含稀土水滑石的可控制备、结构表征及其催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水滑石类化合物又称层状双金属氢氧化物(Layered Double Hydroxides,简称LDHs),是一类具有特殊结构的层状材料。它独特的结构有利于多种功能性离子的引入,扩大了此类材料的应用范围,尤其是其作为催化剂和催化剂前体的应用更引起人们的普遍关注。而稀土因为特殊的电子结构排布使其在催化、发光、磁性材料等领域都具有广泛的应用。因此本论文提出利用LDHs的结构特征,引入稀土元素铈(Ce)对其进行修饰,通过插层组装制备出新型含稀土LDHs材料。由于受晶格定位效应的制约,金属离子(稀土)在LDHs层板和层间相互高度分散,经过焙烧即可得到高分散多元金属(稀土)氧化物。在苯酚湿式催化氧化反应中,多元金属氧化物表现出较好的催化性能,组分间的协同效应得到发挥。而苯酚是工业含酚废水的主要成份之一,它的有效氧化和去除使得含稀土LDHs材料在工业废水处理方面具有潜在的应用价值。
     本文首先采用自行设计的恒定条件下连续共沉淀装置制备出粒径分布窄、形貌均匀的纳米尺寸LDHs材料。详细研究了多种制备条件对ZnAl-CO_3-LDHs结构和形貌的影响,其中金属离子浓度和混合溶剂对溶液的过饱和度影响较为显著。这种方法在控制LDHs晶粒尺寸、形状、团聚程度和比表面积等性能的同时,极大地缩短了制备周期,具有较好的工业应用前景。
     本论文重点进行了稀土元素配合物阴离子在LDHs结构中的插层组装研究。将配合物[Ce(dipic)_3]~(3-)引入到Zn_2Al-NO_3-LDHs以及其它具有不同层板组成元素及比例的多种LDHs主体结构中,然后进行不同稀土元素配合物客体[Ce(DTPA)]~(2-)和[Eu(dipic)_3]~(3-)在Zn_2Al-NO_3-LDHs中的插层组装。通过主、客体的变化来研究插层过程中两者相互作用及其对插层过程、插层结构的影响。
     通过配合物[Ce(dipic)_3]~(3-)与LDHs层间NO_3~-的阴离子交换反应,将稀土元素Ce引入到LDHs结构中,制备出[Ce(dipic)_3]~(3-)插层LDHs。通过多种表征方法的研究,发现配合物阴离子在层间以与主体层板倾斜的方位排布。在一些阴离子交换过程中,配合物[Ce(dipic)_3]~(3-)容易发生部分分解生成dipic~(2-)和Ce~(3+)(Ce~(4+)),导致dipic~(2-)插层LDHs副产物的出现。通过配合物[Ce(DTPA)]~(2-)与Zn_2Al-NO_3-LDHs前体的离子交换反应制备出另外一种含稀土元素Ce的LDHs材料,结构研究表明其层间配合物阴离子以与主体层板几乎垂直的方位排布。采用近似离子交换方法,将稀土元素Eu通过配合物[Eu(dipic)_3]~(3-)引入到Zn_2Al-NO_3-LDHs结构中,这种超分子插层结构明显提高产物的热稳定性,并具有较好的发光性能。
     对含稀土LDHs材料的热分解过程进行研究,探讨制备条件(如主体层板金属元素种类和比例、离子交换条件、焙烧条件)与焙烧产物的层状结构、晶粒尺寸及其分布、孔结构、比表面积、组分与组成等结构参数间的关系。Ce的存在明显提高插层LDHs材料的热稳定性:热分解过程中高分散的CeO_2能够提高尖晶石的形成温度,以及活性组分金属氧化物的热稳定性。含稀土LDHs材料经过不同热处理过程制备出系列新型高分散多元金属氧化物,尤其是500℃焙烧6h的[Ce(dipic)_3]~(3-)插层CuZnAl-LDHs的层状特征结构完全消失,形成二价金属氧化物、二氧化铈和Cu-Ce-O固溶体的混合物。
     利用共沉淀方法制备出含铈铜基LDHs杂化材料,它是由CuZnAl-LDHs和CeO_2两相组成的混合物,Ce未被引入到LDHs正八面体结构中,但在LDHs颗粒表面形成了均匀分散。利用离子交换方法将配合物[Ce(dipic)_3]~(3-)引入到CuZnAl-NO_3-LDHs层间得到具有插层结构的含铈铜基LDHs。在其焙烧产物中,Ce的出现明显提高催化剂的苯酚湿式催化氧化活性,影响氧化产物的分布。而在共沉淀方法制备的含铈铜基LDHs杂化材料的焙烧产物中,Ce的出现加强苯酚的深度氧化,减少催化剂中各金属元素的流失。两种催化剂在苯酚氧化反应中表现出的催化性能差异与材料的结构特征以及金属元素间相互作用有关,比表面积的大小和Cu-Ce-O固溶体的生成是对催化活性产生影响的两个竞争因素。
Layered double hydroxides (LDHs) and rare earth elements (REEs) have both attracted extensive attention because of their structures and properties. The layered structure of LDHs makes it possible for many functional ions to be incorporated and the uniform dispersion of metal-organic anions in interlayer galleries or metal cations in layers extends the applications of layered materials to a wide variety of fields, whilst the electronic structure of REEs offers many advantages in the areas of optical, magnetic and catalytic materials.
     Catalytic wet oxidation (CWO) is a promising technique for destruction of organic pollutants, of which phenol is a simple representative, in water under mild conditions. Common heterogeneous catalysts for CWO can be divided into three series: noble metals, transition metals (especially copper) and rare earths, each of which has their own advantages and shortcomings. Co-existence of two types of catalyst components may show a higher catalytic efficiency. It is, therefore, of interest to prepare hybrid materials based on ZnAl-or CuZnAl-LDHs incorporating rare earth elements such as Ce or Eu in order to investigate the potential synergistic effect between the two components and the resultant influence on catalytic properties.
     A continuous co-precipitation method under steady-state conditions was first developed for the preparation of nanometer-size LDH particles using Zn_2Al(OH)_6(CO_3) _(0.5)·2H_2O as prototype. The effects of varying the operating conditions on the structural and textural properties of LDHs were studied, including total cation concentration, solvent, residence time, pH and intercalation anion. Increasing either the cation concentration or the fraction of ethylene glycol (EG) in EG/H_2O mixtures affects salt solubility and supersaturation, which results in smaller crystallites, larger surface areas and more amorphous compounds. The new method employs a short residence time of less than 15 min, allows large-scale production and maintains a constant supersaturation level in the reactor, and was shown to be a promising alternative to the conventional batch method.
     The second part of this research was to prepare a series of novel REE-containing LDH materials by anion-exchange or co-precipitation methods, and to investigate the effects of varying experimental parameters in order to optimize the product properties. Using the anion-exchange method, pyridine-2,6-dicarboxylic acid (H_2dipic) and diethylenetriaminepentaacetic acid (DTPA) were employed as the ligands in REE-containing complex anions. [Ce(dipic)_3] ~(3-) complexes were firstly introduced into ZnAl-NO_3-LDH and other LDH precursors with varying layer metal ions like CuZnAl-NO_3-LDH, and then different REE-containing complexes such as [Ce(DTPA)]~(2-) and [Eu(dipic)_3] ~(3-) were incorporated into LDHs. The products were characterized by many physicochemical techniques, including XRD, IR, UV, ICP, BET, TEM, TG/Mass, in situ HT-XRD and XPS.
     Ce-containing ZnAl-LDHs prepared by an anion-exchange method with [Ce(dipic)_3] ~(3-) were found to be always mixed with a CO_3~(2-)-containing LDH. The intercalation of [Ce(dipic)_3] ~(3-) in the layered host was confirmed by an increase in interlayer spacing to 1.24 nm. Geometrical considerations suggest the complex has a tilted orientation between the layers. However, a fraction of the [Ce(dipic)_3] ~(3-) anions decomposed into dipic~(2-) and Ce~(3+) (or Ce~(4+)) ions during the exchange process, resulting in formation of a dipic~(2-)-containing LDH. Different experimental conditions were optimized, including the host layer composition, charge density and other synthesis parameters such as temperature, pressure, reagent concentration, and reaction time. The most promising product was obtained with a ratio of layer cations M~(2+)/M~(3+) = 2, with a [Ce(dipic)_3] ~(3-) concentration around 5 mmol/1 and an exchange period around 10 h at room temperature. For some other host matrix compositions, the decomposition of [Ce(dipic)_3] ~(3-) and co-intercalation of CO_3~(2-) could both be reduced. The interlayer spacing values varied for different layer metals. Another Ce-containing ZnAl-LDHproduct was synthesized by a ion-exchange process with [Ce(DTPA)]~(2-). The product showed characteristics of a well-crystallized LDH and the interlayer spacing was enlarged to 1.46 nm.
     Eu-containing LDHs with [Eu(dipic)_3] ~(3-) anions in the interlayer galleries were prepared under the same conditions as for [Ce(dipic)_3] ~(3-)-intercalated LDHs and the structure and properties of the products were similar. The immobilized luminescent materials had excellent stability and luminescence properties. Eu~(3+) was used as a structural probe to study the interaction between the layered host and the complex guest by monitoring its luminescence properties. The structural information obtained can reasonably be transposed to [Ce(dipic)_3] ~(3-)-intercalated LDHs.
     On the basis of studies with REE-containing ZnAl-LDH materials, CuZnAl-Ce(dipic)-LDHs with cerium ions located in the interlayer galleries were synthesized by the ion-exchange method. The decomposition of [Ce(dipic)_3] ~(3-) and co-intercalation of CO_3~(2-) were relatively insignificant with this host matrix. Another type of CeX-LDHs (where X represents Ce content) was prepared by a co-precipitation method. It was demonstrated that the products were a mixture of CuZnAl-LDH and CeO_2, with cerium uniformly dispersed on the surface of small LDH particles.
