螯合剂在微电子工艺中减少硅表面重金属污染的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超大规模集成电路技术特征尺寸的减小和集成度的迅速提高,金属杂质的危害就显得特别突出。硅衬底表面金属沾污浓度的要求越来越低,而金属的沾污几乎不可避免。
     本论文从微电子工艺中不可避免的硅与各种水溶液的接触和反应入手,以螯合剂的方法从两个方面研究如何尽量减少硅衬底表面重金属的污染:一方面通过在水溶液中加入适当的螯合剂尽量减少引起金属污染的机会,另一方面对于已经存在金属污染的情况,通过在清洗液中加入适当的螯合剂尽可能地消除和减少金属污染。
     本论文首先测定了河北工业大学刘玉岭教授发明的FA/O螯合剂与Cu(II)、Fe(III)所形成螯合物的稳定常数。测定结果显示,FA/O螯合剂至少具有十个可以形成配位键的配位原子;FA/O螯合剂更适合在碱性pH>10的条件下使用,在pH>12更好。FA/O螯合剂与Cu(II)、Fe(III)所形成螯合物的稳定常数logK分别为9.69和18.7。
     本论文还以金属铜为例测定了FA/O螯合剂以及其他几种螯合剂在微电子DHF清洗液、RCA清洗液以及硅衬底抛光液中减少铜在硅晶片表面的沉积和去除硅晶片表面铜污染的作用。硅晶片表面污染的铜的浓度通过石墨炉原子吸收技术结合液滴夹心刻蚀的金属富集技术测得。
     对碱性介质中螯合剂作用效果的研究结果显示,FA/O螯合剂在碱性清洗液(NH4OH/ H2O2 / H2O,SC1)和碱性硅溶胶抛光液中应用效果突出,比传统螯合剂EDTA减少金属铜在硅晶片表面沉积和去除硅晶片表面铜污染的效果要好,而且FA/O不含钠离子,易溶于水,使用更方便。FA/O螯合剂替代SC1清洗液中NH4OH,一步清洗即可去除硅晶片表面Cu污染达到微电子工艺要求。
     本论文还研究了几种酸性螯合剂在DHF清洗液和酸性硅溶胶抛光液中减少铜在硅晶片表面沉积的情况,其中将螯合剂用于DHF清洗液中减少金属在硅晶片表面沉积未见文献报道,本文是首次。研究表明在DHF清洗液中加入不同螯合剂都可以减少硅片表面金属污染,其中膦酸类螯合剂减少金属铜在硅晶片表面沉积效果较好;酸性硅溶胶抛光液中PAA螯合剂的作用效果较好。
     本论文还对不同螯合剂减少硅晶片表面金属铜污染的作用原理进行了理论分析。微电子工艺溶液中加入的螯合剂不仅通过化学反应减少了溶液中的自由金属离子,而且螯合剂可以吸附在硅片表面,与金属离子竞争吸附,从而使得硅晶片表面的金属铜污染大大减少。研究结果表明,在螯合剂分子较大、极性较强时,螯合剂优先吸附在硅片表面,吸附性质对硅片表面铜污染的减少甚至起主导作用。
Along with the characteristic size reducing and the integration rapidly enhancement in ULSI,the metal impurities harm appears specially prominently. The request for metal tarnish on silicon substrate surface will be slower and slower, but the metal tarnish is nearly inevitable.
     This paper proceeded with the inevitable contact and reaction betwwen silicon and some kinds of aqueous solution used in microelectronic craft. The method here is adding chelating agent in solutions. On the one hand, it can reduce metal depositon opportunity as far as possible; on the other hand it can eliminate the already metal pollution as far as possible.
     The stability constants of Cu(II) and Fe (III) with the FA/O chelating agent were first determined, which was invented by Professor Liu Yuling in Hebei university of technology. The results showed that the FA/O chelating agent has at least ten coordinating atoms; the FA/O chelating agent suits for using in alkaline solution with pH >10 prefentially pH >12. The chelate stability constants logK of Cu(II) and Fe (III) with FA/O are 9.69 and 18.7 respectively.
     With copper as the example, the reducing effect of Cu contamination was also determined in this paper for FA/O chelating agent and other kinds of chelating agents in DHF cleaning solution, the RCA cleaning solution as well as the polishing slurry of silicon substrate. The copper concentration on silicon surface was determined by GFAAS joint with one-drop sandwich etching method.
     In the alkaline SC1 cleaning solution (NH4OH/ H2O2/H2O) and the alkaline polishing slurry, the results indicated that FA/O was better than the traditional chelating agent EDTA with reduction of copper pollution on silicon wafer surface. Moreover, compared with EDTA, FA/O has other advantages: not containing Na+, easily soluble in water, convenient to use and so on.When NH4OH in SC1 cleaning solution was substituted by FA/O, copper concentration on silicon wafer could meet the request of microelectronic process only by one step clean.
     The Cu contamination reducing effects of several kinds of acidic chelating agent were also studied in DHF cleaning solution and the acidic polishing slurry. Adding chelating agent in DHF cleaning solution to reduce metal deposition on the silicon surface was first proposed by author. The data showed that phosphonic acid chelating agent DTPMP was better in DHF solution and carboxylic acid chelating agent PAA was better in acidic polishing slurry.
     The metal pollution reducing mechanism of different chelating agent was also analysized in this paper. The effect of chelating agents on reducing Cu contamination on silicon wafer surface was carried out by two ways: reducing free metallic ions in the solution by coordinating equillirm and reducing adsorption opportunities on silicon surface of metal ions by competitive adsorption. When the chelating agent was large in polarity and large in size, it would preferentially adsorped on silicon surface and the adsorption way could be the leading role.
