“高原夏菜”剩余物资源状况及其还田效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔬菜废弃物作为一种特殊的秸秆资源,含有大量的有机物及丰富的营养物质,将其通过综合利用作为肥料返还农田,能够改良土壤,培肥地力,是农业生产重要的有机肥源之一。论文针对榆中县高原夏菜发展迅速,大量蔬菜剩余物资源不能有效利用,根据目前我国循环农业发展趋势与科技方向,因地制宜地充分利用这种特殊秸秆资源作为肥料,使其利用效率最大化,以实现生态的良性循环和农业的可持续发展。本研究采用田间试验和室内试验相结合的方法,探明高原夏菜剩余物资源状况及其还田效应,以期了解蔬菜废弃物还田后分解周期、土壤养分变化以及化肥减量化施用,为蔬菜废弃物直接还田提供理论依据。主要结果表明:
     (1)调查显示,蔬菜种植过程中,随着品种的差异会产生32~66%的剩余物,娃娃菜最多,达65.6%,芹菜最小,为32.1%,其中干物质含钾4~12%,含氮2.7-4.5%,含磷0.16~1.65%。丢弃时不仅浪费资源,而且污染环境;蔬菜收获后11月初到来年4月初,农田休闲,蔬菜废弃叶还田成为可能。
     (2)2010年9月14日到来年3月10日的大田分解试验表明,还田初期,新鲜蔬菜废弃物分解迅速,重残留率的指数分解模型曲线拟合效果较好(R2为0.49~0.71),可知新鲜芹菜废弃物还田后经过31-57天其50%干物质被分解,新鲜花椰菜废弃物还田后经过6-12天其50%干物质被分解,同时发现对数拟合结果优于指数拟合。
     (3)无机氮与蔬菜废弃物耦合试验结果表明,和对照(CK)相比,蔬菜废弃物添加土壤肥力显著增加,土壤有机质、全氮、速效磷、速效钾分别是对照下的1.28-1.39倍、1.20-1.46倍、1.36-1.82倍、1.81-2.60倍,pH值显著降低。
     各氮处理下土壤净累积氮矿化量是对照(CK)的4-5倍,N1水平下土壤净累积氮矿化量显著高于其它氮水平。随甘蓝废弃叶添加量的增加,土壤净累积氮矿化量是CK下的3-5倍不等,且B2添加量下土壤净累积氮矿化量显著高于B1和B3的。统计分析表明,氮处理和甘蓝废弃叶添加量之间的交互效应不显著(P=0.275),废弃菜叶的添加是影响氮矿化的主要因素(Eta2=0.16),而供氮水平为次要因素(Eta2=0.07)。B1添加量下,培养前期(0-20天)土壤净累计矿化量逐渐升高,后期保持稳定水平,但B2和B3添加量下,培养前期(30天)呈现矿化、固持、再矿化现象,后期逐渐升高。氮矿化速率说明,甘蓝后氮素矿化主要发生在前30天;对培养期间土壤净累积氮矿化量随时间变化作了一级动力方程模拟,拟合效果良好(R2从0.62到0.89)。
     (4)蔬菜废弃物直接还田试验结果显示,和对照(CK)相比,蔬菜废弃叶直接还田能显著降低田间速效氮,对不同土层来说,蔬菜废弃物直接还田可以降低下层土壤速效氮,相对减小氮淋失风险;甘蓝产量表明蔬菜废弃物直接还田(还田量为37500kg·ha-1)时,常规磷肥减施600kg·ha-1,不施钾肥(常规用量为375kg·ha-1可以稳产,同时可知,本试验中蔬菜废弃物还田可以减少农家肥用量。
     (5)本研究结果表明,蔬菜废弃物还田具有可行性,不仅快捷处理了废弃菜叶,增加了土壤养分含量,可使氮肥用量减半,替代钾肥和农家肥用量,而且减少了环境污染。大田试验表明,菜地土壤速效氮和速效钾淋失风险较大,蔬菜废弃叶还田时应适当增加C/N比较高的秸秆以减少氮素损失风险。田间管理应根据实际需要确定蔬菜废弃叶还田时间及肥料氮素施用量。
The disposal of vegetable waste in the process of vegetable planting is a problem. Our research is based on vegetable waste cycle agriculture and main object is reduce the use of fertilizer. Laboratory incubation experiment and field experiment of vegetables waste of plateau summer vegetable were conducted in Lanzhou City in order to understand the decomposition cycle of vegetable waste and nutrients change in soil and fertilizer reduction after applied vegetable waste, provide a basis theory for vegetable waste return to field. The results showed as follows:
     (1) Large amounts of waste leaves was produced through vegetable growing, and waste leaves not only waste resources, but also pollute the environment as which contain nitrogen, phosphorus, and other nutrients, especially potassium. Vegetable waste return field become possible, because of farmland leisure during vegetable harvested in October until early April next year.
