枯草芽孢杆菌OKB105菌株突变体文库的构建及促生相关基因的克隆和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枯草芽孢杆菌(Bacillus subtilis)是一类重要的植物根围促生细菌(Plant growth-promoting rhizobacteria, PGPR),能产生抗逆性强的芽孢和多种抗菌物质,还能促进植物的生长。目前,在国内外已有很多商品化的枯草芽孢杆菌生防制剂。枯草芽孢杆菌的促生和防病作用的发挥首先依赖于它们在植物根部的定殖能力,但是其定殖和促进植物生长的分子机理尚不清楚。本研究通过转座子随机诱变技术,构建了枯草芽孢杆菌突变体文库,并从中筛选促进植物生长缺陷型的突变体,克隆与枯草芽孢杆菌促生相关的基因,验证和研究这些基因的促生相关功能。
     目前,转座子随机诱变技术已成为发现新基因、发掘已知基因新功能的有效途径之一。Himar1转座元件,是在细菌诱变中应用最广泛的mariner家族转座元件之一,与其它转座子相比,具有转座频率高、插入位点随机性高,以及寄主范围广泛的优点。枯草芽孢杆菌OKB105菌株,对防治辣椒病毒病和烟草花叶病均有较好的效果,能显著促进植物生长,并且能诱导植物促生相关基因的表达。因此,本研究以OKB105菌株为研究对象,利用基于Himar1转座元件所构建转座子TnYLB-1,构建了包涵2000个突变体的突变体文库,并利用PCR及southern杂交的方法对随机挑选的15个突变体进行了验证。实验结果表明:pMarA质粒已被成功地转化入OKB105菌株中,并且在高温诱导下转座子TnYLB-1能够以单拷贝、随机插入到枯草芽孢杆菌OKB105基因组中。
     我们以基于Himar1转座诱变体系所构建的枯草芽孢杆菌OKB105突变体文库为基础实验材料,从中筛选得到7个促烟草根生长缺陷型的突变体,实验结果表明,OKB105菌株的发酵上清液能明显地促进烟草根的生长,根长增加约55.9%,而7个突变体的发酵上清液对烟草根的生长几乎没有促进效果。反向PCR对转座子插入位点的分析显示,7个促生相关基因分别与硫氧还原蛋白还原酶、丙酮酸羧化酶、跨膜糖蛋白、带有硫氰酸酶结构域的酶、7-甲基鸟苷转甲基酶、自溶酶LytC的修复蛋白和寡聚-1,6-葡萄糖苷酶的编码、合成相关,影响枯草芽孢杆菌的细胞膜生物功能及糖代谢等途径。
     在OKB105菌株突变体文库的筛选过程中,我们得到了一个促生长缺陷型的突变体M3,其中yfnI基因被转座子TnYLB-1随机插入诱变。本研究采用构建穿梭载体pMK4-yfnI的方法使M3中yfnl基因功能得到回复,并发现该基因的功能回复转化子M3Δyfnl能显著地促进烟草根的生长,与野生型OKB105的促生效果相似,烟草主根长度都增加约65%,证明了yfnl基因与OKB105的促植物生长特性相关。通过对M3生长能力的检测发现,相同的培养条件下,M3和野生型OKB105在LB及Landy培养基中的生长情况都基本一致,证明M3的促生缺陷不是由于影响菌株生长而引起的。本研究还定量检测了M3中三个芽孢杆菌促生相关基因alsD、yhcX和ysnE相对于野生型OKB105的表达水平,Quantative RT-PCR分析结果显示,三个促生相关基因在野生型OKB105与M3中的相对表达量没有显著差异,证明yfnI基因的诱变不会引起OKB105中已知的芽孢杆菌促生相关基因表达水平的变化。因此,推测yfnI基因是通过某种未知机制来调控OKB105的促生功能。
Bacillus subtilis, as an important type of plant growth-promoting rhizobacteria (PGPR), not only has broad-spectrum antimicrobial activity and stress resistance, but also can significantly promote plant growth by root application. Although the advantages of plant disease biocontrol by B. subtilis is more and more obvious now, the molecular mechanisms of colonizing in plant rhizosphere and promoting plant growth of B. subtilis have not been understood. This research was aimed at identifying the genes involved in promoting plant growth using the Bacillus subtilis OKB105 mutant library and studying the functions of these relative genes.