引文
[1] Deleonibus S.Physical and technological limitations of NanoCMOS devices to the end of the roadmap and beyond,EPJ Applied Physics, 2006, 36(3): 197-214
    [2] Lan Hongbo, Ding Yucheng, Liu Hongzhong et al. Review of the wafer stage for nanoimprint lithography, Microelectronic Engineering, 2007, 84(4): 684-688
    [3] Cahill Laurence W., Clapp Terry V.The convergence of photonics and microelectronics, Proceedings of SPIE - The International Society for Optical Engineering, Silicon Photonics, 2006, 6125: 612504
    [4] www.cctv.com, 2006 年 03 月 16 日, 国民经济和社会发展第十一个五年规划纲要
    [5] 屠海令. 硅及硅基半导体材料中杂质缺陷和表面的研究, 中国工程科学, 2000, 2(1): 7-17
    [6] 刘玉岭, 檀柏梅, 张楷亮编著. 微电子技术工程, 北京: 电子工业出版社, 2004
    [7] T. Hoshino, M. Hata, S. Neya, et al. Adhesion mechanism of metal impurities on Si wafers in alkali solution [J]. Journal of the Electrochemical Society, 2004, 151(9): G590-G597
    [8]方志明. 硅基集成电路的发展及其面临的挑战, 合肥工业大学学报(自然科学版), 2004, 27(11): 1485-1488
    [9]罗俊一, 沈益军, 李刚. 表面光电压法研究抛光硅片制造中铁沾污的来源,材料科学与工程,2001, 19(1):70-73
    [10]刘玉岭, 檀柏梅, 张楷亮编著. 超大规模集成电路衬底材料性能及加工测试技术工程, 北京: 冶金工业出版社, 2002
    [11]马芙蓉, 李雪春, 梁宏. 应用 ICP—AES 表征高剂量氧注入过程中的金属污染, 半导体学报, 2003, 24(8): 813-815
    [12]Jong-Soo Kim, Hiroshi Morita, Geun-Min Choi, et al. Cleaning efficiencies of various chemical solutions for noble metals such as Cu, Ag, and Au on Si wafer surfaces [J].Journal of The Electrochemical Society, 1999, 146: 4281-4289
    [13] Scott A. McHugo, A.C. Thompson, G. Lamble, et al. Metal impurity precipitates in silicon: chemical state and stability [J]. Physica B, 1999, 273-274: 371-374
    [14]吴德馨, 钱鹤, 叶甜春编著. 现代微电子技术, 北京: 化学工业出版社, 2002 年
    [15] 张文杰, 易万兵, 吴瑾. 铝互连线的电迁移问题及超深亚微米技术下的挑战, 物理学报, 2006, 55(10): 5424-5434
    [16]张兴, 黄如, 刘晓彦编著. 微电子学概论, 北京: 北京大学出版社, 2001年
    [17] 胡福增, 陈国荣, 杜永娟编著. 材料表界面. 上海: 华东理工大学出版社, 2001 年
    [18]L. Mouche, F. Tardif, J. Derrien. Particle deposition on silicon wafers during wet processes, J. Electrochem. Soc. 1994, 141: 554
    [19]信达编译. 微电子制造科学与技术计划中的硅片清洗, 微电子学 1995, 25(4): 57-59
    [20]储佳, 马向阳, 杨德仁. 硅片清洗研究进展, 半导体技术, 2001, 26(3): 17-20
    [21] T. Ohmi. Total room tempreature wet cleaning for Si substrate surface. J. Electrochem. Soc. 143, 2957, 1996
    [22] Xiaoge Gregory Zhang. Electrochemistry of silicon and its oxide Kluwer Academic/Plenum Publishers, New York, 2001
    [23] T. Hosoya, Y. Ozaki, K. Hirata. Effects of wet cleaning on Si cntaminated with heavy metals during reactive ion etching, J. Electrochem. Soc., 1985, 132(10): 2436-2439
    [24] A.A. Istratov, H. Hieslmair, E.R.Weber. Iron contamination in silicon technology, Applied Physics A: Materials Science & Processing, 2000, 70: 489–534
    [25] 谢永桂. 提高半导体器件成品率的有效对策, 半导体技术, 1999, 24(2): 47-54
    [26] A.A. Istratov, C. Flink, H. Hieslmair, et al. Intrinsic diffusion coefficient of interstitial copper in silicon, Phys. Rev. Lett., 1998, 81(6): 1243
    [27] E. Weber, H.G. Riotte. Solution of iron in silicon, J. Appl. Phys., 1980, 51(3): 1484-1488
    [28] Hoff A.M., DeBusk D.K., Schanzer R W. COCOS oxide film characterization and monitoring, Proceedings of SPIE - The International Society for Optical Engineering, v 3884, 1999, 207-215
    [29] Gendt S. De, Knotter D.M., Kenis K., et al. Impact of iron contamination and roughness generated in ammonia hydrogen peroxide mixtures (SC1) on 5 nm gate oxides, J. Electrochem. Soc, 1998, 145, 2589-2594
    [30] Schmidt P. F. Contamination-free high temperature treatment of silicon or other materials, J. Electrochem. Soc, 1983, 130 (1): 196-199
    [31] Schmidt P. F. Furnace contamination and its remedies, Solid State Technol, 1983, 26(6): 147-151
    [32] Voigt D.E., Brantley S.L. Inclusions in synthetic quartz, J. Cryst. Growth, 1991, 113(3-4): 527-539
    [33] W. Kern. Evolution of silicon wafer cleaning technology, J. Electrochem. Soc, 137(6): 1887- 1892
    [34] Feichtinger H. Influence of additional gold doping on the Fe solution in silicon, Acta Phys. Austr, 1979, 51: 161
    [35] Borchardt G., Weber E., Wiehl N. Crystallography and morphology properties of Fe nano- structures on faceted α- Al2O3 plane, J. Appl. Phys, 1981, 52: 1603
    [36]蓉佳. 氢等离子体注入之后硅晶片表面的金属污染, 等离子体应用技术快报, 2000, 2: 4-5
    [37]马芙蓉, 李雪春, 梁宏. 应用ICP—AES表征高剂量氧注入过程中的金属污染, 半导体学报, 2003, 24(8): 813-815
    [38] 翟文杰. 摩擦电化学与摩擦电化学研磨抛光研究进展, 摩擦学学报, 2006, 26(1): 92-96
    [39] Lee M. Loewenstein, Paul W. Mertens. Adsorption of metal ions onto hydrophilic silicon surfaces from aqueous solution: effect of pH [J]. J. Electrochem. Soc., 1998, 145: 2841-2846
    [40]Longford Andy. Chip packaging challenges—a roadmap based overview, Microelectronics International, 2005, 22(2): 17-20
    [41] J. Kato, M. V. Tilli. Investigation of the charge observed in thermal oxide films originated from SC-1 precleaning, J. Electrochem. Soc.1992, 139: 1756