     (2) The result of decomposition experiment from mid-September to mid-March show that celery decompose more rapidly than cauliflower waste. The decomposition pattern which was characterized by using an exponential regression equation fit well except for H3(R2=0.49-0.71), and predict the half of celery and cauliflower waste dry matter decomposed need31-57and6-12days. Luckily, we noticed that logarithmic equation is better than the exponential equation.
     (3) Comparing with CK, soil fertility increased significantly when vegetable waste is added. Soil organic matter, total nitrogen, available phosphorus and potassium were1.28to1.39times,1.20to1.46times,1.36to1.82times,2.60-1.81times higher than the CK, respectively. pH decreased significantly.
     The result showed that the net accumulated nitrogen mineralization in amended soil under inorganic nitrogen supply level was4-5times higher than the CK, moreover, the net accumulated N mineralization under N1level was significantly higher than under other nitrogen levels. Net accumulated nitrogen mineralization in amended soil with wasted cabbage leaves was3-5times higher than the CK, and the net accumulated nitrogen mineralization under B2treatment was significantly higher than that under Bland B3treatments. No significant interactive effect was found (.P=0.275) between the inorganic nitrogen level and the addition of wasted cabbage leaves by statistical analysis. The addition of wasted cabbage leaves influence nitrogen mineralization in amended soil was the dominated factor(Eta2=0.16), while the inorganic nitrogen supply level was the secondary (Eta2=0.07). In the early period(0-20d) of incubation the net accumulated nitrogen mineralization gradually increased under B1treatment, and then maintained a steady tendency in the later period of incubation. But nitrogen mineralization, immobilization and re-mineralization occurred in the early period of incubation (30d) and the net accumulated nitrogen mineralization increased gradually in the later period of incubation under B2and B3treatments. The result showed nitrogen mineralization mainly occurred in the first30days of incubation according to mineralization rate after wasted cabbage leaves added. In addition, during the period of incubation, a first-order kinetics equation of net accumulated nitrogen mineralization in amended soil fits well with the extension of incubation days (R2=0.62-0.89).
     (4) Available N in lower layer and different fields decreased and vegetable yield kept steady after applying half P(600kg-ha-1) and no K(375kg-ha-1) compare with tradition and farmyard manure reduced when incorporate vegetable waste.
     (5) In summary, Vegetable waste return field not only making use of waste leaves efficiently, but also increasing the soil nutrient content, moreover, that can reduce environmental pollution based on the above analysis.
引文
[1]鲍士旦.土壤农化分析[M].北京:中国农业出版社.2000.
    [2]陈金泉,赵忠等.不同类型沙棘人工林对土壤氮矿化速率的影响[J].土壤通报.2011,42(3):616-621.
    [3]常雅君.秦岭西部针叶林凋落叶分解及其对模拟氮沉降的响应[硕士论文].兰州:兰州大学.2009.
    [4]陈兴丽,周建斌等.不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响[J].应用生态学报.2009,20(2):314-319.
    [5]陈富强,张玉龙等.不同剂量秸秆还田的保墒效果及其对玉米产量的影响[J].水土保持通报.2011,31(2):30-33.
    [6]陈琦,尹粉粉等.秦岭西部不同发育阶段油松和日本落叶松人工林土壤酶活性变化和分布特征.生态与农村环境学报.2010,26(5):466-471.
    [7]刁治民,高晓杰等.畜禽粪便微生物处理机资源化工程[J].青海草业.2004,13(1):13-20.
    [8]丁雪,何红波等.作物残体去向与利用及对土壤氮素转化的影响[J].土壤通报.2008,36(7):1454-1461.
    [9]丁雪丽,何红波等.不同供氮水平对玉米秸秆降解初期碳素矿化及微生物量的影响[J].土壤通报.2008,39(4):784-788
    [10]董占荣.猪粪中的重金属对菜园土壤和蔬菜重金属积累的影响[硕士论文].浙江:浙江大学.2006.