     Thermal behavior of Ce-containing CuZnAl-LDHs was found to be influenced by the presence of cerium oxides and the temperature of formation of spinel phases was significantly increased. The effects of varying some experimental conditions such as preparation method, layer composition, calcination temperature/time and Ce/Al molar ratio on the specific surface area were investigated. When the product CuZnAl-Ce(dipic)-CLDH with a stoichiometric Ce/Al ratio was calcined at 500℃for 6 h, a composite Cu-Ce-O solid solution consisting of mixed metal oxides and having a large specific surface area was obtained.
     The final part of research was to prepare a series of new catalysts by calcination of Ce-containing CuZnAl-LDHs, to study the catalytic abilities of these materials in the phenol oxidation reaction and investigate the interaction between Cu and Ce centers in the catalysts. It was shown that the difference in catalytic performances of the two types of Ce-containing CuZnAl-CLDHs is related to the structure and composition of the catalysts. For CuZnAl-Ce(dipic)-CLDHs obtained by calcination of [Ce(dipic)_3] ~(3-)-intercalated CuZnAl-LDHs, the presence of cerium significantly improved the catalytic activity and control over the product distribution in phenol oxidation. The uniform dispersion of Ce-complexes in the interlayer galleries of the LDH precursors results in the presence of a Cu-Ce synergistic effect in the Cu-Ce-O solid solution. The strong interaction between Cu and Ce enhances the catalyst performance. For CeX-CLDHs obtained by calcination of the mixture of CuZnAl-LDH and CeO_2, the presence of cerium enhanced deep oxidation of phenol and reduced the extent of leaching of metal elements, resulting in improved catalyst selectivity and stability. The interaction between Cu and Ce in the two different phases was weak, not enough to give significant increase in catalytic activity, but sufficient to stabilize the active component, Cu, against leaching.
引文
[1] Rives V., Ulibarri M. A., Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates, Coordin. Chem. Rev., 1999, 181, 61-120
    [2] de Roy A., Forano C, Malki K. El, Besse J. P., in: Occelli M. L., Robson H. E. (Eds.), Synthesis of Microporous Materials, vol. 2, Expanded Clays and Other Microporous Systems, Van Nostrand Reinhold, New York, 1992, 108-169
    [3] Trifiro F., Vaccari A., in: Atwood J. L., Davies J. E. D., MacNicol D. D., Vogtle F., Lehn J.-M., Alberti G., Bein T. (Eds.), Comprehensive Supramolecular Chemistry, vol. 7, Solid-State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks, Pergamon, Oxford, 1996, 251-291
    [4] Cavani F., Trifiro F., Vaccari A., Hydrotalcite-type anionic clays: preparation, properities and applications, Catal. Today, 1991, 11, 173-301
    [5] Khan A. I., O'Hare D., Intercalation chemistry of layered double hydroxides: recent developments and applications, J. Mater. Chem., 2002, 12, 3191-3198
    [6] Rives V. (Ed.), Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001
    [7] Rives V., Characterization of layered double hydroxides and their decomposition products, Mater. Chem. Phys., 2002, 75(1-3), 19-25
    [8] Malherbe F., Forano C, Besse J. P., in: Book of Abstracts of 213th ACS National Meeting, San Francisco, 1997, April 13-17
    [9] Malherbe F., Besse J. P., Investigating the effects of Guest-Host Interactions on the Properties of Anion-Exchange Mg-Al Hydrotalcites, J. Solid State Chem., 2000, 155(2), 332-341
    [10]Tichit D., Das N., Coq B., Durand R., Preparation of Zr-containing Layered Double Hydroxides and Characterization of the Acido-Basic Properties of Their Mixed Oxides, Chem. Mater., 2002, 14(4), 1530-1538
    [1 l]Olsbye U., Akporiaye D., Rytter E., Ronnekleiv M., Tangstad E., On the stability of mixed M~(2+)/M~(3+) oxides, Appl. Catal. A: Gen., 2002, 224(1-2), 39-49
    [12]Newman S. P., Jones W., Synthesis characterization and application of layered double hydroxides containing organic guests, New J. Chem., 1998, 22(2), 105-115
    [13]Roussel H., Briois V., Elkaim E., De Roy A., Besse J. P., Cationic Order and Structure of [Zn-Cr-Cl] and [Cu-Cr-Cl] Layered Double Hydroxides: A XRD and EXFS Study, J. Phys. Chem. B, 2000, 104(25), 5935-5923
    [14] Rives V., Kannan S., Layered double hydroxides with the hydrotalcite-type structure containing Cu~(2+), Ni~(2+) and Al~(2+), J. Mater. Chem., 2000(10), 10, 489-495
    [15]Taylor R. M., The rapid formation of crystalline double hydroxyl salts and other compounds by controlled hydrolysis, Clay Miner., 1984, 19, 591-603
    [16]Velu S., Ramaswamy V., Ramani A., Chanda B. M., Sivasanker S., New hydrotalcite-like anionic clays containing Zr~(4+) in the layers, Chem. Commun., 1997, (21), 2107-2108
    [17]Serna C. J., Rendon J. L., Iglesias J. E., Crystal-chemical study of layered [Al_2Li(OH)_6]~(PL) X(super-) - nH_2O, Clays Clay Miner., 1982, 30, 180-184
    [18]Raki L., Rancourt D. G., Detellier C, Preparation, Characterization, and Moessbauer Spectroscopy of Organic Anion Intercalated Pyroaurite-like Layered Double Hydroxides, Chem. Mater., 1995, 7(1), 221-224
    [19]Whilton N. T., Vickers P. J., Mann S., Bioinorganic Clays: synthesis and characterization of amino- and polyamine acid intercalated layered double hydroxides, J. Mater. Chem., 1997, 7(8), 1623-1629
    [20] Lopez-Salinas E., Ono Y., Intercalation chemistry of a Mg-Al layered double hydroxides ion-exchanged with complex MCl_4~(2-) (M=Ni Co) ions from organic media, Microporous Mater., 1993,1(1), 33-42
    [21]Carlino S., The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods, Solid State Ionics, 1997, 98(1-2), 73-84
    [22]Hansen H. C. B., Koch C. B., Synthesis and properties of hexacyanoferrate interlayered into hydrotalcite: I Hexacyanoferrate(II), Clays Clay Miner., 1994, 42, 170-179
    [23]Kelkar C. P., Schutz A. A., Ni-, Mg- and Co- containing hydrotalcite-like materials with a sheet-like morphology: synthesis and characterization, Microporous Mater., 1997,10(4-6) 163-172
    [24]Serwicka E. W., Nowak P., Bahranowski K., Jones W., Kooli F., Insertion of electrochemically reduced Keggin anions into layered double hydroxides, J. Mater. Chem., 1997, 7(9), 1937-1939
    [25]Kwon T., Tsigdinos G. A., Pinnavaia T. J., Pillaring of layered double hydroxides (LDH's) by polyoxometalate anions, J. Am. Chem. Soc, 1988, 110(11), 3653-3654
    [26]Ren L. L., Fie J., Zhang S. C, Evans D. G, Duan X., Ma R. Y., Immobilization of penicillin gacylase in layered double hydroxides pillared by glutamate ions, J. Mol. Catal: B-Enzym., 2002, 18, 3-11
    [27]Choy J. H., Jung J. S., Oh J. M., Park M., Jeong J., Kang Y. K., Han O. J., Layered double hydroxide as an efficient drug reservoir for folate derivatives, Biomaterials, 2004,25, 3059 - 3064
    [28]Casenave S., Martinez H., Guimon C, Auroux A., Hulea V., Dumitriu E., Acid and base properties of MgCuAl mixed oxides, J. Therm. Anal. Calorim., 2003, 72, 191-198
    [29]Park M., Lee C, Lee E. J., Choy J. H., Kim J. E., Choi J., Layered double hydroxides as potential solid base for beneficial remediation of endosulfan-contaminated soils, J. Phys. Chem. Solids, 2004, 65, 513-516
    [30] You Y. W., Use of layered double hydroxides and their derivatives as absorbents for inorganic and organic pollutants, PhD thesis, Department of Renewable Resources, the University of Wyoming, 2002
    [31]Tronto J., Cardoso L. P., J. B. Valim, Studies of the intercalation and "in vitro" liberation of amino acids in magnesium aluminium layered double hydroxides, Mol. Cryst. Liq. Cryst, 2003, 390, 79-89
    [32]Vaccari A., Preparation and catalytic properties of cationic and anionic clays, Catal. Today, 1998, 41(3), 53-71
    [33]Guenane M., Forano C, Besse J. P., Intercalation of Organic Pillars in [Zn-Al] and [Zn-Cr] Layered Double Hydroxides, Mater. Sci. Forum, 1994, 152/153, 343-346
    [34]Meyn M., Beneke K., Lagaly G., Anion-exchange reactions of layered double hydroxides, Inorg. Chem., 1990, 29(26), 5201-5206
    [35] Wei M., Shi S. X., Wang J., Li Y., Duan X., Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD, J. Solid State Chem., 2004, 177, 2534-2541
    [36]Hao H., Nagy K., Dodecyl sulfate-hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water, J. Colloid Interf. Sci., 2004, 274, 613-624