     At present, the ability to create random DNA insertions in bacterial chromosomes has been a very powerful technique for discovering new genes and discovering new functions of known genes. The transposable element Himarl, a member of the mariner family of transposons, has been extensively used to generate libraries of mutants in many bacteria. When compared to other transposons, Himarl transposon has been shown to insert randomly into the chromosomes of a number of bacterial species with high transposition frequency, and has a broad host range. B. subtilis OKB105, a derivative strain of B. subtilis 168, can protect plants against CMV and TMV, and significantly enhanced the plant height and fresh weight by enhancing the expression of plant growth-related genes, In this study, insertional mutagenesis of B. subtilis OKB105 was performed by use of a Himarl-based transposon TnYLB-1, and 2000 transposants were selected randomly. PCR and southern hybridization analyses of 15 transposants showed that the plasmid pMarA carrying the transposon TnYLB-1 could transform into OKB105 successfully, and TnYLB-1 transposed into the B. subtilis chromosome randomly under the condition of high temperature.
     7 mutants defective in promoting plant growth were selected from the Bacillus subtilis OKB105 TnYLB-1 mutant library. The results of square Petri dishes experiments demonstrated that the supernatant liquid of B. subtilis OKB105 could significantly promote the growth of tobacco roots, the root growth had been increasd by 55.9%. In contrary, supernatant liquid of the 7 mutants did not have a positive effect on the root growth of tobacco. To identify the genes in these mutant loci, the inserted transposon and its flanking regions were cloned by inverse PCR and sequenced from each mutant. Transposon insertions in these seven mutants were found to be in the gene trxB, pycA, yfnl, ybfQ, rsmG, ycdG, lytB. The functions of these genes are respectively relative to encoding the proteins such as thioredoxin reductase, pyruvate carboxylase, transmembrane glycoprotein, enzyme with rhodanese domain, glucose-inhibited division protein, modifier protein of major autolysin LytC, oligo-1,6-glucosidase.These genes may have effects on biological function of cell membrane and glucose metabolism of B. subtilis.
     M3, a mutant defective in promoting plant growth, was obtained by screening the TnYLB-1 transposon mutant library of B. subtilis OKB105. Inverse PCR demonstrated that the insertion site of M3 was gene yfnI. In this study, a shuttle vector pMK4-yfnI was constructed and transformed into M3 to restore the function of yfnl gene. The complementation experiment showed that the transformant M3ΔyfnI had the same effect with OKB105 on promoting the growth of tobacco roots, the root growth had been increasd by 65%. The results verified that yfnl was significantly correlated with promoting plant growth of B. subtilis OKB105. The result of growth curve determination of M3 and OKB105 showed that M3 had the same growth ability with OKB105 in both LB medium and Landy medium. It was concluded that the growth of B. subtilis OKB105 was not be affected if yfnl had been mutated. In the present study, there are there genes alsD, yhcX and ysnE relative to promoting plant growth of B. subtilis OKB105. Quantative RT-PCR analysis demonstrated that in M3 the expression level of these three genes showed no significant change compared to wild type OKB105, confirming that the disrupted gene has no effect on the transcription of the three genes. Finally, it was assumed that gene yfnl could regulate the ability of promoting plant growth of B. subtilis OKB 105 according to an unknown mechanism.
引文
1. Allenby Nicholas E E, O'Connor N, Zoltan P, et al. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis [J]. J Bacteriol,2005,187(23):8063-8080.
    2. Angelika G, Olaf S. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus [J]. Proc Natl Acad Sci USA,2007,104(20):8478-8483.
    3. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14 [J]. Appl Environ Microbiol,1996,62:4081-4085.
