velikonja J. Liquid and gaseous fuels from biotechnology:challenge and opportunities [J]. FEMS Microbiology Reviews,1995,16:111-142.
    80. Lalucat J, Imperial J, Pares R. Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79 [J]. Biotechnol Bioeng,1984,26:677-681.
    81. Li X, Hu H Y, Gan K, et al. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp [J]. Bioresource Technology,2010,101(14):5494-5500.
    82. Li Y Q, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans [J]. Appl Microbiol Biotechnol,2008, 81:629-636.
    83. Liu ZY, Wang G C, Zhou B C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology,2008,99(11):4717-4722.
    84. Marguez F J, Nishio N, Nagai S. Enhancement of biomass and pigment production during growth of Spirulina platensis mixotrophic culture [J]. J Chem Tech Biotech,62:159-164.
    85. Metting F B. Biodiversity and application of microalgae [J]. Journal of Industrial Microbiology,1990,17:477-489.
    86. Miao X L, Wu QY Biodiesel production from heterotrophic microalgal oil [J]. Bioresource Technology,2006,97(6):841-846.
    87. Moazami N, Ranjbar R, Ashori A, et al. Biomass and lipid productivities of marine micro-algae isolated from the Persian Gulf and the Qeshm Island [J]. Biomass bioenergy,2011, 39(1):1-5.
    88. Moncia B V, Darcy J L. Aureococcus anophagefference:Cause and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters [J]. Limnol Oceanogr,1997,42(5): 1023-1038.
    89. Moellering E R, Quyang Y, Mamedov TG, et al. The two divergent PEP-carboxylase catalytic subunits in the green microalga Chlamydomonas reinhardtii respond reversibly to inorganic-N supply and co-exist in the high-molecular-mass,hetero-oligomeric Class-2 PEPC complex [J]. FEBS Letters,2007,581(25):4871-4876.
    90. Noemie Manuelle Dorval Courchesne, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches [J]. Journal of Biotechnology,2009,141(1-2):31-41.
    91. Napolitano G E. The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton [J]. J Phycol,1994,30:943-950.
    92. Ohta S, Chang T, Aozasa O, et aL Sustained production of a rachidonic and eicosapentaenoic acids by the red alga Porphyridium purpureum cultured in a light/dark cycle [J]. J Fenment Bioeng,1992,74(6):394-402.
    93. Piorreck M, Klaus-Hinnerk B, Pohl. Biomass production, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes [J]. The Journal of Physical Chemistry,1984,23(2):207-216.
    94. Rene H. Wijffels, Maria J B. An Outlook on Microalgal Biofuels [J]. Science,329: 796-799.
    95. Rodolfi L, Zittelli G C, Bassi N, et aL Microalgae for oil:strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J]. Biotechnology and Bioengineering,2009,102(1):100-112.
    96. Roessler P G. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptic in response to silicon deficiency [J]. Archives of biochemistry and Biophysics,1988,267(2):521-528.
    97. Roessler P G. Effects of silicon deficiency on lipid composition metabolism in the diatom Cyclotella cryptic [J]. Journal of Phycology,1988,24:394-400.
    98. Roessler P G. Envirnmental control of glycerol lipid metabolism in microalgae:commercial implications and future research directions [J]. J Phycol,26:393-399.
    99. Schenk P, Thomas-Hall S, Stephens E, et aL Second generation biofuels:high-efficiency microalgae for biodiesel production [J]. Bio Energy Research,2008,1(1):20-43.
    100. Scott S A, Daver M P, Dennis J S, et al. Biodiesel from algae:challenges and pro- spects [J]. Current Opinion in Biotechnology,2010,21(3):277-286.
    101. Scurlock J M O, Hall D O, Howes R. Utilizing biomass crops as an energy source:a European perspective [J]. Water, Air, and Soil Pullution,1993,70:499-518.
    102. Searchinger T, Heimlich R, Houghton R A, Dong F, et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change [J]. Science, 2008,319(5867):1238-1240.
    103. Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the U.S. Department of Energy's Aquatic Species Program:biodiesel from algae[R]. NREL/TR-580-24190,1998。
    104. Shifrin N S, Chisholm S W. Phytoplankton lipids:interspecific differences and effects of nitrate, silicate and light-dark cycles [J]. Journal of Phycology,1981,17:374-384.
    105. Spoehr H A, Milner H W. The chemical composition ofchlorella; effect of environmental conditions [J]. Plant Physiology,1949,24(1):120-149.
    106. Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. Journal of bioscience and bioengineering,2006,101(2):87-96.
    107. Stevens D R, Purton S. Genetic engineering of eukaryotic algae:progress and prospects [J]. Journal of Phycology,1997,33:713-722.
    108. Sukenik A, Wyman K D, Bennett J, et al. A novel mechanism for regulating the excitation ofphotosystem Ⅱ in green alga [J]. Nature,1987,327:704-707.
    109. Sukenik A, Bennett J, Falkowski P G Light saturated photosynthesis limitation by election transport or carbon fixation [J]. Biochimicaet Biophysica Acta,1987,891:205-215.
    110. Tjahjono A E, Kakizono T, Hayama Y, et al. Isolation of resistant mutants against carotenoid bioeynthezis inhibitors for a green alga Haematococcus pluvislis and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers [J]. J Ferment Bioengng,1994,77:352-357.
    111. Turner M F. Nutrition of some marine microalgae with special reference to vitamin requirements and utilization of nitrogen and carbon sources [J]. Mar Biol Ass UK,1979,59: 535-552.
    112. Vladeanu G, Mitrea N, Titu H. Physiologica and electron microscopic characteristics of the cyanobacteria Spirulina platenses after 60Co gamma irradiation [J]. Stud Cercet BiolSer BiolVeg,1994,46(2):143-148.
    113. Wei X, Gao C F, Yan D, et aL Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production [J]. Bioresource Technology,2010, 101:2287-2293.
    114. Whikfors G H. Altering growth and gross chemical compostion of two microalgae molluscan food species by varying nitrate and phosphate [J]. Aquaculture,1986,59:1-14.
    115. Widjaja A, Chien C C, Ju Y H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris [J]. Journal of the Taiwan Institute of Chemical Engineers, 2009,40(1):13-20.
    116. Xiong W, Li X F, Xiang J Y, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for mocrobio-diesel production [J]. Appl Microbiol Biotechnol, 2008,78:29-36.
    117. Xu H, Miao X L, Wu Q Y. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters [J]. Journal of Biotechnology,2006, 126:499-507.
    118. Xu N J, Zhang X C, Fan X, et al. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta) [J]. Journal of Applied Phycology,2001,13:463-469.
    119. Yeesang C, Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand [J]. Bioresource Technology,2011,102:3034-3040.
    120. Yongmanitchai W, Ward O P. Growth of and omega-3 acid production by Phaeodactrlum triconutum under different culture conditions [J]. Applied and envir Microbio,1991,57(2): 419-425.
    121. Zhu C J, Lee Y K, Chao T M. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1 [J]. Journal of Applied Phycology,1997, 9(5):451-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700