    [37]Iyata S., Physico-chemical properties of synthetic hydrotalcites in relation to composition, Clays Clay Miner., 1980, 28, 50-55
    [38]Stanimirova T., Kirov G., Cation composition during recrystallization of layered double hydroxides from mixed (Mg, Al) oxides, Appl. Clay Sci., 2003, 22, 295-301
    [39]Sato T., Fujita H., Endo T., Shimada M., Tsunashima A., Synthesis of hydrotalcite-like compounds and their pyhsico-chemical properties, React. Solids, 1988, 5(2-3), 219-228
    [40]Kooli F., Rives V., Ulibarri M. A., Vanadate-Pillared Hydrotalcite Containing Transition Metal Cations, Mater. Sci. Forum, 1994, 152/153, 375-378
    [41]Carlino S., Hudson M. J., Husain S. W., The reaction of mloten phenylphosphonic acid with a layered double hydroxide and its calcined oxide, Solid State Ionics, 1996, 84(1-2), 117-129
    [42]Carlino S., Hudson M. J., Thermal Intercalation of Layered Double Hydroxides: Capric Acid into an Mg-Al LDH, J. Mater. Chem., 1995, 5(9), 1433-1442
    [43]Carlino S., Hudson M. J., Reaction of molten sebacic acid with a layered (Mg/AI)double hydroxide, J. Mater. Chem., 1994, 4(1), 99-104
    [44]Carpentier J., Lemonier J. F., Siffert S., Zhilinskaya E. A., Aboukais A., Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene, Appl. Catal. A. Gen., 2002, 234(1-2), 91-101
    [45]Leroux F., Besse J. P., Polymer Interleaved Layered Double Hydroxides: A New Emerging Class of Nanocomposites, Chem. Mater., 2001, 13(10), 3507-3515
    [46]Inacio J., Taviot-Gueho C, Forano C, Besse J. P., Adsorption of MCPA pesticide by MgAl- layered double hydroxides, Appl. Clay Sci., 2001, 18(5-6) 255-264
    [47]You Y., Zhao H., Vance G. F., Adsorption of dicamba (3,6-dichoro-2-methoxy benzoic acid) in aqueous solution by calcined- layered double hydroxides, Appl. Clay Sci., 2002,21(5-6), 217-226
    [48]Prevot V., Casal B., Ruiz-Hitzky E., Intracrystalline aldylation of benzoate ions into layered double hydroxides, J. Mater. Chem., 2001, 11, 554 - 560
    [49] Gardner E., Huntoon K. M., Pinnavaia T. J., Direct Synthesis of Alkonide-Intercalated Derivatives of Hydrotalcite-like Layered Double Hydroxides: Precursors for the Formation of Colloidal Layered Double Hydroxide Suspensions and Transparent Thin Films, Adv. Mater.,2001, 13(16), 1263-1266
    [50]Ogawa M., Kuroda K., Photofunctions of intercalation compounds, Chem. Rev., 1995, 95(2), 399-438
    [51]Szostak R., Ingram C, in: Beyer H. K., Karge H. G., Kiricsi I.. Nagy J. B. (Eds.), Catalysis by Microporous Materials, Elsevier, Amsterdam, Stud. Surface Sci. Catal., 1995,94, 13-38
    [52]Pinnavaia T. J., Chibwe M., Constantino V. R. L., Yun S. K., Organic chemical conversions catalyzed by intercalated layered double hydroxides (LDHs), Appl. Clay Sci., 1995,10(1-2), 117-129
    [53]Drezdzon M. A., Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors, Inorg. Chem., 1988, 27, 4628-4632
    [54]Choudary B. M., Kantam M. L., Bharathi B., Superactive Mg-Al-O-t-Bu hydrotalcite for epoxidation of olefins, Synlett., 1998, 1203-1042
    [55]Choudary B. M., Lakshmi K. M., Kavita B., Aldol condensation catalysed by novel Mg-Al-o-Bu- hydrotalcite, Tetrahed Lett., 1998, 39(21), 3555-3558
    [56]Zhang H., Qi R., Evans D. G, Duan X., Synthesis and characterization of a novel nano-scale magneticsolid base catalyst involving a layered double hydroxide supported on a ferrite core, J. Solid State Chem., 2004, 177, 772-780
    [57]Corma A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev., 1997, 97(6), 2373-2420
    [58]Zhang L. H., Li F., Evans D. G., Duan X., Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides, Mater. Chem. Phys., 2004, 87, 402-410
    [59]S Velu., Suzuki K., Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Topics in Catalysis, 2003, 22(3-4), 235-244
    [60]Narayanan S., Krishna K., Hydrotalcite-supported palladium catalysts Part II. Preparation, characterization of hydrotalcites and palladium hydrotalcites for CO chemisorption and phenol hydrogenation, Appl. Catal. A: Gen., 2000, 198, 13-21
    [61]Hu C, He Q. L, Zhang Y. H., Wang E. B., Okuhara T., Misono M., Synthesis, stability and oxidative activity of polyoxometalates pillared anionic clays ZnAl-SiW_(11) and ZnAl-SiW_(11)Z, Catal. Today, 1996, 30, 141-146
    [62]Beaudot P., de Roy M. E., Besse J. P., Intercalation of noble metal complexes in LDH compounds, J. Solid State Chem., 2004,177, 2691-2698
    [63]Ukrainczyk L., Chibwe M., Pinnavaia T. J., Boyd S. A., ESR study of Cobalt(II) Tetrakis (N-methyl-4-pyridiniumyl) porphyrin and Cobalt(II) Tetrasulfophthalocyanine Intercalated in Layered Aluminosilicates and a Layered Double Hydroxides, J. Phys. Chem., 1994, 98(10), 2668-2676
    [64]Carrado K. A., Forman J. E., Botto R. E., Winans R. E., Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis, Chem. Mater., 1993, 5(4), 472-478
    [65]Narayanan S., Krishna K., Hydrotalcite-supported palladium catalysts: Part I: Preparation, characterization of hydrotalcites and palladium on uncalcined hydrotalcites for CO chemisorption and phenol hydrogenation, Appl. Catal., 1998, 174(1-2), 221-229
    [66] Chibwe M., Pinnavaia T. J., Stabilization of a cobalt(II) phthalocyanine oxidation catalyst by intercalation in a layered double hydroxide host, J. Chem. Soc, Chem. Commun., 1993(3), 278-280
    [67]Perez-Bernal M. E., Ruano-Casero R., Pinnavaia T. J., Catalytic autoxidation of 1-decanethiol by cobalt(II) phthalocyaninetetrasulfonate intercalated in a layered double hydroxide, Catal. Lett., 1991, 11(1), 55-61
    [68]Miyata S., Eur. Patent 152, 010 (1985), to Kyowa Chem. Ind. Co.
    [69]Kopka H., Beneke K., Lagaly G., Anionic surfactants between double metal hydroxide layers, J. Colloid Interface Sci., 1988, 123(2), 427-436
    [70]Neil O., Gary A., Goyak, Method for removing color-imparting contaminants from pulp and paper waste streams using a combination of adsorbents[P], US: 5378367, 1995-1-3
    
    [71]Jakupca M., Dutta P. K., Thermal and Spectroscopic Analysis of a Fatty Acid- Layered Double Hydroxides and Its Application as a Chromatographic Stationary Phase, Chem. Mater., 1995, 7(5), 989-994
    [72]Bonnet S., Forano C, de Roy A., Besse J. P., Synthesis of Hybrid Organo-Mineral Materials : Anionic Tetraphenylporphyrins in Layered Double Hydroxides, Chem. Mater., 1996, 8(8), 1962-1968
    [73]Robins D. S., Dutta P. K., Examination of Fatty Acid Exchanged Layered Double Hydroxides as Supports for Photochemical Assemblies, Langmuir, 1996, 12(2), 402-408
    
    [74]Choy J. H., Kwak S. Y., Park J. S., Eur. Pat. Appl., EP200,003, 22, 2000
    [75]Lotsch B., Millange F., Walton R. I., O'Hare D., Separation of nucleoside monophosphates using preferential anion exchange intercalation in layered double hydroxides, Solid State Sci., 2001, 3(8), 883-886
    [76]Ambrogi V., Fardella G., Grandolini G., Perioli L., Intercalation compounds of hydrotalcite-like anionic clays with antiinfiammatory agents-I. Intercalation and in vitro release of ibuprofen, Int. J. Pharm., 2001, 220(1-2), 23-32
    
    [77]Khan A. I., Lei L., Norquist A. J., O'Hare D., Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxides, Chem. Commun., 2001, (22), 2342-2343
    [78]J. H. Choy, Y. H. Son, Intercalation of Vitamer into LDH and Their Controlled Release Properties, Bull. Korean Chem. Soc, 2004, 25(1), 122-126
    [79]Aisawa S., Takahashi S., Ogasawara W., Umetsu Y., Narita E., Direct Intercalation of Amino Acids into Layered Double Hydroxides by coprecipitation, J. Solid State Chem., 2001, 162(1), 52-62
    [80]Legrouri A., Lakraimi M., Barroug A., de Roy A., Besse J. P., Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides, Water Res., 2005, 39(15), 3441-3448
    [81] Shannon I. J., Maschmeyer T., Sankar G., Thomas J. M., Oldroyd R. D., Sheehy M., Madill D., Waller A. M., Townsend R. P., A new cell for the collection of combined EXAF/XRD data in situ during solid/liquid catalytic reactions, Catal. Lett., 1997,44(1-2), 23-27
    [82]Clausen B. S., Lengeler B., Rasmussen B. S., X-ray absorption spectroscopy study of copper-based methanol catalysts. 1. Calcined state, J. Phys. Chem., 1985, 89(11), 2319-2324
    [83]Del Piero G., Conca M. Di, Trifiro F., Vaccari A., in Barret P., Dufour L. C. (Editors), Reactivity of Solids, Elsevier, Amsterdam, 1985, 1029