    [42] W.B. Henley, L. Jastrzebski, N.F. Haddad: J. Non-Cryst. Solids 187,134 (1995)
    [43] M. Miyazaki, S. Miyazaki, T. Kitamura, T. Aoki, Y. Nakashima,M. Hourai, T. Shigematsu: Jpn. J. Appl.Phys. 34, 409 (1995)
    [44] 竺士炀, 黄宜平, 包宗明. 背面多孔硅对 SIMOX 中铜杂质的吸除作用, 固体电子学研究与进展, 1998, 18(4): 420-424
    [45]Jabloski J, Miyamura Y, Imai M et al. Proc on 6th Inter SOITechnology and Device. the Electrochemical Society. 1994: 94(11): 18
    [46] Delfino M, Jaczynski M, Morgan A E,et al. J. Electrochem Soc. 1987, 134(8): 2027
    [47]lstratov A A.FIink C.Hieslmair H et al 5th JUMRS Intern.Conf 0n Advanced Mater Beijing:1999
    [48] Istratov A A.HedentannH. Seibt M .et a1 J Electroehem Soc.1998.145:3889
    [49]Lin X W, Dipu Pramanik. Future interconnect technologies and copper metallization. Solid state technology, 1998, 41(10): 63-79
    [50]李炳宗. 深亚微米超大规模集成电路多层互连技术新进展, 上海微电子技术与应用, 1997, 4: 2-9
    [51]Wrschka P, Hernandez J, Dehrlein G S et al. Chemiacal Mechanical planarization of copper damascene structures, J. electrochem Soc, 2000, 147(20): 706-712
    [52] 王新. ULSI 铜互连 CMP 相关机理和抛光材料的研究, 河北工业大学博士学位论文, 2003 年
    [53]屠海令. 硅基半导体材料的研发现状与前瞻, www.hlhl.org.cn, 2006-6-4
    [54] 曹宝成,马洪磊,马瑾等. 用含表面活性剂和螯合剂的清洗液清洗硅片的研究,半导体学报,2001,22(9):1227-1229.
    [55] 曹宝成,于新好,马洪磊等. 新型半导体清洗剂的清洗工艺,半导体学报,2002,23(7):776-780.
    [56]曹宝成, 于新好, 马洪磊等. 新型电子工业清洗工艺研究,半导体技术, 2002 年 07 期
    [57]周永溶编著. 半导体材料. 北京: 北京理工大学出版社, 1992 年
    [58]汤艳, 杨德仁, 马向阳等.超大规模集成电路硅片的内吸杂, 材料导报, 2003, 17(5): 73-76
    [59]G. J.Norga, M. Platero, K. A. Black et al. Mechanism of copper deposition on silicon from dilute hydrofluoric acid solution, J. Electrochem. Soc.1997, 144: 2801
    [60]Lim Jong-Min, Jeon Bu-yong, Lee Chongmu. Dry cleaning for metallic contaminants removal as the second cleaning process after the CMP process, Materials Chemistry and Physics, 2001, 70(2): 129-136
    [61] 李薇薇. 微电子器件硅衬底表面污染物去除技术的研究, 河北工业大学硕士学位论文, 2003 年
    [62] 韩恩山, 王焕志, 常亮. 微电子工业中清洗工艺的研究进展, 微电子学, 2006, 36(2): 182-186
    [63] K. Ljungberg, U. Jansson, S. Bengtsson et al. Modification of silicon surface with H2SO4: H2O2: HF and HNO3: HF for wafer bonding applications, J. Electrochem. Soc. 1996, 143: 1709
    [64]W Kern, D. A. Puotinen. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA Rev. 186, June 1970
    [65]W. Kern, The evolution of silicon wafer cleaning technology, 1990, 137: 1887
    [66] H. Kaigawa, K. Yamamoto, Y. shigematsu. Etching of thermally grown SiO2 by NH4OH in mixture of NH4OH and H2O2 cleaning solution, Jpn. J. Appl. Phys. 1994, 33: 4080
    [67]T. Ohmi, T. Imaoka, I. Sugiyama et al. Metallic impurities segregation at the interface between Si wafer and liquid during wet cleaning, J. Electrochem. Soc.1992, 139: 3317
    [68]T. Ohmi, T. Imaoka, T. Kekehiko et al. Degregation and removal of metallic impurity at interface ofsilicon and fluorine etchant, J. Electrochem. Soc.1993, 140: 811
    [69] J. Ryuta, T. Yoshimi, H. Kondo, et al. Adsorption and desorption of metallic impurities on Si wafer surface in SC1 solution, Jpn. J. Appl. Phys. 1995, 91:1019
    [70]Kim Jong-Soo, Morita Hiroshi, Choi Geun-Min et al. Cleaning efficiencies of various chemical solutions for noble metals such as Cu, Ag, and Au on Si wafer surfaces, Journal of the Electrochemical Society, 1999, 146(11): 4281-4289
    [71]Mori Yoshihiro, Uemura Kenichi, Shimanoe Kengo et al. Adsorption species of transition metal ions on silicon wafer in SC-1 solution, Journal of the Electrochemical Society, 1995, 142(9): 3106-3109
    [72]Torcheux L., Mayeux A., Chemla M. Electrochemical coupling effects on the corrosion of silicon samples in HF solutions, Journal of the Electrochemical Society, 1995, 142(6): 2037-2046
    [73]Chyan Oliver, Chen Jin-Jian, Wu Junjunet al. Discrete metal deposition on hydrogen terminated silicon surfaces: Kinetics, morphologies and sensor applications, Materials Research Society Symposium - Proceedings, v 451, Electrochemical Synthesis and Modification of Materials, 1997: 267-273
    [74]Chopra Dinesh, Suni Ian Ivar, Busnaina Ahmed A. Cu dissolution from Si(111) into an SC-1 process solution, Journal of the Electrochemical Society, 1998, 145(4): L60-L61
    [75]Chopra Dinesh, Suni Ian Ivar. Optical method for monitoring metal contamination during aqueous processing of silicon wafers, Journal of the Electrochemical Society, 1998, 145(5): 1688-1692
    [76]Morinaga Hitoshi, Suyama Makoto, Ohmi Tadahiro. Mechanism of metallic particle growth and metal-induced pitting on Si wafer surface in wet chemical processing, Journal of the Electrochemical Society, 1994, 141(10): 2834-2841