    4. Aung S, Shum J, Mello A Abanes-De, et al. Dual localization pathways for the engulfment proteins during Bacillus subtilis sporulation [J]. Mol Microbiol,2007,65(6):1534-1546.
    5. Bais H P, Fall R, Vivanco J M, et al. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [J]. Plant Physiol,2004,134:307-319.
    6. Begun J, Sifri C D, Goldman S, et al. Staphylococcus aureus virulence factors identified by using a High-Throughput Caenorhabditis elegans-Killing Model [J]. Infec Immun,2005,73(2):872-877.
    7. Bender J, Klecknert N. Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the target-site consensus sequence [J]. Proc Natl Acad Sci USA,1992, 89:7996-8000.
    8. Blackman S A, Smith T J, Foster S J. The role of autolysins during vegetative growth of Bacillus subtilis 168 [J]. Microbiology,1998,144:73-82.
    9. Bohall N A, JR., Vary P S. Transposition of Tn917 in Bacillus megateriumt [J]. J Bacteriol,1986, 167(2):716-718.
    10. Boles B R, Thoendel M, Roth A J, et al. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation [J]. PLoS One,2010,5(4): e10146. doi:10.1371/journal.pone.0010146.
    11. Brisbane P G, Rovira A D. Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads [J]. Plant Pathol,1988,37:104-111.
    12. Broadbent P, Baker K F, Franks N, et al. Effect of Bacillus spp. on increased growth of seedlings in steamed and nontreated soil [J]. Phytopathology,1977,67:1027-1034.
    13. Cao M, Bitar A P, Marquis H. A mariner-based transposition system for Listeria monocytogenes [J]. Appl Environ Microbiol,2007,73(8):2758-2761.
    14. Cartman S T, Minton N P. A mariner-Based transposon system for In Vivo random mutagenesis of Clostridium difficile [J]. Appl Environ Microbiol,2010,76(4):1103-1109.
    15. Chandler M, Roulet E, Silver L, et al. Tn10 mediated integration of the plasmid R100.1 into the bacterial chromosome:inverse transposition [J]. Mol Gen Genet,1979,173:23-30.
    16. Chang L K, Chen C L, Chang Y S, et al. Construction of Jn917acl, a transposon useful for mutagenesis and cloning of Bacillus subtilis genes [J]. Gene,1994,150:129-134.
    17. Chen X H, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus Amyloliquefaciens FZB42 [J]. Nat Biotechnol, 2007,25(9):1007-1014.
    18. Choi O, Kim J, Kim J G, et al. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16 [J]. Plant Physiol,2008,146:657-668.
    19. Chu F, Kearns D B, Branda S S, et al. Targets of the master regulator of biofilm formation in Bacillus subtilis [J]. Mol Microbiol,2006,59(4):1216-1228.
    20. Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles, mechanisms of action, and future prospects [J]. Appl Environ Microbiol,2005, 71(9):4951-4959.
    21. Dashti N, Zhang F, Hynes R, et al. Application of plant growth-promoting rhizobacteria to soybean (Glycine max (L.) Merr.) increases protein and dry matter yield under short-season conditions [J]. Plant Soil,1997,188:33-41.
    22. Duffy B K, Defago G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains [J]. Appl Environ Microbiol,1999,65:2429-2438.
    23. Emine O, Ahmet E, Sezai E, et al. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry [J]. Sci Hortic,2006,111:38-43.
    24. Figueiredo M V B, Martinez C R, Burity H A, et al. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) [J]. World J Microbiol Biotechnol,2008,24:1187-1193.
    25. Foster T J, Willetts N S. Characterisation of transfer-deficient mutants of the R100-1Tcs plasmid pDU202, caused by insertion of Tn10 [J]. Mol Gen Genet,1977,156:107-114.
    26. Garsin D A, Urbach J, Huguet-Tapia J C, et al. Construction of an Enterococcus faecalis Tn917-mediated-gene-disruption library offers insight into Tn917 insertion patterns [J]. J Bacteriol, 2004,186(21):7280-7289.