    [84]Drago R. S., Jurczyk K., Kob N., Catalyzed decomposition of N_2O on metal oxide supports, Appl. Catal. B: Environ., 1997, 13(1), 69-79
    [85]Dandl H., Emig G., Mechanistric approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites, Appl. Catal. A: Gen., 1998, 168(2), 261-268
    [86]Medina F., Dutartre R., Tichit D., Coq B., Dung N. T., Salagre P., Sueiras J. E., Characterization and activity of hydrotalcite-type catalysts for acetonitrile hydrogenation, J. Mole. Catal. A: Chem., 1997, 119(1-3), 201-212
    [87] Chen Y. Z., Liaw C. W., Lee I. I., Selectibe hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite, Appl. Catal. A: Gen., 1999,177(1), 1-8
    [88]Dumitriu E., Julea V., Chelaru C, Catrinescu C, Tichit D., Durand R., Influence of the acid-base properties of solid catalysts derived from hydrotalcite-like compounds on the condensation of formaldehyde and acetaldehyde, Appl. Catal. A: Gen., 1999, 178(2), 145-157
    [89]Aramendy M. A., Aviles Y., Benytez J. A., Borau V., Jimenez C, Marinas J. M.. Ruiz J. R., Urbano F. J., Comparative study of Mg/Al and Mg/Ga layered double hydroxides, Microporous Mesoporous Mater., 1999, 29(3), 319-328
    [90]Velu S., Swamy C. S., Alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcites, Appl. Catal. A: Gen., 1994, 119(2), 241-252
    [91]Velu S., Swamy C. S., Selective. C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds, Appl. Catal. A: Gen., 1996, 145(1-2), 141-153
    [92] Christoskova St. G., Stoyanova M., Georgieva M., Low-temperature iron-modified cobalt oxide system: Part 2. Catalytic oxidation of phenol in aqueous phase, Appl. Catal. A: Gen., 2001, 208(1-2), 243-249
    [93]Barrault J., Bouchoule C, Echachoui K., Frini-Srasra N., Trabelsi M., Bergaya F., Catalytic wet peroxide oxidation (CWPO) of phenol over (Al-Cu) - pillared clays, Appl. Catal. B: Environ., 1998, 15(3-4), 269-274
    [94]Robins D. S., Dutta P. K., Examination of Fatty Acid Exchanged Layered Double Hydroxides as Supports for Photochemical Assemblies, Langmuir, 1996, 12(2), 402-408
    [95]Arco M. D., Cebadera E., Gutierrez S., Martin C, Montero M. J., Rives V., Rocha J., Sevilla M. A., Mg, Al Layered Double Hydroxides with intercalated Indomethacin: Synthesis, Characterization, and Pharmacological Study, J. Pharm Sci., 2004,93, 1649-1658
    [96]Gaillon L., Bedioui F., Battioni J. D., Electrochemical characterization of manganese prophyrins fixed onto silica and layered dihydroxide matrices, J. Electroanal. Chem., 1993, 347(1-2), 435-442
    [97] Edelstein N. M., Comparison of the electronic structure of the lanthanides and actinides, J. Alloys Compd., 1995, 223, 197-203
    [98]Alexander V., Design and Synthesis of Macrocyclic Ligands and Their Complexes of Lanthanids and Actinides, Chem. Rev., 1995, 95(2), 273-342
    [99]Piguet C, Bunzli J. C. G, Mono-and polymetallic lanthanide-containing functional assembilies: a field between tradition and novelty, Chem. Soc. Rev., 1999, 28(6), 347-358
    [100] Moeller Jr. T., The chemistry of the lanthanides, in: Bailar Jr. J. C, Emeleus H. J., Nyholm R., Trotman-Dickenson A. F. (Eds.), Comprehensive Inorganic Chemistry, Pergamon, Oxford, 1975
    [101] Ronda C. R., Justel T, Nikol H., Rare earth phosphors: fundamentals and applications, J. Alloys Compd., 1998, 275-277, 669-676
    [102] I mamura S., Yamashita T., Hamada R., Saito Y., Nakao Y, Tuda N., Kaito C, Strong interaction between rhodium and ceria, J. Mol. Catal. A: Chem., 1998, 129(2-3), 249-256
    [103] Yang R. T., Tharappiwattananon N., Long R. Q., Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen, Appl. Catal. B: Environ., 1998, 19(3-4), 289-304
    [104] Feldmann C, Justel T., Ronda C. R., Schmidt P J., Inorganic Luminescent Materials: 100 Years of Research and Application, Adv. Funct. Mater., 2003, 13(7), 511-516
    [105] Li C, Wang G, Wang L. Y, Evans D. G, Duan X., Incorporation of rare earth ions in Mg-Al layered double hydroxides: intercalation with an [Eu(EDTA)]~- chelate, J. Solid State Chem.. 2004, 177(12), 4569-4575
    [106] Gellings P. J., Bouwmeester H. J. M., Solid state aspects of oxidation catalysis, Catal. Today, 2000, 58, 1-53
    [107] Louis C, Chang T. L., Kermarec M., LeVan T., Tatibouet J. M., Chea M., EPR study of the stability and the role of the O~(2-) species on La_2O_3 in the oxidative coupling of methane, Catal. Today, 1992,13(2-3), 283-289
    [108] Wang J. A., Chen L., Li C, Roles of cerium oxides and the reducibility and recoverability of the surface oxygen species in the CeO_2/MgAl_2O_4 catalysts, J. Mol. Catal. A: Chem., 1999, 139(2-3), 315-323
    [109] Sayle T. X. T., Parker S. C, Catlow C. R. A., Surface Segregation of Metal Ions in Cerium Dioxide, J. Phys. Chem., 1994, 98(51), 13625-13630
    [110] Horrocks W. D., Sudnick J. D. R., Lanthanide ion luminescence probes of the structure of biological macromolecules, Acc. Chem. Res., 1981, 14(12), 384-392
    [111] Parker D., Luminescent lanthanide sensors for pH, pO_2 and selected anions, Coord. Chem. Rev., 2000, 205(1), 109-130
    [112] Parker D., NMR determination of enantiomeric purity, Chem. Rev., 1991, 91(7), 1441-1457
    [113] Caravan P., Ellison J. J., McMurry T. J., Lauffer R. B., Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications, Chem. Rev., 1999, 99(9), 2293-2352
    
    [114] Imamoto T., Lanthanides in Organic Synthesis, Academic Press, London, 1994
    [115] Komiyama M., Takeda N., Shigekawa H., Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications, Chem. Commun., 1999,16, 1443-1451
    [116] Sinha S. P., Structure and bonding in highly coordinated lanthanide complexes, Struct. Bond., 1976, 25, 69-149
    [117] Pearson R. G, Hard and Soft Acids and Bases, J. Am. Chem. Soc, 1963, 85(22), 3533-3539
    [118] Cotton S. A., Encyclopedia of Inorganic Chemistry, Scandium, Yttrium and the Lanthanides: Inorganic Coordination Chemistry, (Eds.) King R. B., Wiley J., Chichester, 1994
    [119] Albertsson J., Structural studies on the rare earth carboxylates, Acta Chem. Scand., 1972, 26(3), 1023-1044
    [120] Benazeth S., Purans J., Chalbot M. C, Nguyen-van-Duong M. K., Nicolas L., Keller F., Gaudemer A., Temperature and pH Dependence XAFS Study of Gd(DOTA)~- and Gd(DTPA)~(2-) Complexes: Solid State and Solution Structures, Inorg. Chem., 1998, 37, 3667-3674
    [121] Weaver M. S., Lidzey D. G, Pavier M. A., Mellor H., Thorpe S. L., Bradley D. D. C, Richardson T, Searle T. M, Huang C. H., Lui H., Zhou D., Organic light-emittingdiodes (LEDS) based on langmuir-Blodgett films containing rare-earth complexes, Synth. Met., 1996, 76(1-3), 91-93
    [122] Zheng Y. X., Liang J. L., Lin Q., Yu Y. N., Meng Q. G, Zhou Y. H., Wang S. B., Wang H. A., Zhang H. J., A comparative study on the electroluminescence properties of some terium β-diketonate complexes, J. Mater. Chem., 2001, 11(10), 2615-2619
    [123] Dirr S., Wiese S., Johannes H. H., Ammermann D., Bohler A., Grahn W., Kowalsky W., Luminescence enhancement in microcavity organic multilayer structures, Synth. Met., 1997, 91(1-3), 53-56
    [124] Meng Q. G, Preparation, Characterization and Luminescence Properties of Organic-Inorganic Hybrids Processed by Wet Impregnation of Mesoporous Silica, PhD thesis, Lab des Materiaux Inorganiques, Universite Blaise Pascal, 2005
    
    [125] Meng Q. G., Boutinaud P., Franville A. C, Zhang H. J., Mahiou R., Preparation and characterization of luminescent cubic MCM-48 impregnated with an Eu~(3+) b-diketonate complex, Microporous and Mesoporous Materials, 2003, 65, 127-136
    [126] Alvaro M., Fornes V., Garcia S., Garcia H., Scaiano J. C, Intrazeolite Photochemistry. 20. Characterization of Highly Luminescent Europium Complexes inside Zeolites, J. Phys. Chem. B, 1998, 102(44), 8744-8750
    [127] Gellings P. J., Bouwmeester H. J. M., Ion and mixed conducting oxides as catalysts, Catal. Today, 1992, 12(1), 1-101
    [128] Trovarelli A., de Leitenburg C, Boaro M., Dolcetti G., The utilization of ceria in industrial catalysis, Catal, Today, 1999, 50, 353-367
    [129] 叶兴凯,陈勤,催化学报,1984,4,303—310
    [130] Palomares A. E., Lopez-Nieto J. M., Lazaro F. J., Lopez A., Corma A., Reactivity in the removal of SO_2 and NO_x on Co/Mg/Al mixed oxides derived from hydrotalcites, Appl. Cata. B: Environ., 1999, 20(4), 257-266
    [131] 刘光华,稀土固体材料学,机械工业出版社,1997
    [132] 宾月景,祝万鹏,蒋展鹏,殷彤,杨志华.催化湿式催化剂及处理抟术研究,环境科学,1999,20(2),42-44