    [77]Morinaga Hitoshi, Suyama Makoto, Nose Masashi. Model for the electrochemical deposition and removal of metallic impurities on Si surfaces, IEICE Transactions on Electronics, 1996, E79-C (3): 343-362
    [78]Bertagna Valerie, Plougonven Ch., Rouelle Francois. et al. Kinetics of electrochemical corrosion of silicon wafers in dilute HF solutions, Journal of Electroanalytical Chemistry, 1997,422(1-2): 115-123
    [79]Bertagna Valerie, Rouelle Francois. Revel, Gilles et al. Electrochemical and radiochemical study of copper contamination mechanism from HF solutions onto silicon substrates, Journal of the Electrochemical Society, 1997, 144(12): 4175-4182
    [80]Bertagna Valerie, Erre Rene, Rouelle Francois et al. Corrosion rate of n- and p-silicon substrates in HF, HF+HCl, and HF+NH4F aqueous solutions, Journal of the Electrochemical Society, 1999, 146(1): 83-90
    [81]Bertagna, Rouelle Francois, ErreRene et al. Electrochemical test for silicon surface contamination by copper traces in HF, HF+HCl and HF+NH4F dilute solutions, Semiconductor Science and Technology, 2000, 15(2): 121-125
    [82]E. Hsu, H. G. Parks, R. Craigin et al. Deposition characteristics of metal contaminatants from HF-based process solutions onto silicon wafer surfaces, J. Electrochem. Soc.1992, 139: 3659
    [83]K. D. Legg, A. B., Ellis, J. M. Bolts. N-type based Photoelectrochemical Cells: New ligand junction photo cells using a nonaqueous Ferricenium/Ferrocene electrolyte, Proc. Natl. Acad. Sci. 1977, 74: 4116.
    [84]W. Kern, The evolution of silicon wafer cleaning technology, 1990, 137: 1887
    [85]D. Chopra, I.I. Suni, A. A. Busnaina, Cu dissolution from Si (111) into an SC-1 process solution, J.Electrochem. Soc.1998, 145(4): L60
    [86]S. G. S. Filho, C. M. Hasenack, L. C. Salay et al. A less critical procedure for silicon wafer using diluted HF dip and boiling in isopropyl alcohol as final steps, J. Electrochem. Soc.1995, 142: 902
    [87]O. J. Anttila, M. V. Tilli, M. Schaekers, et al. Effect of chemicals on metal contamination on silicon wafers, J. Electrochem. Soc.1992, 139: 1180
    [88]B. F. Philips, D. C. Burkman, W. R. Schmidt, et al. The impact of surface analysis technology on the development of semiconductor wafer cleaning processes, J. Vac. Sci. Technol. 1983, A1(2):646.
    [89]R. Takizawa, T. Nakanishi, K. Honda, et al. Ultraclean technique for silicon wafer surfaces with HNO3-HF system, Jpn, J. Appl. Phys. 1988: L2210.
    [90]T. H. Park, Y. S. Ko, T. E. Shim et al. The cleaning effects of HF-HNO3-H2O2 system, J. Electrochem. Soc.1995, 142: 571
    [91] Marius Chemla, Takayuki Homma, Valerie Bergagna, et al. Survey of the metal nucleation processes on silicon surfaces in fluoride solutions: from dilute HF to concentrated NH4F solutions [J]. Journal of Electroanalytical Chemistry, 2003, 559: 111-123.
    [92]O. J. Anttila, M. V. Tilli. Metal contamination removal on silicon wafers using dilute acidic solutions, J. Electrochem. Soc.1992, 139: 1751
    [93] M. Miyashita, T. Tusga, K. Makihara, et al. Dependence of surface microughness of CZ, FZ and EPI wafers on wet chemical processing, J. Electrochem. Soc.1992, 139: 2133
    [94]Hitoshi Morinaga, Atsushi Itou, Hideaki Mochizuki. Additive Technologies for sub 100mm device cleaning. Electrochemical Society Proceeding , 2003, 26: 371-378
    [95]Sang Woo Lim, Renee T. Mo, Piero A. Pianetta, et al. Effect of Silicon Surface Termination on Copper Deposition in Deionized Water [J]. Journal of the Electrochemical Society, 2001,148(1): G16-G20
    [96]T. Hoshino, M. Hata, S. Neya, et al. Adhesion Mechanism of Metal Impurities on Si Wafers in Alkali Solution [J]. Journal of The Electrochemical Society, 2004, 151(9): G590-G597
    [97]Jong-Soo Kim, Hiroshi Morita, Geun-Min Choi, et al. Cleaning Efficiencies of Various Chemical Solutions for Noble Metals such as Cu, Ag, and Au on Si Wafer Surfaces [J]. Journal of the Electrochemical Society, 1999, 146: 4281-4289
    [98]Scott A. McHugo, A.C. Thompson, G. Lamble, et al. Metal impurity precipitates in silicon: chemical state and stability [J]. Physica B, 1999, 273-274: 371-374
    [99]Eiji Fuchita, Masaaki Oda, chikara Haydshi. Behavior of ultrafine metallic particles on silicon wafer surface, J. Electrochem. Soc., 1995, 142: 966-970
    [100]Y. Kamon, H. Harima, A. Yanase, et al. Ultra-fast diffusion mechanism of the late 3d transition metal impurities [J]. Physica B, 2001, 308-310: 391-395
    [101]Lee M. Loewenstein, Paul W. Mertens. Adsorption of metal ilons onto hydrophilic silicon surfaces from aqueous solution: effect of pH [J]. J. Electrochem. Soc., 1998, 145: 2841-2846
    [102]A. Mesli, T. Heiser, E. Mulheim. Copper diffusivity in silicon: a re-examination [J]. Materials Science and Engineering, 1994, B25: 141-146