    [11]高飞,贾志宽等.秸秆不同还田量对宁南早区土壤水分、玉米生长及光合特性的影响[J].生态学报.2011,31(3):0777-0783
    [12]高砚芳,段增强等.宜兴市温室土壤理化性质的调查和分析[J].土壤,2007,39(6):968-972.
    [13]洪春来,魏幼璋等.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].2003,29(6):627-633.
    [14]侯永侠,周宝利等.不同作物秸秆对辣椒的化感效应[J].生态学杂志.2009,28(6):1107-1111.
    [15]黄昌勇.土壤学[M].北京:中国农业出版社.2009.
    [16]侯志研,杜桂娟等.玉米秸秆还田培肥效果的研究[J].杂粮作物.2004,24(3):166-167.
    [17]葛立立,王康君等.秸秆还田对土壤培肥与水稻产量和米质的影响[J].中国农学通报.2012,28(12):1-6.
    [18]金雪霞,范晓晖等.菜地土氮素的主要转化过程及其损失[J].土壤.2005,37(5):492-499.
    [19]巨晓棠,边秀举等.旱地土壤氮素矿化参数与氮素形态的关系[J].植物营养与肥料学报.2000,6(3):251-259.
    [20]匡石滋,田世尧等.香蕉间作模式和香蕉茎秆堆沤还田对土壤酶活性的影响[J].中国生态农业学报.2010,18(3):617-621.
    [21]刘光德,陈玉成等.乡村清洁工程的实践及其对新农村建设的战略推动[J].2006年中国农学会学术年会论文集.2006.163-167.
    [22]刘莉,杨伟.甘肃省蔬菜产业现状与发展对策[J].甘肃农业科技.2009,(9):34-37.
    [23]李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版,2000.
    [24]刘文志.作物秸秆还田的综合评价[J].现代化农业.2008,(2):17-19.
    [25]廖中建,黎理.土壤氮素矿化研究进展[J].湖南农业科学.2007,(1):934-942.
    [26]刘骅,林英华等.长期配施秸秆对灰漠土质量的影响[J].生态环境.2007,16(5):1492-1497.
    [27]李彦斌,刘建国等.秸秆还田对棉花生长的化感效应[J].生态学报.2009,29(9):4942-4948.
    [28]娄燕宏,诸葛玉平等.外源有机物料对土壤氮矿化的影响[J].土壤通报.2009,4(2):315-320.
    [29]李科江,张素芳等.半干旱区长期施肥对作物产量和土壤肥力的影响[J].植物营养与肥料学报.1999,5(1):21-25.
    [30]牛俊玲,李彦明等.固体有机废弃物肥料化[M].北京,化学工业出版社:2010.
    [31]彭靖.对我国农业废弃物资源化利用的思考[J].生态环境学报.2009,18(2):794-798.
    [32]彭佩钦,仇少君等.N15交叉标记有机与无机肥料氮的转化与残留[J].生态学报.2011,31(3):0858-0865.
    [33]庞军柱,乔玉辉等.蚯蚓对麦秸分解速率的影响及其对氮矿化的贡献[J].生态学报,2009,(2):1017-1023.
    [34]丘华昌,刘鹏程等.稻草还田与土壤有机无机复合状况[J].植物营养与肥料学报.1998,4(1):92-96.
    [35]任万军,刘代银等.免耕高留茬抛秧对稻田土壤肥力和微生物群落的影响[J].应用生态学报.2009,20(4):817-822.
    [36]苏伟,鲁剑巍等.稻草还田对油菜生长、土壤温度及湿度的影响[J].植物营养与肥料学报.2011,17(2):366-373.
    [37]师宏魁.玉米秸秆整株还田秸秆分解速率及还田效应[硕士论文].北京:中国农业大学.2003.
    [38]孙星,刘勤等.长期秸秆还田对剖面土壤肥力质量的影响[J].中国生态农业学报.2008,16(3):587-592.
    [39]苏秋红.规模化养猪场饲料和猪粪中铜含量分析及高铜猪粪对土壤的影响[硕士论文].山东:山东农业大学.2007.
    [40]孙永明,李国学等.中国农业废弃物资源化现状与发展战略[J].农业工程学报.2005,21(8):169-173.