    27. Gray E J, Smith D L. Intracellular and extracellular PGPR:commonalities and distinctions in the plant-bacterium signaling processes [J]. Soil Biol Biochem,2005,37:395-412.
    28. Gutierrez J A, Crowley P J, Brown D P, et al. Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917:preliminary characterization of mutants displaying acid sensitivity and nutritional requirements [J]. J Bacteriol,1996,178(14):4166-4175.
    29. Gutierrez-Manero F J, Ramos-Solano B, Probanza A. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins [J]. Physiol Plantarum,2001,111:206-211.
    30. Halling S M, Kleckner N. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity [J]. Cell,1982,28(1):155-163.
    31. Hamon M A, Stanley N R, Britton R A, et al. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis [J]. Mol Microbiol,2004,52(3):847-860.
    32. Idris E E, Bochow H, Ross H, et al. Use of Bacillus subtilis as biocontrol agent.VI. Phytohormonelike action of culture filtrates prepared from plant growth promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37 [J]. J Plant Dis Protect, 2004, 111(6):583-597.
    33. Idris E E, Iglesias D J, Talon M, et al. Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42 [J]. Mol Plant Microbe Interact,2007,20(6):619-626.
    34. Idriss E E, Makarewicz O, Farouk A, et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect [J]. Microbiology,2002, 148:2097-2109.
    35. Inaoka T, Ochi K. Glucose uptake pathway-specific regulation of synthesis of Neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis [J]. J Bacteriol,2007,189(1):65-75.
    36. Isao H, Kazuyoshi S, Izumi S, et al. Proteome analysis of Bacillus subtilis extracellular proteins:a two-dimensional protein electrophoretic study [J]. Microbiology,2000,146:65-75.
    37. Joo GJ, Kim YM, Kim JT, et al. Gibberellins-Producing Rhizobacteria increase endogenous gibberellins content and promote growth of red peppers [J]. J Microbiol,2005,43(6):510-515.
    38. Kandasamy S, Loganathan K, Muthuraj R, et al. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling [J]. Proteome Sci, 2009,7:47.
    39. Keel C, Schnider U, Maurhofer M, et al. Suppression of root diseases by Pseudomonas fluorescens CHAO:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol [J]. Mol Plant Microbe Interact,1992,5:4-13.
    40. Kleckner N, Chan R K, Tye B, et al. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition [J]. J Mol Biol,1975,97(4):561-575.
    41. Kleckner N. Transposon Tn10,1989, pp.227-268 in:DM Berg and MM Howe (ed), Mobile DNA. American Society for Microbiology, Washington, DC.
    42. Kloepper J W, Leong J, Teintze M, et al. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria [J]. Nature,1980,286:885-886.
    43. Kloepper J W, Ryu C M, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp [J]. Phytopathology,2004,94(11):1259-1266.
    44. Koroglu T E, Kurt-Giir G, Unlu E C, et al. The novel gene yvf1 in Bacillus subtilis is essential for bacilysin biosynthesis [J]. Antonie Van Leeuwenhoek,2008,94:471-479.
    45. Kristich C J, Nguyen V T, Le T, et al. Development and use of an efficient system for random mariner transposon mutagenesis to identify novel genetic determinants of biofilm formation in the core Enterococcus faecalis Genome [J]. Appl Environ Microbiol,2008,74(11):3377-3386.
    46. Lampe D J, Churchill M E A, Robertson H M. A purified mariner transposase is sufficient to mediate transposition in vitro [J]. EMBO J,1996,15(19):5470-5479.
    47. Lauderdale K J, Boles B R, Cheung A L, et al. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus Aureus biofilm maturation [J]. Infec Immun,2009, 77(4):1623-1635.
    48. Le Breton Y, Mohapatra N P, Haldenwang W G. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon [J]. Appl Environ Microbiol,2006,72:327-333.
    49. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) [J]. Methods,2001,25:402-408.