    [103] A. E.马特耳, M.卡耳文著, 王夔, 吴炳辅, 白明彰等译. 金属螯合物化学. 北京: 科学出版社, 1964
    [104]刘玉岭, 王娟, 张西慧编著. 洗净技术基础. 北京: 化学工业出版社, 2005
    [105]Sigihara Y, Tanaka K, Kawakami M. Cleaning liq. preventing metal impurity adhering to semiconductor substrate - comprising soln. contg. base (pref. ammonia) and hydrogen peroxide EP528053-A
    [106]Bohling, David A. Felker, Brian S.; George, Mark A. Chemical vapor cleaning of sodium from SiO2 , Materials Research Society Symposium Proceedings, v 282, Chemical Perspectives of Microelectronic Materials III, 1993, p 517-522
    [108]Hideo Akiya, Shuji Kuwano, Tohru Masumoto. Thin-oxide dielectric strength improvement by adding a phosphonic acid chelating agent into NH4OH-H2O2 solution, J. Electrochem. Soc., 1994, 141: L139-L142
    [109] Morita Y, Uemura K, Shimanoe K et al, J. Electrochem. Soc., 1995, 142(8), 3104
    [110]Beck, S.E George, M.A.; Bohling, D.A. Vapor phase cleaning with β-diketones, Institute of Environmental Sciences - Proceedings, Annual Technical Meeting, Contamination Control, 1998, p 80-86
    [111]Beck, S.E.; Robertson, E.A.III; George, M.A. Vapor phase clean to remove sodium using 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, Electrochemical and Solid-State Letters, 1998, 1(5): 235-237
    [112]Small Robert J., Peterson Maria L., Robles Aaron et al. Using a buffered rinse solution to minimize metal contamination after wafer cleaning, MICRO, 1998, 16(1): 61-64, 66-67
    [113]Baeyens, M. Hub, W.; Kolbesen, B.O. Single step alkaline cleaning solution for advanced semiconductor cleaning, Diffusion and Defect Data Pt.B: Solid State Phenomena, 1999, 65-66: 23-26
    [114] A.R. Martin, M. Baeyens, W. Hub, et al. Alkaline cleaning of silicon wafers: additives for the prevention of metal contamination [J]. Microelectronic Engineering, 1999, 45: 197-208
    [115] Nohara Masahiro, Hashimoto Ryo, Oketani Hiroi et al. Cleaning method of substrate for liquid crystal panel , JP2000171985, 2000
    [116]Small Robert J, Chen Zhefei, Wang Cherry. Reduced water consumption for post clean treatment and metal ion contamination on VLSI structures, Diffusion and Defect Data Pt.B: Solid State Phenomena, 2000, 76-77: 97-100
    [117]Ilardi Joseph, Saraswati Rajananda, Schwartzkopf George. Silicon cleaning methods compared at metal concentrations below 1E10 atoms/cm2, Materials Research Society Symposium - Proceedings, 2000, 606: 245-250
    [118] 曹宝成, 于新好, 马洪磊等. 一种用于超大规模集成电路芯片的清洗剂组合物及其制备方法 CN 01115162.5, 2001
    [119] 李玉香, 于新好, 马洪磊. 一种水剂清洗剂组合物, CN1188795, 1999
    [120]Tung Ming Pan, Tan Fu Lei Fu Hsiang Ko et al. Comparison of novel cleaning solutions with various chelating agents for post-CMP cleaning on poly-Si film. IEEE transaction on semiconductor manufacturing, 2001, 14(4): 365-371
    [121]Kishimoto sangyo, Resist residue removal agent and cleaning agent contains aqueous solution of phosphoric acid, hydrochloric acid and amine chosen from primary to quaternary amine, and has specific pH, JP2003316028, 2003
    [122]Kao Corp (KAOS). Composition for cleaning agent for semiconductor element, contains phosphoric acid and/or its salt, JP2001044161, 2001
    [123]Boelen Pieter, Verhaverbeke Steven, Garnier Philippe et al. Metallic contamination removal evaluation for single wafer processing, Diffusion and Defect Data Pt.B: Solid State Phenomena, 2003, 92: 49-52
    [124]Eitoku A., Snow J., Vos, R. et al. Removal of small (less than or equal 100-nm) particles and metal contamination in single-wafer cleaning tool, Diffusion and Defect Data Pt.B: Solid State Phenomena, 2003, 92: 157-160
    [125]Small Robert, Berar Pascal, Scott Brandon. Investigating post CMP cleaning processes for STI ceria slurries, Diffusion and Defect Data Pt.B: Solid State Phenomena, 2003, 92: 63-68
    [126] Boerner M, Kilan G, Rhein R, Cleaning solution for semiconductor substrate comprises an alkaline compound, hydrogen peroxide, water and 2,2-bis-(hydroxyethyl)-(iminotris)-(hydroxy- methyl) methane and/or nitrilotriacetic acid, WO2004041989, 2004
    [127]Udaya B. Partri, S. Pandija, S.V. Babu. Role of molecular structure of complexing/chelating agents in copper CMP slurries, Mater. Res. Soc. Symp. Proc., 2005, 867: 47-52
    [1]章小鸽编著, 张俊喜, 张大全, 徐群杰等译. 硅及其氧化物的电化学. 北京: 化学工业出版社, 2004
    [2]M. Miyashita, T. Tusga, K. Makihara, et al. Dependence of surface microughness of CZ, FZ and EPI wafers on wet chemical processing, J. Electrochem. Soc.1992, 139: 2133
    [3]S. G. S. Filho, C. M. Hasenack, L. C. Salay et al. A less critical procedure for silicon wafer using diluted HF dip and boiling in isopropyl alcohol as final steps, J. Electrochem. Soc.1995, 142: 902