    [41]孙振钧,袁振宏等.农业废弃物资源化与农村生物质资源战略研究报告[J].国家中长期科学和技术发展战略研究.2004.
    [42]沈裕琥,黄相国等.秸秆覆盖的农田效应[J].干旱地区农业研究.1998,(1):45-50.
    [43]石磊,赵由才等.我国农作物秸秆的综合利用技术进展[J].中国沼气.2005,23(2):11-15.
    [44]谭德水,江丽华等.南四湖过水区不同施肥模式下农田养分径流特征初步研究[J].植物营养与肥料学报.2011,17(2):464-471.
    [45]田雁飞,马友华等.秸秆肥料化生产的现状、问题及发展前景[J].中国农学通报.2010,26(16):158-163.
    [46]田静,郭景恒等.土地利用方式对土壤溶解性有机碳组成的影响[J].土壤学报.2011,48(2):338-346.
    [47]谭周进.稻草还田与环保[J].湖南农业.2003,(5):15.
    [48]武光朋.蔬菜废弃物的开发利用研究[硕士论文].兰州:西北师范大学.2007.
    [49]王激清,张宝英等.我国作物秸秆综合利用现状及问题分析[J].江西农业学报.2008,20(8):126-128.
    [50]吴涌泉,屈明等.秸秆覆盖对土壤理化性状、微生物及生态环境的影响[J].中国农学通报.2009,25(14):263-268.
    [51]武志杰,张海军等.玉米秸秆还田培肥土壤的效果[J].应用生态学报.2002,13(5):539-542.
    [52]汪军,王德建等.秸秆还田下氮肥用量对稻田养分淋洗的影响[J].中国生态农业学报.2010,18(2):316-321.
    [53]王思萍.大棚栽培对土壤盐渍化的影响[J].安徽农业科学.2007,35(10):2950-2951.
    [54]吴涌泉,屈明等.秸秆覆盖对土壤理化性状、微生物及生态环境的影响[J].中国农学通报.2009,25(14):263-268.
    [55]王激清,张宝英等.我国作物秸秆综合利用现状及问题分析[J].江西农业学报.2008,20(8):126-128.
    [56]汪寅虎.长期定位条件下秸秆还田的综合效应研究[J].土壤通报,1994,25(7):53-56.
    [57]吴婕,朱钟麟等.秸秆覆盖还田对土壤理化性质及作物产量的影响[J].西南农业学报,2006,31(2):92-95.
    [58]肖嫩群,张洪霞等.紫云英还田量对烟田土壤微生物及酶的影响[J].中国生态农业学报.2010,18(4):711-715.
    [59]徐国伟,段骅等.麦秸还田对土壤理化性质及酶活性的影响[J].中国农业科学.2009,42(3):934-942.
    [60]杨富民,卢志强等.兰州高原夏菜剩余物资源化利用现状与对策[J].甘肃食品.2010,4:27-30.
    [61]闫翠萍,裴雪霞等.秸秆还田与施氮对冬小麦生长发育及水肥利用率的影响[J].中国生态农业学报.2011,19(2):271-275.
    [62]张玉华,刘东生等.农业废弃物资源化利用模式研究[J].第二届全国农业环境科学学术研讨会论文集.2007.
    [63]朱立志,邱君.农业废弃物循环利用[J].污染减排.2009,4(18):8-10.
    [64]张素梅.我省集约化养殖环境污染与控制对策[J].河南畜牧兽医.2000,21(9):9-10.
    [65]张树清,张夫道等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报.2005,11(6):822-829.
    [66]朱春茂,李志芳等.甜玉米/白三叶草秸秆还田的碳氮矿化研究[J].中国生态农业学报.2009,17(3):423-428.
    [67]周才平,欧阳华.长白山两种主要林型下土壤氮矿化速率与温度的关系[J].生态学报.2001,21(9):1469-1473.
    [68]张成娥,王栓全.作物秸秆腐解过程中土壤微生物量的研究[J].水土保持学报.2000,14(3):96-99.
    [69]朱妹青.京郊作物秸秆的利用现状[J].北京节能.1995,(6):29-30.
    [70]郑洁,张继宗等.洱海流域农田土壤氮素的矿化及其影响因素[J].中国环境科学.2010,30(Suppl.):35-40.
    [71]赵满兴,周建斌等.有机肥中可溶性有机碳、氮含量及其特性[J].生态学报.2007,27(1):397-403.