    [133] Yoo J. S., Jaecker J. A., US Patent 4 469 589, 1984
    [134] Ozawa M., Kimura M., Isogai A., Matsumoto S., Miyoshi N., Ger. Offen, DE 3 913 972, 1989
    [135] Sanchez M. G., Schmidt S. R., Ernest M. V., US Patent 5 102 850, 1992
    [136] Bhattacharyya A. A., Woltermann G. M., Yoo J. S., Karch J. A., Cormier W. E., Catalytic SOx abatement: the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas, Ind. Eng. Chem. Res., 1988, 27(8), 1356-1360
    [137] Waqif M., Bazin P., Saur O., Lavalley J. C., Blanchard G., Touret O., Study of ceria sulfation, Appl. Catal. B: Environ., 1997, 11(2), 193-205
    [138] Sayle D. C., Sayle T. X. T., Parker S. C., Harding J. H., Catlow C. R. A., The stability of defects in the ceramic interface, MgO/MgO and CeO_2/Al_2O_3, Surf. Sci., 1995, 334(1-3), 170-178
    [139] Sayle D. C., Sayle T. X. T., Parker S. C., Catlow C. R. A., Harding J. H., Effect of defects on the stability of heteroepitaxial ceramic interfaces studied by computer simulation, Phys. Rev. B, 1994, 50(19), 14498-14505
    [140] Day A. R., Catalytic Oxidation of Ethyl Alcohol, J. Phys. Chem., 1931, 35(11), 3272-3279
    [141] Lawdermilk F. R., Day A. R., A study of vapor phase oxidation of organic compounds using rare earth oxides as catalysts. Ⅰ. methyl and ethyl alcohols, J. Am. Chem. Soc., 1930, 52, 3535-3545
    [142] Mantzavinos D., Catalytic Wet Oxidation of p- Coumaric Acid: Partial Oxidation Intermediates Reaction Pathways and Catalyst Leaching, Appl. Cata. B: Environ., 1996, 7, 379-396
    [143] Agarwal S. K., Spivey J. J., Butt J. B., Deep oxidation of hydrocarbons, Appl. Catal. A: Gen., 1992, 81(1) 239-255
    [144] Yu-Yao Y. -F., Kummer J. T., Low-concentration supported precious metal catalysts prepared by thermal transport, J. Catal., 1987, 106(1), 307-312
    [145] Dictor R., Roberts S., Influence of ceria on alumina-supported rhodium: observation of rhodium morphology made using FTIR spectroscopy, J. Phys. Chem., 1989, 93(15), 5846-5850
    [146] Le Normand F., Hilaire L., Kili K., Krill G., Maire G., Oxidation state of cerium in cerium-based catalysts investigated by spectroscopic probes, J. Phys. Chem., 1988, 92(9), 2561-2568
    [147] 张立红,高分散铜基复合氧化物的均匀性制备及其结构与催化性能,博士学位论文,北京化工大学,2006
    [148] Jin T., Okuhara T., Mains G. J., White J. M., Temperature-programmed desorption of carbon monoxide and carbon dioxide from platinum/ceria: an important role for lattice oxygen in carbon monoxide oxidation, J. Phys. Chem., 1987, 91(12), 3310-3315
    [149] James E. A., James R. A., Jeffrey A. M., John O. T., Low Temperature Aqueous Catalytic Oxidation of Phenol, Chemosphere, 1997, 34(1), 203-212
    [150] Rajesh H., Ozkan U. S., Complete oxidation of ethanol, acetaldehyde and ethanol/methanol mixtures over copper oxide and copper-chromium oxide catalysts, Ind. Eng. Chem. Res., 1993, 32(8), 1622-1630
    [151] Kapteijn F., Stegenga S., Dekker N. J. J., Bijsterbosch J. W., Moulijn J. A., Alternatives to Noble Metal Catalysts for Automotive Exhaust Purification, Catal. Today, 1993, 16(2), 273-287
    [152] Goetz V. N., Sood A., Kittrell J. R., Catalyst Evaluation for the simultaneous Reduction of Sulfur Dioxide and Nitric Oxide by Carbon Monoxide, Ind. Eng. Chem. Prod. Res. Develop., 1974, 13(2), 110-114
    [153] Kummer J. T., Catalysts for automobile emission control, Prog. Energy Combust. Sci., 1980, 6(2), 177-199
    [154] Alexander J-dyakonov, Modification of Transition Metal Catalysts with RareEarth Elements, Appl. Cata. A: Gen., 2000, 192, 235-246
    [155] Schuth F., Oxide Loaded Ordered Mesoporous Oxides for Catalytic Applications, Microporous Mesoporous Mater., 2001, 44/45,465-476
    [156] Park P. W., Ledford J. S., The influence of surface structure on the catalytic activity of cerium promoted copper oxide catalysts on alumina: oxidation of carbon monoxide and methane, Catal. Lett., 1998, 50, 41-48
    [157] Liu W., Sarofim A. F., Flytzani-Stephanopoulos M., Reduction of sulfur dioxide by carbon monoxide to elemental sulfur over composite oxide catalysts, Appl. Catal. B: Environ., 1994, 4(2-3), 167-186
    [158] Liu W., Flytzani-Stephanopoulos M., Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: I Catalyst Composition and Activity, J. Catal., 1995, 153(2), 304-316
    [159] Stanko H., Wet Oxidation of Phenol on Ce_(1-x)Cu_xO_(2-y) Catalyst, J. Catal., 1999, 184, 39-48
    [160] Pestryakov A. N., Davydov A. A., The influence of modifying additions of La and Ce oxides on electronic state of surface atoms and ions of supported copper, Appl. Surface Sci., 1996, 103, 479-483
    [161] Liu W., Flytzani-Stephanopoulos M., Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu-CeO_2, Chem. Eng. J., 1996, 64, 283-294
    [162] Ferrandon M., Ferrand B., Bjornbom E., Klingstedt F., Kalantar Neyestanaki A., Karhu H., V ayrynen I. J., Copper Oxide-Platinum/Alumina Catalysts for Volatile Organic Compound and Carbon Monoxide Oxidation: Synergetic Effect of Cerium and Lanthanum, J. Catal., 2001, 202, 354-66
    [163] 孟锦宏,山梨酸、乳酸和草甘膦插层水滑石的组装及其超分子结构与性能研究,博士学位论文,北京化工大学,2004
    [164] Gregg S. J., Sing K. S. W., Adsorption, Surface Area and Porosity, Academic Press, London, 1982
    [165] Arena F., Giovenco R., Torre T., Venuto A., Parmaliana A., Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol, Appl. Catal. B: Environ., 2003, 45, 51-62
    [166] Imamura S., Nakamura M., Kawabata N., Yoshida J., Ishida S., Wet oxidation of poly (ethylene glycol) catalyzed by manganese-cerium composite oxide, Ind. Eng. Chem. Prod. Res. Dev., 1986, 25(1), 34-37
    [167] Gago S., Pillinger M, Ferreira R. A. S., Carlos L. D., Santos T. M, Gonsalves I. S., Immobilization of Lanthanide Ions in a Pillared Layered Double Hydroxide, Chem. Mater., 2005, 17, 5803-5809
    [168] Tsyganok A. I., Suzuki K., Hamakawa S., Takehira K., Hayakawa T., Alternative Approach to Incorporation of Nickel into Layered Structure of Mg-Al Double Hydroxides: Intercalation with [Ni(edta)~(2-)] species, Chem. Lett., 2001, 30(1), 24
    [169] Kaneyoshi M., Jones W., Formation of Mg-Al layered double hydroxides intercalated with nitrilotriacetate anions, J. Mater. Chem., 1999, 9, 805-812
    [170] Rocha J., Carlos L. D., Mircroporous materials containing lanthanide metals, Curr. Opin. Solid State Mater. Sci., 2003, 7(3), 199-205
    [171] Sendor D., Kynast U., Efficient Red-Emitting Hybrid Materials Based on Zeolites, Adv. Mater., 2002,14(21), 1570-1574
    [172] Li H. R., Lin J., Zhang H. J., Fu L. S., Meng Q. G., Wang S. B., Preparation and Luminescence Properties of Hybrid Materials Containing Europium(III) Complexes Covalently Bonded to a silica Matrix, Chem. Mater., 2002, 14(9), 3651-3655
    [173] Brunet E., de la Mata M. J., Juanes O., Rodriguez-Ubis J. C, Sensitized Luminescence of Lanthanides within the Walls of Polyethylenoxa-Pillared γ-zirconium Phosphate, Chem. Mater., 2004, 16(8), 1517-1522
    [174] Zhuravleva N. G., Eliseev A. A., Lukashin A. V., Kynast U., Tretyakov Y. D., Luminescent Materials Based on Tb- and Eu- Containing Layered Double Hydroxides, Dokl. Chem., 2004, 396(1-3), 87-91
    [175] Tarasov K. A., O'Hare D., Solid-State Chelation of Metal Ions by Ethylenediaminetetraacetate Intercalated in a Layered Double Hydroxide, Inorg. Chem., 2003,42(6), 1919-1927
    [176] Tsyganok A. I., Tsunoda T., Hamakawa S., Suzuki K., Takehira K., Hayakawa T., Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides, J. Catal., 2003, 213, 191-203
    [177] Gutmann N. H., Spiccia L., Turney T. W., Complexation of Cu(II) and Ni(II) by nitrilotriacetate intercalated in Zn-Cr layered double hydroxides, J. Mater. Chem., 2000,10(5), 1219-1224
    [1] Carpentier J., Lemonier J. F., Siffert S., Zhilinskaya E. A., Aboukais A., Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene, Appl. Catal. A. Gen., 2002, 234(1-2), 91-101
    [2] Khan A. I., Lei L., Norquist A. J., O'Hare D., Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxides, Chem. Commun., 2001, (22), 2342-2343
    [3] Pinnavaia T. J., Beall G. W., in: Polymer-Clay Nanocomposites, Wiley, West Sussex, 2000
    [4] Leroux F., Besse J. P., Polymer Interleaved Layered Double Hydroxides: A New Emerging Class of Nanocomposites, Chem. Mater., 2001, 13(10), 3507-3515
    [5] Rives V., Ulibarri M. A., Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates, Coordin. Chem. Rev., 1999, 181(1), 61-120