    [4]X. G. Zhang, S. D. Collins, R. L. Smith. Porous silicon formation and electrochemical polishing of silicon by anodic polarization in HF solutions, J. Electrochem. Soc.1989, 136: 1561
    [5]L. M. Loewenstein, F. Charpin, P. W. Mertens.Competitive adsorption of metal ions onto hydrophilic silicon surfaces from aqueous solutions. J. Electrochem. Soc.1999, 146: 719
    [6]L. M. Loewenstein, P. W. Mertens.Adsorption of metal ions onto hydrophilic silicon surfaces from aqueous solution: Effect of pH, J. Electrochem. Soc.1998, 145: 2841
    [7] T. Ohmi, T. Imaoka, T. Kekehiko, et al. Degregation and removal of metallic impurity at interface of silicon and fluorine etchant, J. Electrochem. Soc.1993, 140: 811
    [8]Y. Mori, K. Uemura, K. shimanoe.Adsorption species of transtion metal ions on silicon wafer inSC-1 solution. J. Electrochem. Soc.1995, 142: 3104
    [9]H. Ochs, D. Bublak, U. wild, et al. Depth distribution of zinc adsorbed on silicon surfaces out of alkaline aqueous solutions. Appl. Surf. Sci. 1998, 133: 73
    [10]S.I. Raider, R. Flitsch, M. J. Palmer. Oxide growth on etched silicon in air at room temperature, J. Electrochem. Soc.1975, 122: 413
    [11]F. sugimoto, s. Okamura. Adsorption behavior of organic contaminants on a silicon wafer surface, J. Electrochem. Soc.1981, 46: 2725
    [12]M. R. Linford, C. E. D. Chidsey.Alkyl monolayers covalently bonded to silicon surfaces, J. Am. Chem. Soc. 1993, 115: 12631
    [13]c. H. de Villeneuve, J. Pinson, M. C. bernard, et al. Electrochemical formation of close-packed phenyl layers on Si(111), J. Phys. Chem.1997, B101: 2415
    [14]H. Habuka, M. Shimada, K. Okuyama. Rate therory of multicomponent adsorption of organic species onsilicon wafer surface, J. Electrochem. Soc. 2000, 147: 2319
    [15]J. –N. chazalviel. Surface methoxylation as the key factor for the good performance of n-Si/methanol photoelectrochemical cells, J. Electroanal. Chem.1987,233: 37
    [16]T. Takahagi, I. Nagai, A. Ishitani, et al. The formation of hydrogen passivated silicon single-crystal surfaces using ultraviolet cleaning and HF etching, J. Appl. Phys. 1988, 64(7): 3516
    [17] 刘玉岭, 刘钠, 曹阳. 硅单晶片镜面吸附物吸附状态的研究, 稀有金属(国内版), 1999,23(2):86
    [18] 刘玉岭, 檀柏梅, 张楷亮编著. 微电子技术工程, 北京: 电子工业出版社, 2004
    [19]天津大学无机化学教研室编. 无机化学. 北京: 高等教育出版社, 2003
    [20]傅献彩, 沈文霞, 姚天扬编. 物理化学. 北京: 高等教育出版社, 1990
    [21]Morinaga, Hitoshi, Suyama, Makoto; Nose, Masashi et al. Model for the electrochemical deposition and removal of metallic impurities on Si surfaces, IEICE Transactions on Electronics, 1996, E79-C(3): 343-362
    [22]T. Ohmi, T. Imaoka, ai. Aaasugiyama et al. Metallic impurities segregation at the interface between Si wafer and liquid during wet cleaning, J. Electrochem. Soc.1992, 139: 3317
    [23]M. L. Kniffin, T. E. Beerling, c. R. Helms. The effectiveness of aqueous cleaning for the removal of evaporation iron and copper from silicon surfaces, J. Electrochem. Soc.1992, 139: 1195
    [24]T. H. Park, Y. S. Ko, T. E. Shim, et al. the cleaning effects of HF-HNO3-H2O2 system, J. Electrochem. Soc.1995, 142: 571
    [25]J. E. A. M. van den Meerakker, M. H. M. van den Straaten. A mechanism study of etching in NH3/H2O2 cleaning solutions, J. Electrochem. Soc.1990, 137: 1239
    [26]T. Ohmi. Total room tempreature wet cleaning for Si substrate surface, J. Electrochem. Soc.1996, 143: 2957
    [27] A. E.马特耳,M.卡耳文著, 王夔, 吴炳辅, 白明彰等译. 金属螯合物化学. 北京: 科学出版社, 1964
    [1] 刘玉岭, 檀柏梅, 张楷亮. 超大规模集成电路衬底材料性能及加工测试技术工程. 北京: 冶金工业出版社, 2002
    [2] 张祥麟. 配合物化学. 北京: 高等教育出版社, 1991
    [3] M.T.Beck. Critical evaluation of equilibrium constants in solution. Pure Appl. Chem., 1977, 49: 129
    [4]官宜文, 徐光宪. 溶液中络合物的平衡理论Ⅱ对应溶液法研究硫氰酸氧铀络合物. 化学学报, 1963, 29: 37
    [5] J.INCZEDY 著, 刘士斌译, 许宏鼎校. 络合平衡的分析应用. 吉林: 吉林大学出版社, 1987
    [6]张祥麟. 测定单核络离子稳定常数时游离配体浓度的计算. 中南矿冶学院学报, 1982, 1: 121
    [7]成都科学技术大学分析化学教研组, 浙江大学分析化学教研组. 分析化学实验(第二版). 北京: 高等教育出版社, 1989
    [8]武汉大学主编. 分析化学(第五版). 北京: 高等教育出版社, 2003
    [9] Mutsuo K, Eiichi K.Equilibria and kinetics of copper(Ⅱ ) compelx formation of 13~15 membered macrocyclicdioxo-tetra-amines.J Chem Soc Dalton Trans,1981:694
    [10] Steffen Esser, B. W. Wenclawiak A2, Heinrich Gabelmann. Copper-complexation index as a polarographic summation parameter for the determination of chelating agents in water, Fresenius' Journal of Analytical Chemistry, 2000, 368(2-3): 250 – 255
    [1] 卢立延,曹孜,杜娟. 用SPV法对影响硅片少于寿命因素的研究, 世界有色金属,2003,12:30-32
    [2] 李清华,刘键,罗俊一等. 用于IC氧化层和氧化炉管在线监控的表面光电压技术,固体电子学研究与进展,2003,23(1):120-125
    [3] J. Lagowski, P. Edelman, A.M. Kontkiewicz, O. Milic, W. Henley, M. Dexter, L. Jastrzebski, A.M. Hoff: Appl. Phys. Lett. 1993, 63: 3043