    [72]张甲,陶澍.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报.2000,31(4):174-177.
    [73]朱利群,张大伟等.连续秸秆还田与耕作方式轮换对稻麦轮作田土壤理化性状变化及水稻产量构成的影响[J].土壤通报,2011,42(1):81-85.
    [74]朱泽亮,陶胜.钾肥和稻草对水稻生长及产量的影响[J].土壤.1992,24(6):310-311.
    [75]周江明,徐大连等.稻草还田综合效益研究[J].中国农学通报,2002,18(4):7-10.
    [76]M.Alexander.土壤微生物学导论[M].广西农学院农业微生物学教研组译.北京:科学出版社.1977:139-206.
    [77]Aparicio V., Costa J.L., et al. Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina [J]. Agricultural Water Management.2008, (12):1361-1372.
    [78]Abril A., Baleani D., et al. Effect of wheat crop fertilization on nitrogen dynamics and balance in the Humid Pampas [J]. Argentina, Agric. Ecosyst. Environ.2007, (2):171-176.
    [79]Aviva H., Larissa K., et al. Emine Erman Karac.Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover [J]. Soil Biology & Biochemistry.2004, (36):255-266.
    [80]Hideno A., Inoue H., et al. Combination of hot compressed water treatment and wet disk milling for high sugar recovery yield in enzymatic hydrolysis of rice straw [J]. Bioresource Technology.2012, (104):743-748.
    [81]Bottex B., Dome J., et al. Risk-benefit health assessment of food-food fortification and nitrate in vegetables [J]. Trends in food science&technology.2008, (1):0924-2244.
    [82]Hoffmann B., Muller T., et al. Carbon dioxide production and oxygen consumption during the early decomposition of different litter types over a range of temperatures in soil-inoculated quartz sand [J]. J. Plant Nutr. Soil Sci.2010, (173):217-223.
    [83]Chaves B., Neve S.D., et al. Screening organic biological wastes for their potential to manipulate the N release from N-rich vegetable crop residues in soil [J]. Agriculture, Ecosystems and Environment.2005, (111):81-92.
    [84]Rahn C.R., Bending G.D., et al. Management of N mineralization from crop residues of high N content using amendment materials of varying quality [J]. Soil Use and Management.2003, 9(1):193-200.
    [85]Rahn C.R., Lillywhite R.D. A study of the quality factors affecting the short-term decomposition of field vegetable residues [J].Journal of the Science of Food and Agriculture. 2001, (82):19-26.
    [86]Chaves B., Neve S.D., et al. Screening organic biological wastes for their potential to manipulate the N release from N-rich vegetable crop residues in soil [J]. Agriculture, Ecosystems and Environment.2005, (111):81-92.
    [87]Tu C., Jean B. R., et al. Soil microbial biomass and activity in organic tomato farming systems:Effects of organic inputs and straw mulching [J]. Soil Biology & Biochemistry. 2006, (38):247-255.
    [88]Curtin Denis, C.A. Campbell. Mineralization Nitrogen [M]. Application.2006
    [89]Zeng D.H., Mao R., et al. Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China:A laboratory study [J]. Applied Soil Ecology.2010(44):133-137.
    [90]David F, Henrique R., et al. Nitrogen mineralization and CO2 and N2O emissions in a sandy soil amended with original or acidified pig slurries or with the relative fractions [J]. Biol Fertil Soils.2010, (46):383-391.
    [91]Jensen E.S.Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues [J]. Biol Fertil Soils.1997, (24):39-44.
    [92]Hansen E.M., Munkholm L.J., et al. Can non-inversion tillage and straw retainment reduce N leaching in cereal-based crop rotations [J]? Soil & Tillage Research.2010, (109):1-8.
    [93]Eriksen J, Sorensen P, et al. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil [J]. J Environ Qual.2008, (37):280-286.
    [94]Fan A.M., Steinberg V.E. Health implications of nitrate and nitrite in drinking water:an update on methemoglobinemia occurrence and reproductive and developmental toxicity [J]. Regul Toxicol Pharm.1996, (23):35-43.
    [95]Gentile R, Vanlauwe B, et al. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya[J].Agriculture,Ecosystems and Environment.2009, (131):308-314.
    [96]Gillian A, Harry D. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils [J]. Soil Biology and Biochemistry.2001, (33):943-951.