    [6] Inacio J., Taviot-Gueho C., Forano C., Besse J. P., Adsorption of MCPA pesticide by MgAl- layered double hydroxides, Appl. Clay Sci., 2001, 18(5-6), 255-264
    [7] You Y., Zhao H., Vance G. F., Adsorption of dicamba (3,6-dichoro-2-methoxy benzoic acid) in aqueous solution by calcined- layered double hydroxides, Appl. Clay Sci., 2002, 21(5-6), 217-226
    [8] Lopez T., Bosh P., Ramos E., Gomez R., Novaro O., Acosta D., Figueras F, Synthesis and Characterization of Sol-Gel Hydrotalcites: Structure and Texture, Langmuir, 1996, 12(1), 189-192
    [9] Ogawa M., Kaiho H., Homogeneous Precipitation of Uniform Hydrotalcite Particles, Langmuir, 2002, 18(11), 4240-4242
    [10]Adachi-Pagano M, Forano C, Besse J. P., Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology, J. Mater. Chem., 2003, 13(8), 1988-1993
    [11]Kooli F., Depege C, Ennaqadi A., de Roy A., Besse J. P., Rehydration of Zn-Al layered double hydroxides, Clays Clay Miner., 1997, 45, 92-98
    [12]He J., Li B., Evans D. G., Duan X., Synthesis of layered double hydroxides in an emulsion solution, Colloids Surf. A: Physicochem. Eng. Aspects, 1999, 251(1-3) 191-196
    [13]de Roy A., Forano C, Besse J. P., in Layered Double Hydroxides: Present and Future, V. Rives (Ed.), chapter 1, Nova Science Publishers, New York, USA, 2001
    [14]Cavani F., Trifiro F., Vaccari A., Hydrotalcite-type anionic clays: preparation, properities and applications, Catal. Today, 1991, 11, 173-301
    
    [15]de Roy A., Forano C, El Malki K., Besse J. P., in: M. L. Occelli, H. E. Robson (Eds.), Synthesis of Microporous Materials, vol. 2, Expanded Clays and Other Microporous Systems, Van Nostrand Reinhold, New York, 1992, 108-169
    [16]Boclair J. W., Braterman P. S.. Layered Double Hydroxides Stability. 1. Relative Stabilities of Layered Double Hydroxides and Their Simple Counterparts, Chem. Mater., 1999, 11(2)298-302
    [17]Basile F., Fornasari G., Gazzano M., Vaccari A., Synthesis and thermal evolution of hydrotalcite-type compounds containing noble metals, Appl. Clay Sci., 2000, 16(3-4), 185-200
    [18]Labajos F. M., Rives V., Ulibarri M. A., Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials, J. Mater. Sci., 1992, 27(6), 1546-1552
    [19]Mohmel S., Kurzawski I., Muller D., Geβner W., The Influence of a Hydrothermal Treatment using Microwave Heating on the Crystallinity of Layered Double Hydroxides, Cryst. Res. Tech., 2002, 37(4), 359-369
    [20]Zhao Y, Li F., Zhang R., Evans D. G, DuanX., Preparation of Layered Double Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging steps, Chem. Mater., 2002, 14(10), 4286-4291
    [21]Malherbe F., Forano C, Besse J. P., Use of organic media to modify the surface and porosity properties of hydrotalcite-like compounds, Microporous Mater., 1997, 10(1-3), 67-84
    [22]Courty Ph., Marcilly Ch., in: Preparation of Catalysts III, Poncelet G, Grange P., Jacobs P. A. (Eds.), Elsevier Science Publishers, Amsterdam, The Netherlands, 1983,485
    [23]Benet N., Muhr H., Plasari E., Rousseaux J. M., New technologies for the precipitation of solid particles with controlled properties, Powder Technol., 2002, 128(2-3), 93-98
    [24]Lagadic I., Leaustic A., Clement R., Intercalation of polyethers into the MPS3 (M=Mn, Cd) host lattice, J. Chem. Soc, Chem. Commun., 1992, (19), 1396-1398
    [25]Li F., Zhang L. H., Evans D. G., Duan X., Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides, Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 244, 169-177
    [26]Kloprogge J. T., Frost R. L., Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co- Hydrotalcites, J. Solid State Chem., 1999, 146(2), 506-515
    [27]Rives V., in Layered Double Hydroxides: Present and Future, Rives V. (Ed.), chapter 4, Nova Science Publishers, New York, USA, 2001
    [28]Fernandez J. M., Barriga C, Ulibarri M. A., Labajos F. M., Rives V., New Hydrotalcite-like Compounds Containing Yttrium, Chem. Mater., 1997, 9, 312-318
    [29]Sato T., Fujita H., Endo T., Shimada M., Synthesis of hydrotalcite-like compounds and their physico-chemical properties, React. Solids, 1988, 5(2-3), 219-228
    [30]Miyata S., Anion-exchange properties of hydrotalcite-like compounds, Clays Clay Miner., 1983,31,305-311
    [31]Brindley G. W., Kikkawa S., Thermal behaviour of hydrotalcite and of anion-exchange forms of hydrotalcite, Clays Clay Miner., 1980, 28, 87-91
    [32]Hernandez M. J., Ulibarri M. A., Rendon J. L, Serna C. J., Thermal stability of Ni, Al double hydroxides with various interlayer anions, Thermochim. Acta, 1984, 81, 311-318
    [33]Fernandez J. M., Barriga C, Ulibarri M. A., Labajos F. M., Rives V., Preparation and thermal stability of manganese-containing hydrotalcite: [Mg_(0.75)Mn~(II)_(0.04)Mn~(III)_(0.21)(OH)_2](CO_3)_(0.11)·nH_2O, J. Mater. Chem., 1994, 4(7), 1117-1121
    
    [34] Atkins P., de Julia J., Atkins's Physical Chemistry (7~(th) Ed.), Oxford Press, 2001
    [35]Myerson A. S. (Ed.), in: Handbook of Industrial Crystallisation, 2~(nd) Ed., Butterworth-Heinemann, Woburn, MA, USA, 2002
    [36]Sohnel O., Garside J., in: Precipitation: Basic Principles and Industrial Applications, Butterworth-Heinemann, Oxford, UK, 1992
    [37] Jones A. G, in: Crystallisation Process Systems, Butterworth-Heinemann, London, UK, 2002
    [38]Mersmann A., Crystallization and precipitation, Chem. Eng. Process., 1999, 38(4-6), 345-353
    [39]Franke J., Mersmann A., The influence of the operational conditions on the precipitation process, Chem. Eng. Sci., 1995, 50(11), 1737-1753
    [1] Sanchez C., Lebeau B., Chaput F., Boilot J. P., Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites, Adv. Mater., 2003, 15(23), 1969-1994
    [2] Choppin G. R., Baisden E A., Khan S. A., Nuclear magnetic resonance studies of diamagnetic metal-diethylenetriaminepentaacetate complexes, Inorg. Chem., 1979, 18(5), 1330-1332
    [3] Femandes A., Jaud J., Dexpert-Ghys J., Brouca-Cabarrecq C., Study of new lanthanide complexes of 2,6-pyridinedicarboxylate: synthesis, crystal structure of Ln(Hdipic)(dipic) with Ln=Eu, Gd, Tb, Dy, Ho, Er, Yb, luminescence properties of Eu(Hdipic)(dipic), Polyhedron, 2001, 20(18), 2385-2391
    [4] Latva M., Takalo H., Mukkala V. M., Matachescu C., Rodriguez-Ubis J. C., Kankare J., Correlation between the lowest triplet state energy level of the ligand and lanthanide (Ⅲ) luminescence quantum yield, J. Lumin., 1997, 75(2), 149-169
    [5] Franville A. C., Mahiou R., Zambon D., Cousseins J. C., Molecular design of luminescent organic-inorganic hybrid materials activated by europium (Ⅲ) ions, Solid State Sci., 2001, 3(t-2), 211-222
    [6] Gago S., Pillinger M., Ferreira R. A. S., Carlos L. D., Santos T. M., Gonsalves I. S., Immobilization of Lanthanide Ions in a Pillared Layered Double Hydroxide, Chem. Mater., 2005, 17, 5803-5809
    [7] Newman S. P., Jones W., Synthesis characterization and application of layered double hydroxides containing organic guests, New J. Chem., 1998, 22(2), 105-115
    [8] Rives V., Ulibarri M. A., Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates, Coord. Chem. Rev., 1999, 181(1), 61-120
    [9] Tsyganok A. I., Suzuki K., Hamakawa S., Takehira K., Hayakawa T., Alternative Approach to Incorporation of Nickel into Layered Structure of Mg-Al Double Hydroxides: Intercalation with [Ni(edta)~(2-)] species, Chem. Lett., 2001, 30(1), 24
    [10]Kaneyoshi M., Jones W., Formation of Mg-Al layered double hydroxides intercalated with nitrilotriacetate anions, J. Mater. Chem., 1999, 9, 805-812
    [11]Rocha J., Carlos L. D., Mircroporous materials containing lanthanide metals, Curr. Opin. Solid State Mater. Sci., 2003, 7(3), 199-205
    [12]Sendor D., Kynast U., Efficient Red-Emitting Hybrid Materials Based on Zeolites, Adv. Mater., 2002,14(21), 1570-1574
    [13]Li H. R., Lin J., Zhang H. J., Fu L. S., Meng Q. G., Wang S. B., Preparation and Luminescence Properties of Hybrid Materials Containing Europium(III) Complexes Covalently Bonded to a silica Matrix, Chem. Mater., 2002, 14(9), 3651-3655
    [14]Alvaro M., Fornes V., Garca S., Garcia H., Scaiano J. C, Intrazeolite Photochemistry. 20. Characterization of Highly Luminescent Europium Complexes inside Zeloites, J. Phys. Chem. B, 1998, 102(44), 8744-8750