    [4]Matthias Boehringer, Johann Hauber, Sophie Passefort, et al. In-line copper contamination monitoring using noncontact Q-VSPV techniques [J]. Journal of the Electrochemical Society, 2005, 152(1): G1-G6
    [5]D. Cali, C.M. Camalleri, v. Raineri. Surface photovoltage measurements for Cu, Ti and W determination in Si wafers [J]. Materials Science in Semiconductor Processing, 2001, 4: 19-22
    [6]V. Lehmann, H. F?ll: J. Electrochem. Soc., 1988, 135: 2831
    [7]J. Carstensen, W. Lippik, H. F?ll: Mater. Sci. Forum, 1995, 173-174: 159
    [8] G. Ferenczi, T. Pavelka, P. Tütt?o: Jpn. J. Appl. Phys. 1991,30: 3630
    [9]王文卫,李新建. 热处理单晶硅片中Fe沾污的深能级瞬态谱分析,科学技术与工程,2003,3(3):264-269
    [10]费庆宇. 深能级瞬态谱DLTS技术应用于半导体器件的失效分析,电子产品可靠性与环境实验,1999,2:22-26
    [11]张胜坤,椹大宇,陆昉等. 快速傅里叶变换深能级瞬态谱测试系统,固体电子学研究与进展,1998,18(4):431-435
    [12]K. Nauka, D. A. Gomez. Surface photovoltage and deep level transient spectroscopy measurement of the Fe impurities in front-end operations of the IC CMOS process, J. Electrochem. Soc., 1995, 142: L98-L99
    [13]周永溶编. 半导体材料. 北京理工大学出版社,1992
    [14]刘玉岭, 檀柏梅, 张楷亮编著. 微电子技术工程, 北京: 电子工业出版社, 2004
    [15] 谢荣厚,高新华,盛志伟. 现代X射线荧光光谱仪的进展,冶金分析, 1999, 4(2): 32-36
    [16] A. A. Istratov, H. Hieslmair, E. R. Weber. Iron contamination in silicon technology, Applied physics A: materials science &processing, 2000, 70, 489-534
    [17] ISO 17331-2004: Surface chemical analysis—Chemical methods for the collection of elements from thesurface of silicon wafer working reference materials and their determination by total-reflection x-ray fluorescence(TXRF) spectroscopy(表面化学分析:硅片表面采集元素的方法以及TXRF法的测定)
    [18] Yoshihiro Mori, Kenichi Uemura. Total-reflection X-ray fluorescence analysis for semi-conductor process characterization [J]. Spectrochimica Acta Part B, 2003, 58: 2085-2092
    [19] 张天佑,李国会,朱永奉等. 高灵敏度的全反射X射线荧光光谱仪的研制,岩矿测试,1998,17(1):68-75
    [20] K. Baur, S. Brennan, D. Werho, et al. Recent advances and perspectives in synchrotron radiation TXRF [J]. Nuclear Instruments and Methods in Physics research A. 2001, 467- 468: 1198-1201
    [21]P. Piantta, K. Baur, A. Singh, et al. Application of synchrotron radiation to TXRF analysis of metal contamination on silicon wafer surfaces [J]. Thin solid films, 2000, 373: 222-226
    [22]刘玉岭,檀柏梅,张楷亮编著. 超大规模集成电路衬底材料性能及加工测试技术工程,北京:冶金工业出版社,2002
    [23]Mohammad B. Shabani, Y. Shiina, F.G. Kirscht, et al. Recent advanced applications of AAS and ICP-MS in the semiconductor industry [J]. Materials Science in Semiconductor Processing, 2003, B102: 238-246
    [24] S.H. Tan.Nuclear Instrument Methods,Phys. Res. B,1995,99:458
    [25]ASTM F1724-01: Standard Test Method for Measuring Surface Metal Contamination of Polycrystalline Silicon by Acid Extraction-Atomic Absorption Spectroscopy(酸性萃取原子吸收光谱法测定多晶硅晶片表面金属杂质的标准实验方法)
    [26] D. Caputo, P. Bacciaglia, C. Carpanese, et al. Quantitative evaluation of iron at the silicon surface after wet cleaning treatments [J]. Journal of the Electrochemical Society, 2004, 151(4): G289-G296
    [27] Takeshi Hattori, Tsutomu Osaka, Akira Okamoto, et al. Contamination Removal by Single-Wafer Spin Cleaning with Repetitive Use of Ozonized Water and Dilute HF, J. Electrochem.Soc., 1998, 145: 3278-3284
    [28] M.B. Shabani, T. Yoshimi, H. Abe. Low-Temperature Out-Diffusion of Cu from Silicon Wafers, J. Electrochem. Soc., 1996, 143: 2025
    [1] Xiaoge Gregory Zhang. Electrochemistry of silicon and its oxide[M]. Kluwer Academic/Plenum Publishers, 2001: 302
    [2]Ohmi T, Imakao T, Sugiyama I. Metallic impurities segregation at the interface between Si wafer and liquid during wet cleaning. The Electrochemical society, 1992, 139: 3317-3335.
    [3]Morinaga H, Suyama M,Ohmi T. Mechanism of metallic particle growth and metal-induced pitting on Si wafer surface in wet chemical processing[J].The Electrochemical Society, 1994, 141: 2834-2841.
    [4]Chyan O M R, Chen J J, Chien H Y, et al. Copper deposition on HF etched silicon surface: Morphological and kinetic studies.The Electrochemical Society, 1996, 143: 92-96.
    [5]Jeon J S, Tagharan S, Parks H G, et al. Electrochemical investigation of copper contamination on silicon wafer from HF solutions[J]. The Electrochemical Society, 1996, 143: 2870-2875.
    [6] Chopra D, Suni I I. An optical method for monitoring metal contamination during aqueous processing of silicon wafers[J].The Electrochemical Society, 1998, 145: 1688-1692.
    [7]Cheng X, Li G, Kneer E A, et al. Electrochemical impedance spectroscopy of copper deposition on silicon from dilute hydrofluoric acid solutions[J].The Electrochemical Society, 1998, 145: 352-357.
    [8]Cheng X, Gu C, Feng Z D. Microcontamination of silicon wafer surfaces by copper and silver[J].The Electrochemical Society, 2003, 150: G112 - G116.