    [97]Huang Y., Zou J.W., Zheng X.H., et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J].Soil Biology & Biochemistry.2004, (36): 973-981.
    [98]Jensen E.S. Nitrogen immobilization and mineralization during initial decomposition of 15N-1abelled pea and barley residues [J].Biol Fertil Soils.1997, (24):39-44.
    [99]Jin K., Sleutel S., et al. Nitrogen and carbon mineralization of surface-applied and incorporated winter wheat and peanut residues [J]. Biol Fertil Soils.2008, (44):661-665.
    [100]Jin K., Steven S., et al. Nitrogen and carbon mineralization of surface-appliedand incorporated winter wheat and peanut residues [J]. Biol Fertil Soils.2008, (44):661-665.
    [101]Kraft GJ, Stites W. Nitrate impacts on groundwater from irrigated-vegetable systems in a humid north-central US sand plain [J]. Agriculture, Ecosystems&Environment.2003, (1): 63-74.
    [102]Kang H.K., Doman K. Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment [J]. Bioprocess Biosyst Eng.2012, (35):43-49.
    [103]Kaewpradit, Toomsan B., et al. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency [J]. Field Crops Research.2009, (110):130-138.
    [104]Leif N., Carmen F., et al. Matthias Fink.Effect of winter catch crops on nitrogen surplus in intensive vegetable crop rotations [J]. Nutr Cycl Agroecosyst.2011, (91):327-337.
    [105]Li L.J., Zeng D.H., et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China [J]. Journal of Arid Environments.2011, (75):787-792.
    [106]Li Z.P., Liu M., et al. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China [J]. Soil & Tillage Research.2010, (106):268-274.
    [107]Miller M.N., Zebarth B.J., et al. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil [J]. Soil Biology & Biochemistry. 2008, (40):2553-2562
    [108]Khalil M.I., Inubushi K. Possibilities to reduce rice straw-induced global warming potential of a sandy paddy soil by combining hydrological manipulations and urea-N fertilizations [J]. Soil Biology & Biochemistry.2007, (39):2675-2681.
    [109]Malhi S.S., Nyborg M., et al. Long-term tillage, straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil [J]. Nutr Cycl Agroecosyst.2011, (90):1-20.
    [110]Hu S.J., Wan C.X., et al. Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw [J]. Bioresource Technology.2012, (103):227-233.
    [111]Marschner P., Umar S., et al. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue [J].Soil Biology & Biochemistry.2011, (43):445-451.
    [112]Cayuela M.L., Sinicco T., et al. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil [J]. Applied Soil Ecology.2009, (41):118-127.
    [113]Muhammad W., Vaughan S.M., et al. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol [J].Biol Fertil Soils.2011, (47):15-23.
    [114]Nils R., Jens D., et al. Microbial use and decomposition of maize leaf straw incubated in packed soil columns at different depths [J]. European Journal of Soil Biology.2010, (46):27-33
    [115]Nie J., Zhou J.M., et al.Effect of Long-Term Rice Straw Return on Soil Glomalin, Carbon and Nitrogen [J]. Pedosphere.2007, (3):295-302.
    [116]Olson J.S. Energy storage and the balance of Producers and decomposer in ecological systems [J]. Eeology.1963, (2):322-331.
    [117]Parr J.F., Papendick R.I. Factors affecting the decomposition of crop residues by microorganisms. In:Oschwald WR (ed) Crop residue management systems [J]. American Society of Agronomy, Madison, Wis, pp.1978, (31):101-129.
    [118]Peng X.W., Chen H.Z. Hemicellulose sugar recovery from steam-exploded wheat straw for microbial oil production [J]. Process Biochemistry.2012, (47):209-215.
    [119]Parva Z., Stefanie H., et al. Decomposition of 15N-labelled maize leaves in soil affected by endogeic geophagous Aporrectodea caliginosa [J]. Soil Biology & Biochemistry.2010, (42):276-282.
    [120]Petra M., Shariah U., et al. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue [J]. Soil Biology & Biochemistry.2011, (43):445-451.
    [121]Qian, P., Schoenau, J. J. Availability of nitrogen in solid manure amendments with different C:N ratios [J]. Can. J. Soil. Sci.2002, (82):219-225.
    [122]Gentile R., Vanlauwe B., et al. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya [J]. Agriculture, Ecosystems and Environment.2009, (131):308-314.