    50. Li M S, Li M L, Yin W, et al. Two novel transposon delivery vectors based on mariner transposon for random mutagenesis of Bacillus thuringiensis [J]. J Microbiol Methods,2009,78:242-244.
    51. Loper J E, Haack C, Schroth M N, et al. Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.) [J]. Appl Environ Microbiol,1985,49:416-422.
    52. Lugtenberg B J J, Dekkers L, Bloemberg G V, et al. Molecular determinants of rhizosphere colonization by Pseudomonas [J]. Annu Rev Phytopathol,2001,39:461-490.
    53. Maurhofer M, Keel C, Haas D, et al. Pyoluteorin production by Pseudomonas fluorescens strain CHAO is involved in the suppression of Pythium damping-off of cress but not of cucumber [J]. Eur J Plant Pathol,1994,100:221-232.
    54. McGillivray S M, Ebrahimi C M, Fisher N, et al. ClpX contributes to innate defense peptide resistance and virulence phenotypes of Bacillus anthracis [J]. J Innate Immun,2009,1:494-506.
    55. Mclnroy J A, Kloepper J W. Survey of indigenous bacterial endophytes from cotton and sweet corn [J]. Plant Soil,1995,173:337-342.
    56. Mena-Violante H G, Olalde-Portugal V. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR):Bacillus subtilis BEB-13bs [J]. Sci Hortic,2007, 113(1):103-106.
    57. Nakano M M, Marahiel M A, Zuber P, et al. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis [J]. J Bacteriol,1988, 170:5662-5668.
    58. Navarre W W, Schneewind O. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope [J]. Microbiol Mol Biol Rev,1999,63(1):174-229.
    59. Noel K D, Ames G F. Evidence for a common mechanism for the insertion of the Tn10 transposon and for the generation of Tn10-stimulated deletions [J]. Mol Gen Genet,1978,166:217-223.
    60. Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol [J]. Trend Microbiol,2008,16(3):115-125.
    61. Ongena M, Jacques P, Toure Y, et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis [J]. Appl Microbiol Biotechnol,2005,69:29-38.
    62. Ortiz-Castro R, Contreras-Cornejo H A, Macias-Rodriguez L, et al. The role of microbial signals in plant growth and development [J]. Plant Signal Behav,2009,4(8):701-712.
    63. Ortiz-Castro R, Valencia-Cantero E, Lopez-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling [J]. Plant Signal Behav,2008,3(4):263-265.
    64. Patrick J E, Kearns D B. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis [J]. Mol Microbiol,2008,70(5):1166-1179.
    65. Petitt M, Bruand C. Tn10-derived transposons active in Bacillus subtilis [J]. J Bacteriol,1990, 172(12):6736-6740.
    66. Picardeau M. Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis [J]. Genetica,2010,138:551-558.
    67. Reddy M S, Rahe J E. Bacillus subtilis B-2 and selected onion rhizobacteria in onion seedling rhizospheres:Effects on seedling growth and indigenous rhizosphere microflora [J]. Soil Biol Biochem,1989,21(3):379-383.
    68. Remans R, Croonenborghs A, Gutierrez R T, et al. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition [J]. Eur J Plant Pathol, 2007,119:341-351.
    69. Roten H CA, Brandt C, Aramata D K. Genes involved in meso-diaminopimelate synthesis in Bacillus subtilis:Identification of the gene encoding aspartokinase Ⅰ [J]. J Gen Microbiol,1991, 137:951-962.
    70. Roy R C, Andrew G A, Paul J O, et al. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation [J]. BMC Genomics,2009, 10:291-309.
    71. Rubin E J, Akerley B J, Novik V N, et al. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria [J]. Proc Natl Acad Sci USA,1999,96:1645-1650.
    72. Ryan P R, Delhaize E, Jones D L, et al. Function and mechanism of organic anion exudation from plant roots [J]. Annu Rev Plant Physiol Plant Mol Biol,2001,52:527-560.