    [15]Brunet E., de la Mata M. J., Juanes O., Rodriguez-Ubis J. C, Sensitized Luminescence of Lanthanides within the Walls of Polyethylenoxa-Pillared γ-zirconium Phosphate, Chem. Mater., 2004, 16(8), 1517-1522
    [16]Li C, Wang G., Evans D. G., Duan X., Incorporation of rare-earth ions in Mg.Al layered double hydroxides: intercalation with an [Eu(EDTA)]~- chelate, J. Solid State Chem., 2004, 177, 4569-4575
    [17]Zhuravleva N. G., Eliseev A. A., Lukashin A. V., Kynast U., Tretyakov Y. D., Luminescent Materials Based on Tb- and Eu- Containing Layered Double Hydroxides, Dokl. Chem., 2004, 396(1-3), 87-91
    [18]Tarasov K. A., O'Hare D., Solid-State Chelation of Metal Ions by Ethylenediaminetetraacetate Intercalated in a Layered Double Hydroxide, Inorg. Chem., 2003, 42(6), 1919-1927
    [19]Tsyganok A. I., Tsunoda T., Hamakawa S., Suzuki K., Takehira K., Hayakawa T., Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides, J. Catal., 2003, 213, 191-203
    [20]Khan A. I., O'Hare D., Intercalation chemistry of layered double hydroxides: recent developments and applications, J. Mater. Chem., 2002, 12, 3191-3198
    [21]Gutmann N. H., Spiccia L., Turney T. W., Complexation of Cu(II) and Ni(II) by nitrilotriacetate intercalated in Zn-Cr layered double hydroxides, J. Mater. Chem., 2000,10(5), 1219-1224
    [22]Miyata S., Anion-exchange properties of hydrotalcite-like compounds, Clays Clay Miner., 1983, 31,305-311
    [23]Albertsson J., Structural studies on the rare earth carboxylates, Acta Chem. Scand., 1972,26(3), 1023-1044
    [24]Kim J. G., Yoon S. K., Sohn Y., Kang J. G., Luminescence and crystal field parameters of the Na_3[Eu(DPA)_3]·12H_2O complex in a single crystalline state, J. Alloys Comp., 1998,274, 1-9
    [25]Dexpert-Ghys J., Picard C, Taurines A., Complexes of Rare Earths and Dipicolinato Ions Encapsulated in X- and Y-zeolites: Luminescence Properties, J. Inclusion Phenomena Macrocyclic Chem., 2001, 39, 261-267
    [26]Kato H., Kanazawa Y., Okumura M., Taninaka A., Yokawa T., Shinohara H., Lanthanoid Endohedral Metallofullerenols for MRI Contrast Agents, J. Am. Chem. Soc, 2003, 125,4391-4397
    [27]Benazeth S., Purans J., Chalbot M. C, Nguyen-van-Duong M. K., Nicolas L., Keller F., Gaudemer A., Temperature and pH Dependence XAFS Study of Gd(DOTA)~- and Gd(DTPA)~(2-) Complexes: Solid State and Solution Structures, Inorg. Chem., 1998, 37, 3667-3674
    [28]Kodama M., Koike T., Mahatma A. B., Kimura E., Thermodynamic and Kinetic Studies of Lanthanide Complexes of 1,4,7,10,13 - Pentaazacyclopentadecane - N,N',N",N'"',N""'- pentaacetic Acid and 1,4,7,10,13,16 - Hexaazacyclooctadecane -N,N',N", N"', N"" N'"" - hexaacetic Acid, Inorg. Chem., 1991, 30, 1270-1273
    [29]Sakagami N., Yamada Y., Konno T., Okamoto K., Crystal structures and stereochemical properties of lanthanide(III) complexes with ethylenediamine - N,N,N',N'- tetraacetate, Inorg. Chim. Acta, 1999. 288, 7-16
    [30]Prevot V., Forano C, Besse J. P., Abraham F., Syntheses and Thermal and Chemical Behaviors of Tartrate and Succinate Intercalated Zn_3Al and Zn_2Cr Layered Double Hydroxides, Inorg. Chem., 1998, 37, 4293-4301
    [31]Inacio J., Taviot-Gueho C, Forano C, Besse J. P., Adsorption of MCPA pesticide by MgAl-layered double hydroxides, Appl. Clay Sci., 2001, 18,255-264
    [32]Meng Q. G., Boutinaud P., Franville A. C, Zhang H. J., Mahiou R., Preparation and characterization of luminescent cubic MCM-48 impregnated with an Eu~(3+) b-diketonate complex, Microporous Mesoporous Mater., 2003, 65, 127-136
    [33]Albertsson J., Structural Studies on the Rare Earth Carboxylates, Acta Chem. Scand., 1970, 24, 1213-1229
    [34]Brzyska W., Oiga W., Preparation and properties of rare earth element complexes with pyridine-2,6-dicarboxylic acid, Thermochimica Acta, 1994,247, 329-339
    [35]Brayshaw P. A., Bunzli J. C. G, Froidevaux P., Harrowfield J. ML, Kim Y., Sobolevt A. N., Synthetic, Structural, and Spectroscopic Studies on Solids Containing Tris(dipicolinato) Rare Earth Anions and Transition or Main Group Metal Cations, Inorg. Chem., 1995, 34, 2068-2076
    [36]Cobb J., Warwick P., Carpenter R. C, R. T. Morrison, Determination of strontium-90 in water and urine samples using ion chromatography, the Analyst, 1994,119(8), 1759-1764.
    [37]Barriga C, Jones W., Malet P., Rives V., Ulibarri M. A., Synthesis and Characterization of Polyoxovanadate-Pillared Zn-Al Layered Double Hydroxides: An X-ray Absorption and Diffraction Study, Inorg. Chem., 1998, 37, 1812-1820
    [38]Hu C. W., He Q. L., Zhang Y. H., Wang E. B., Okuhara T., Misono M., Synthesis, stability and oxidative activity of polyoxometalates pillared anionic clays ZnAl-SiW_(11) and ZnAl-SiW_(11)Z, Catal. Today, 1996, 30, 141-146
    [39]Nijs H., Clearfield A., Vansant E. F., The intercalation of phenylphosphonic acid in layered double hydroxides, Microporous Mesoporous Mater., 1998,23, 97-108
    [40]Kloprogge J. T., Frost R. L., Infrared and Raman Spectroscopic Studies of Layered Double Hydroxides in Layered Double Hydroxides: Present and Future, chapter 5, V. Rives (Eds), NOVA, New York, 2001
    [41]Cavani F, Trifiro F., Vaccari A., Hydrotalcite-type anionic clays: preparation, properities and applications, Catal. Today, 1991, 11,173-301
    [42]Zhang L. H., Zhu J., Jiang X. R., Evans D. G., Li F., Influence of nature of precursors on the formation and structure of Cu-Ni-Cr mixed oxides from layered double hydroxides, J. Phys. Chem. Solids, 2006, (in press)
    [43] F Li., Duan X., Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution, J. Hazardous Mater. B, 2005, 125,89-95
    [44]Rocha J., Solid-State NMR and EPR Studies of Hydrotalcities in Layered Double Hydroxides: Present and Future, chapter 6, V. Rives (eds), NOVA, New York, 2001
    [45]Inomata Y., Sunakawa T., Howell F. S., The syntheses of lanthanide metal complexes with diethylenetriamine-N,N,N',N",N"-pentaacetic acid and the comparison of their crystal structures, J. Mole. Struc, 2003, 648, 81-88
    [46]Moeller T., Periodicity and the Lanthanides and Actinides, J. Chem. Educ, 1970, 47,417-430
    [47] Caravan P., McMurry J. J., Lauffer R. B., Gadolinium(III) chelates as MRI Contrast Agents : Structure, Dynamics, and Applications, Chem. Rev., 1999, 99(9), 2293
    
    [48]Aime S., Botta M., Fasano M., Crich S. G., Terreno E., ~1H and ~(17)O-NMR relaxometric investigations of paramagnetic contrast agents for MRI. Clues for higher relaxivities, Coord. Chem. Rev., 1999, 185, 321-333
    [49]Merbach A. E., Toth E. (Eds.), The Chemistry of Contrast Agents in Medical Resonance Imaging, Wiley, Chichester, 2001
    [50]Beaudot P., de Roy M. E., Besse J. P., Intercalation of noble metal complexes in LDH compounds, J. Solid State Chem., 2004, 177, 2691-2698
    [51]Beaudot P., de Roy M. E., Besse J. P., Preparation and Characterization of Intercalation Compounds of Layered Double Hydroxides with metallic Oxalato Complexes, Chem. Mater., 2004, 16(5). 935-945
    [52]Carnall W. T., Gschneidner K. A., Erying L. R. (Eds), Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, New York and Oxford, 1979, 3, Chapter 24
    [53]Bunzli J. C. G., Klein B., Pradervand G. O., Porcher P., Spectroscopic properties, electronic levels, and crystal field parameters of pentakis (nitrado) europate(III) ions, Inorg. Chem., 1983, 22 (25), 3763-3768
    [54]Holsa J., Simulation of crystal field effect in monoclinic rare earth oxyhydroxides doped with trivalent europium, J. Phys. Chem., 1990,94(12), 4835-4838
    [55]Murray G. M., Sarrio R. V., Peterson J. R., The effects of hydration on the luminescence spectra of trisodium tris(2,6-pyridinedicarboxylato) europium(III) compounds, Inorg. Chim. Acta, 1990,176(2) 233-240
    [56] Stump N. A., Pesterfield L. L., Schweitzer G. K., Peterson J. R., A high-resolution Spectral Study of Li3Eu(2,6-pyridinedicarboxylato)3, J. Alloys Comp., 1992, 180, 141-149
    [57]Hopkins T. A., Bolender J. P., Metcalf D. H., Richardson F. S., Polarized Opitical Spectra, Transition Line Strengths, and the Electronic Energy-Level Structure of Eu(dpa)_3~(3-) Complexes in Single Crystals of Hexagonal Na_3[Yb_(0.95)(dpa)_3]·NaClO_4·10H_2O, Inorg. Chem., 1996, 35(18), 5347-5355
    [58]Bian L. J., Qian X. F., Yin J., Zhu Z. K., Lu Q. H., Preparation and luminescence properties of the PMMA/SiO_2/EuL_3·2H_2O hybrids by a sol-gel method, Mate. Sci. Engin. B, 2003, 100,53-58