    [123]Gentile R., Vanlauwe B., et al. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations [J].Soil Biology & Biochemistry.2008, (40):2375-2384.
    [124]Dalal R.C., Gibson I.R., et al. Nitrous oxide emission from feedlot manure and green waste compost applied to Vertisols [J]. Biol Fertil Soils.2009, (45):809-819.
    [125]Sommer R., Ryan J., et al. Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in dryland barley/wheat-vetch rotation [J]. Soil & Tillage Research.2011,(115):39-46.
    [126]Dalal R.C., Gibson I.R., et al. Nitrous oxide emission from feedlot manure and green waste compost applied to Vertisols [J]. Biol Fertil Soils.2009, (45):809-819.
    [127]Russow R., Spott O., et al. Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments [J]. Soil Biology & Biochemistry.2008, (40):380-391.
    [128]Radersma S., Smit A.L. Assessing denitrification and N leaching in a field with organic amendments [J]. Journal of Life Sciences.2011, (58):21-29.
    [129]Smith V.H., Tilman G.D., et al. Eutrophication:impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems [J]. Environ Pollut.1999, (100):179-196.
    [130]Sequaris J. M., Herbst M., et al. Simulating decomposition of 14C-labelled fresh organic matter in bulk soil and soil particle fractions at various temperatures and moisture contents [J]. European Journal of Soil Science.2010, (61):940-949.
    [131]Stevens R.J., Laughlin R.J., et al. Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries [J]. J Agri Sci Cambridge.1989, (113):389-395.
    [132]Scrensen L.H. Carbon-nitrogen relationships during the humification of cellulose in soil containing different amounts of clay [J].Soil Biol Biochem.1981 (13):313-321.
    [133]Schwendener, C.M., Lehmann, J., et al. Nitrogen transfer between high- and low-quality leaves on a nutrient-poor oxisol determined by 15N enrichment [J]. Soil Biol. Biochem.2005, (37):787-794.
    [134]Sorensen, J.N., Effect of catch crops on the content of soil mineral nitrogen before and after winter leaching [J]. Plant Nutr.Soil Sci.1992, (155):61-66.
    [135]Sophea P., Maria O., et al. Use of phytotoxic rice crop residues for weed management [J]. Weed Biology and Management.2010, (10):176-184.
    [136]Terry P., Bolger-J.F., et al. Comparison of nitrogen mineralisation patterns from root residues of Trifolium subterraneum and Medicago sativa [J]. Biol Fertil Soils.2003, (38):296-300.
    [137]Tawfik, Salemb A. The effect of organic loading rate on bio-hydrogen production from pre-treated rice straw waste via mesophilic up-flow anaerobic reactor [J]. Bioresource Technology.2012, (107):186-190.
    [138]Vitousek P.M., Aber J.D., et al. Human alteration of the global nitrogen cycle:sources and consequences [J]. Ecol Appl.1997, (7):737-750.
    [139]Wisal M., Vaughan S.M., et al. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol [J]. Biol Fertil Soils.2011, (47):15-23.
    [140]Kaewpradit W., Toomsan B., et al. Regulating mineral N release and greenhouse gas emissions by mixing groundnut residues and rice straw under field conditions [J]. European Journal of Soil Science.2008, (59):640-652.
    [141]Kaewpradit W., Toomsan B., et al. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency [J]. Field Crops Research.2009, (110):130-138.
    [142]Wei Y.P., Chen D.L., et al. Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa, Inner Mongolia, China [J]. Agricultural Water Management.2009, (7):1114-1119.
    [143]Wang X.H., Huang J.J., et al. Leaf litter decomposition of common trees in Titong [J]. Acta Phytoecologia sinica.2004, (4):457-467.
    [144]Sakala W.D., George C., et al. Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization [J]. Soil Biology & Biochemistry.2000, (32):679-688.
    [145]Liang Y.N, Tang T.Y, et al. Lipid production from sweet sorghum bagasse through yeast fermentation [J]. Renewable Energy.2012, (40):130-136.
    [146]Yao H., Zou J.W., et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios [J]. Soil Biology & Biochemistry.2004, (36):973-981.
    [147]Zhang G.S., Chan K.Y., et al. Huang.Effect of straw and plastic film management under contrasting tillage practices on the physical properties of an erodible loess soil [J]. Soil & Tillage Research.2008, (98):113-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700