    73. Ryu CM, Farag M A, Hu CH, et al. Bacterial volatiles promote growth in Arabidopsis [J]. Proc Natl Acad Sci USA,2003,100(8):4927-4932.
    74. Ryu CM, Farag M A, Hu CH, et al. Bacterial volatiles Induce Systemic Resistance in Arabidopsis [J]. Plant Physiol,2004,134:1017-1026.
    75. Ryu C, Murphy M J F, Mysore K S, et al. Plant growth-promoting rhizobacterial systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway [J]. Plant J,2004,39:381-392.
    76. Saleem M, Arshad M, Hussain S, et al. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture [J]. J Ind Microbiol Biotechnol,2007,34:635-648.
    77. Salvetti S, Celandroni F, Ceragioli M, et al. Identification of non-flagellar genes involved in swarm cell differentiation using a Bacillus thuringiensis mini-Tn10 mutant library [J]. Microbiology,2009, 155:912-921.
    78. Schirner K, Errington J. The cell wall regulator δ1 specifically suppresses the lethal phenotype of mbl mutants in Bacillus subtilis [J]. J Bacteriol,2009,191(5):1404-1413.
    79. Servant P, Le Coq D, Aymerich S. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes [J]. Mol Microbiol,2005, 55(5):1435-1451.
    80. Smith T J, Blackman S A, Foster S J. Autolysins of Bacillus subtilis:multiple enzymes with multiple functions [J]. Microbiology,2000,146:249-262.
    81. Steinmetz M, Richter R. Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome [J]. J Bacteriol,1994,176(6):1761-1763.
    82. Sullivan M A, Yasbin R E, Young F E, et al. New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments [J]. Gene,1984,29:21-26.
    83. Timmuska S, Nicandera B, Granhallb U, et al. Cytokinin production by paenibacillus polymyxa [J]. Soil Biol Biochem,1999,31:1847-1852.
    84. Tojo S, Satomura T, Kumamoto K, et al. Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids [J]. J Bacteriol,2008,190(18):6134-6147.
    85. Tortosa P, Albano M, Dubnau D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis [J]. Mol Microbiol,2000,35(5):1110-1119.
    86. Tsuge K, Ano T, Hirai M, et al. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production [J]. Antimicrob Agents Chemother,1999, 43(9):2183-2192.
    87. Vandeputte O, Oden S, Mol A, et al. Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infect plant tissues [J]. Appl Environ Microbiol,2005,71:1169-1177.
    88. Vilain Sebastien, Pretorius J M, Theron J, et al. DNA as an adhesin:Bacillus cereus requires extracellular DNA to form biofilms [J]. Appl Environ Microbiol,2009,75(9):2861-2868.
    89. Voisard C, Keel C, Haas D, et al. Cyanide pmduction by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions [J]. EMBO J,1989,8:351-358.
    90. Wang S, Wu H J, Qiao J Q, et al. Molecular mechanism of plant growth promotion and induced systemic resistance to Tobacco Mosaic Virus by Bacillus spp [J]. J Microbiol Biotechnol,2009, 19(10):1250-1258.
    91. Way J C, Davis M A, Morisato D.New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition [J]. Gene,1984,32(3):369-379.
    92. Weller D M, Cook R J. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads [J]. Phytopathology,1983,73:463-469.
    93. Whipps J M. Microbial interactions and biocontrol in the rhizosphere [J]. J Exp Bot,2001, 52:487-511.
    94. Wilson A C, Perego M, Hoch J A. New transposon delivery plasmids for insertional mutagenesis in Bacillus anthracis [J]. J Microbiol Methods,2007,71:332-335.
    95. Yan Z, Reddy M S, Kloepper J W. Survival and colonization of rhizobacteria in a tomato transplant system [J]. Can J Microbiol,2003,49:383-389.
    96. Yazgan A, Ozcengiz G, Marahiel M A. Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin [J]. Biochimica et Biophysica Acta,2001,1518:87-94.
    97. Youngman P J, Perkins J B, Losick R. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917 [J]. Proc Natl Acad Sci USA,1983, 80:2305-2309.