    [9]郑宣, 程璇. 半导体硅片金属微观污染机理研究进展, 半导体技术, 2004, 29(8): 53-56
    [10]E.Hsu, H.G.Parks, R.Craigin et al. Deposition characteristics of metal contaminants from HF-dased process solutions onto silicon wafer surfaces. J. Electrochem. Soc., 1992, 139(12): 3659-3664
    [11] Sang Woo Lim, Renee T. Mo, Piero A. Pianetta et al. Effect of Silicon Surface Termination on Copper Deposition in Deionized Water. J. Electrochem. Soc., 2001, 148(1): C16-C20.
    [12] Vos R., Lux M., Sarnauts S. et al. Single chemistry cleaning solutions for advanced wafer cleaning. Diffusion and Defect Data Pt.B: Solid State Phenomena, 2003, 92(1): 27-32
    [13] Boelen P., Verhaverbeke S., Garnier P. et al. Metallic contamination removal evaluation for single wafer processing [J]. Diffusion and Defect Data Pt.B: Solid State Phenomena, 2003, 92(1): 49-52
    [14] Chung B C, Marshall G A, Pearce C.W et al. The prevention of Si pitting in hydrofluoric acid cleaning by additions of hydrochloric acid [J].The Electrochemical Society, 1997, 144: 652-657.
    [15] Martin A.R., Baeyen M, Hub W. et al. Alkaline cleaning of silicon wafers: additives for the prevention of metal contamination [J]. Microelectronic Engineering, 1999, 45(2): 197–208
    [16] 刘玉岭, 王娟, 张西慧编著. 洗净技术基础. 北京: 化学工业出版社, 2005
    [17] 刘玉岭, 檀柏梅, 张楷亮编著. 超大规模集成电路衬底材料性能及加工测试技术工程, 北京: 冶金工业出版社, 2002
    [18]张凤仙, 尹克刚, 张丽霞等. 全有机低膦水处理药剂的研究和应用.工业水处理[J], 2001, 21(10): 34-35
    [19] Steffen Esser, B. W. Wenclawiak, Heinrich Gabelmann. Copper-complexation index as a polarographic summation parameter for the determination of chelating agents in water. Journal of Analytical Chemistry[J]. 2000, 368(2-3): 250 – 255.
    [20] M. Grundner, H. Jacob. Investigations on hydrophilic and hydrophobic silicon wafer surfaces by X-ray photoelectron spectroscopy [J]. Applied Physics A: Solids and Surfaces [J]. 1986, A39( 2): 73-82
    [21] K Saga, T Hattori, Acceleration of organic contaminant adsorption onto silicon surfaces in the presence of residual fluorine. J. Electrochem. Soc.[J]. 1997, 144(9): L250-252
    [1] 刘玉岭, 檀柏梅, 张楷亮编著. 微电子技术工程. 北京: 电子工业出版社, 2004
    [2] Stephen A Campbell 著, 曾莹, 严利人, 王纪民等译. 微电子制造科学原理与工程技术. 北京: 电子工业出版社, 2003
    [3] Morinaga, Hitoshi; Itou, Atsushi; Mochizuki, Hideaki; Ikemoto, Makoto. Additive technologies for sub100nm device cleaning,Electrochemical Society Proceedings, v 25, Cleaning Technology in Semiconductor Device Manufacturing VII - Proceedings of the International Symposium, 2003: 371-378
    [4] P. Boelen, S. Verhaverbeke, P. Garnier et al. Metallic contamination removal evaluation for single wafer processing. Diffusion and Defect Data Pt.B: Solid State Phenomena, 2003, 92(1): 49-52
    [5] Aksu, Serdar; Doyle, Fiona M. The role of ethylenediaminetetraacetic acid (EDTA) and glycine in the chemical mechanical planarization (CMP) of copper. Proceedings of the Second International Conference on Processing Materials for Properties, 2000: 225-230
    [6] Patri, Udaya B.; Pandija, S.; Babu, S.V. Role of molecular structure of complexing/chelating agents in copper CMP slurries. Materials Research Society Symposium Proceedings, v 867, Chemical-Mechanical Planarization - Integration, Technology and Reliability, 2005: 47-52
    [7] A. E.马特耳,M.卡耳文著, 王夔, 吴炳辅, 白明彰等译. 金属螯合物化学. 北京: 科学出版社, 1964
    [8] Liu Y L, Zhang K L, Wang F, Investigation on the final polishing and technique of silicon substrate in ULSI. Microelectronic Engineering, 2003, 66: 428
    [9]刘玉岭, 檀柏梅, 张楷亮. ULSI硅衬底性能加工与测试技术工程. 北京: 冶金工业出版社, 2002
    [10] A.R. Martin, M. Baeyens, W. Hub et al. Alkaline cleaning of silicon wafers: additives for the prevention of metal contamination. Microelectronic Engineering, 1999, 45(2): 197–208.
    [11] M. B. Shabani, T. Yoshimi, H. Abe. Low-temperature out-diffusion of Cu from silicon wafers Journal of the Electrochemical Society, 1996, 143(6): 2025-2029
    [12] T.M. Pan, T.F. Lei, F.H. Ko et al. Comparison of novel cleaning solutions with various chelating agents for post-CMP cleaning on poly-Si film. IEEE Transactions on semiconductor manufacturing, 2001, 14(4): 365-371
    [1] A. E.马特耳,M.卡耳文著, 王夔, 吴炳辅, 白明彰等译. 金属螯合物化学. 北京: 科学出版社, 1964
    [2]天津大学无机化学教研室编. 无机化学. 北京: 高等教育出版社, 2003
    [3]武汉大学主编. 分析化学. 北京: 高等教育出版社, 1988
    [4]傅献彩, 沈文霞, 姚天扬编. 物理化学. 北京: 高等教育出版社, 1990
    [5] Steffen Esser , B. W. Wenclawiak A2, Heinrich Gabelmann. Copper-complexation index as a polarographic summation parameter for the determination of chelating agents in water, Fresenius' Journal of Analytical Chemistry 368(2-3): 250 – 255, 2000
    [6]刘玉岭,檀柏梅,张楷亮编著. 微电子技术工程. 北京: 电子工业出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700