    98. Zamboni N, Maaheimo H, Szyperski T, et al. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis [J]. Metab Eng,2004,6:277-284.
    99. Zemansky J, Kline B C, Woodward J J, et al. Development of a mariner-Based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype [J]. J Bacteriol,2009,191(12):3950-3964.
    100. Zhang H, Kim MS, Krishnamachari V, et al. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis [J]. Planta,2007,226:839-851.
    101. Zhang H, Kim MS, Sun Y, et al. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1 [J]. Mol Plant-Microbe Interact,2008,21:737-744.
    102. Zhang H, Xie X, Kim MS, et al. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta [J]. Plant J,2008,56:264-273.
    103. Zhang L, Dawson A, Finnegan D J. DNA-binding activity and subunit interaction of the mariner transposase [J]. Nucleic Acids Res,2001,29(17):3566-3575.
    104.陈永辉,史贤明.利用转座子Tn917构建单核细胞增生李斯特菌菌膜形成突变株[J].微生物学报,2005,45(6):952-954.
    105.董瑾,马汇泉,刘婧等.利用转座子Tn917构建蜡样芽孢杆菌抑菌活性丧失突变株[J].江苏农业学报,2008,24(3):366-369.
    106.范晓东,李春峰,刘文明等.Mariner转座子及其在昆虫种系转化中的应用[J].蚕学通讯,2005,25(3):12-16.
    107.郭庆港,李社增,鹿秀云等.生防细菌NCD22中抑菌功能相关基因的定位及克隆[J].华北农学报,2007,22(6):190-194.
    108.高卫华,郝建安,夏思源等.利用mini-Tn10转座系统研究芽孢杆菌生物被膜形成相关基因[J].微生物学通报,2009,36(3):345-349.
    109.高学文,姚仕义,Pham H等.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析[J].中国生物防治,2003.19(4):175-179.
    110.耿运琪,蒋如璋.转座子Tn917在短小芽孢杆菌中的转座作用[J].微生物学报,1992,32(4):305-307.
    111.黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展[J].浙江农业科学,2005,3:213-215.
    112.胡江春,薛德林,马成新等.植物根际促生菌(PGPR)的研究与应用前景[J].应用生态学报,2004,15(10):1963-1966.
    113.罗楚平,陈志谊,刘永锋等.转座子诱变生防枯草芽胞杆菌B-916及抗真菌活性相关基因的克隆[J].农业生物技术学报,2009,17(4):728-734.
    114.李明磊.Mariner转座子体内随机突变苏云金芽胞杆菌的研究[D].武汉:华中农业大学,2009.
    115.年洪娟,陈丽梅,李昆志.Tn5转座突变技术在革兰氏阴性细菌分子遗传研究中的应用[J].中国生物工程杂志,2009,29(12):114-118.
    116.齐勇,黄玉杰,李茹美等.巨大芽孢杆菌Bacillus megaterium1301的转座诱变[J].山东农业大学学报(自然科学版),2008,39(3):407-412.
    117.孙会刚,蒋继志,李社增等.生防细菌NCD2突变体构建及抑菌功能基因的防病作用[J].棉花学报,2006,18(3):131-134.
    118.王玉飞,王恒棵,袁静等.转座子Tn917诱变的炭疽杆菌芽孢形成缺陷株的筛选[J].生物技术通讯,2006,17(3):305-307.
    119.杨海君,谭周进,肖启明等.假单胞菌的生物防治作用研究[J].中国生态农业学报,2004,12(3):158-161.
    120.余健秀,庞义.转座子Tn917及其应用[J].微生物学通报,1998,25(4):239-241.
    121.张卉,王小珂,马世俊.转座元件mariner [J].遗传,2004,26(5):756-762.
    122.张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展[J].生物学杂志,2007,24(3):9-11.
    123.张霞,唐文华,张力群.枯草芽孢杆菌B931防治植物病害和促进植物生长的作用[J].作物学报,2007,33(2):236-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700