    [59]Li F., Zhang L. H., Evans D. G., Duan X., Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides, Colloids Surfaces A: Physicochem. Eng. Aspects, 2004, 244, 169-177
    [60]Whilton N. T., Vickers P. J., Mann S., Bioinorganic clays: Synthesis and characterization of amino- and polyamino acid intercalated layered double hydroxides, J. Mater. Chem., 1997, 7(8), 1623-1630
    [61]Cabello F. M., Tichit D., Coq B., Vaccari A., Dung N. T., Hydrogenation of Acetonitrile on Nicker-Based Catalysts Prepared from Hydrdotalcite-like Precursors, J. Catal., 1999, 167(1), 142-152
    [62]Velu S., Suzuki K., Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Topic Catal., 2003, 22(3-4), 235-244
    [1] Keith L., Telliard W., EST Special Report: Priority Pollutants: I-a perspective view, Environ. Sci. Technol., 1979, 13, 416-423
    [2] Christoskova St. G., Stoyanova M., Georgieva M., Low-temperature iron-modifiedcobalt oxide system: Part 2. Catalytic oxidation of phenol in aqueous phase, Appl. Catal. A: Gen., 2001, 208,243-249
    [3] Zhu K. Z., Liu C. B., Ye X. K., Wu Y., Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (I) phenol hydroxylation, Appl. Catal. A: Gen., 1998, 168, 365-372
    [4] Dubey A., Rives V., Kannan S., Catalytic hydroxylation of phenol over ternary hydrotalcites containing Cu, Ni and Al, J. Mol. Catal. A: Chem., 2002, 181, 151-160
    [5] Arena F., Giovenco R., Torre T., Venuto A., Parmaliana A., Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol, Appl. Catal. B: Environ., 2003,45, 51-62
    [6] Hettige C, Mahanama K. R. R., Dissanayaka D. P., Cyclohexane oxidation and carbon deposition over metal oxide catalysts, Chemosphere, 2001,43,1079-1083
    [7] Park P. W., Ledford J. S., The influence of surface structure on the catalytic activity of cerium promoted copper oxide catalysts on alumina: oxidation of carbon monoxide and methane, Catal. Lett., 1998, 50, 41-48
    [8] Kummer J. T., Catalysts for automobile emission control, Prog. Energy Combust. Sci., 1980,6, 177-199
    [9] Severino F., Brito J., Carias O., Laine J., Comparative study of alumina-supported CuO and CuCr_2O_4 as catalysts for CO oxidation, J. Catal., 1986, 102, 172-179
    [10] Boon A. Q. M., van Looij F., Geus J. W., Influence of surface oxygen vacancies on the catalytic activity of copper oxide: Part 1. Oxidation of carbon monoxide, J. Mol. Catal., 1992,75,277-291
    [11]Agudo L., Palacios J. M., Fierro J. L. G., Laine J., Severino F., Activity and structural changes of alumina-supported CuO and CuCr_2O_4 catalysts during carbon monoxide oxidation in the presence of water, Appl. Catal., 1992, 91, 43-55
    [12]Boon Q. M., Huisman H. M., Geus J. W., Influence of surface oxygen vacancies on the catalytic activity of copper oxide: Part 1. Oxidation of methane, J. Mol. Catal., 1992,75,293-303
    [13]Ozkan U. S., Kueller R. F., Moctezuma E., Methanol oxidation over nonprecious transition metal oxide catalysts, Ind. Eng. Chem. Res., 1990, 29, 1136-1142
    [14]Rajesh H., Ozkan U. S., Complete oxidation of ethanol, acetaldehyde and ethanol/methanol mixtures over copper oxide and copper-chromium oxide catalysts, Ind. Eng. Chem. Res., 1993, 32, 1622-1630
    [15]Kapteijn F., Stegenga S., Dekker N. J. J., Bijsterbosch J. W., Moulijn J. A., Alternatives to Noble Metal Catalysts for Automotive Exhaust Purification, Catal. Today, 1993, 16,273-287
    [16] Huang T. J., Yu T. C, Calcination conditions on copper/alumina catalysts for carbon monoxide oxidation and nitric oxide reduction, Appl. Catal., 1991, 71, 275-282
    [17]Goetz V. N., Sood A., Kittrell J. R., Catalyst Evaluation for the simultaneous reduction of sulfur dioxide and nitric oxide by carbon monoxide, Ind. Eng. Chem. Prod. Res. Develop., 1974, 13, 110-114
    [18]Li F., Zhang L. H., Evans D. G., Duan X., Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides, Colloid Surf. A: Physicochem. Eng. Aspects, 2004, 244, 169-177
    [19]Pintar A., Levec J., Catalytic liquid-phase oxidation of refractory organics in waste water, Chem. Eng. Sci., 1992, 47(9-11), 2395-2400
    [20]Barrault J., Bouchoule C, Echachoui K., Frini-Srasra N., Trabelsi M., Bergaya F., Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu) -pillared clays, Appl. Catal. B: Environ., 1998, 15, 269-274
    [21]Valange S., Gabelica Z., Abdellaoui M., Clacens J. M., Barrault J., Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol, Microporous Mesoporous Mater., 1999, 30, 177-185
    [22]Newman S. P., Jones W., in: Rao C. N. R., Jones W. (Eds.), Supramolecular Organization and Materials Design, Cambridge University Press, Cambridge, UK, 2001,295
    [23]Velu S., Swamy C. S., Alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcites, Appl. Catal. A: Gen., 1994, 119, 241-252
    [24]Drago R. S., Jurczyk K., Kob N., Catalyzed decomposition of N_2O on metal oxide supports, Appl. Catal. B: Environ., 1997, 13, 69-79
    [25]Dandl H., Emig G., Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites, Appl. Catal. A: Gen., 1998, 168, 261-268
    [26]Cabello F. M., Tichit D., Coq B., Vaccari A., Dung N. T., Hydrogenation of acetonitrile on nickel-based catalysts prepared from hydrotalcite-like precursors, J. Catal., 1999, 167, 142-152
    [27] Agarwal S. K., Spivey J. J., Butt J. B., Deep oxidation of hydrocarbons, Appl. Catal. A: Gen., 1992, 81,239-255
    
    [28]Bedford R. E., La Barge W. J., US Patent 5,063,193, 1991
    [29]Jernigan G. G., Somorjai G. A., Carbon monoxide oxidation over three different oxidation states of copper: Metallic copper, copper(I) oxide, and copper(II) oxide - A surface science and kinetic study, J. Catal., 1994, 147, 567-577
    [30]Liu W., Flytzani-Stephanopoulos M., Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I Catalyst composition and activity, J. Catal., 1995, 153, 304-316
    [31] Liu W., Flytzani-Stephanopoulos M., Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: II Catalyst characterization and reaction kinetics, J. Catal., 1995, 153, 317-332
    [32]Centi G., Perathoner S., Biglino D., Giamello E., Adsorption and reactivity of NO on copper-on-alumina catalysts: I. Formation of nitrate species and their influence on reactivity in NO and NH3 conversion, J. Catal., 1995, 152, 75-92
    [33]Fernandez J. M., Barriga C, Ulibarri M. A., Labajos F. M., Rives V., New hydrotalcite-like compounds containing yttrium, Chem. Mater., 1997, 9, 312-318
    
    [34]Miyata S., Anion-exchange properties of hydrotalcite-like compounds, Clays Clay Miner., 1983, 31,305-311
    [35] Abi-aad E., Bechara R., Grimblot J., Aboukais A., Preparation and characterization of CeO_2 under an oxidizing atmosphere. Thermal analysis, XPS, and EPR study, Chem. Mater., 1993, 5, 793-797
    [36]Intissar M., Jumas J. C, Besse J. P., Leroux F., Reinvestigation of the layered double hydroxide containing tetravalent cations: Unambiguous response provided by XAS and Mossbauer spectroscopies, Chem. Mater, 2003, 15, 4625-4632
    [37]Millange F., Walton R. I., O'Hare D., Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds, J. Mater. Chem., 2000,10(7), 1713-1720
    
    [38]Gastuche M. C, Brown G., Mortland M. M., Mixed magnesium-aluminum hydroxides 1. Preparation and characterization of compounds formed in dialysed systems, Clay Miner., 1967, 7, 177-192
    [39]Cantu M., Lopez-Salinas E., Valente J. S., SOx removal of calcined MgAlFe hdrotalcite-like materials: Effect of the chemical composition and the cerium incorporation method, Environ. Sci. Technol, 2005, 39, 9715-9720
    [40]Kloprogge J. T., Frost R. L., Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co- hydrotalcites, J. Solid State Chem., 1999,146,506-515
    [41] Sato T., Fujita H., Endo T., Shimada M., Synthesis of hydrotalcite-like compounds and their physico-chemical properties, React. Solids, 1988, 5, 219-228
    [42]Brindley G. W., Kikkawa S., Thermal behaviour of hydrotalcite and of anion-exchange forms of hydrotalcite, Clays Clay Miner., 1980, 28, 87-91
    [43]Hernandez M. J., Ulibarri M. A., Rendon J. L., Serna C. J., Thermal stability of Ni, Al double hydroxides with various interlayer anions, Thermochim, Acta, 1984, 81, 311-318
    [44]Fernandez J. M., Barriga C, Ulibarri M. A., Labajos F. M., Rives V., Preparation and thermal stability of manganese-containing hydrotalcite: [Mg_(0.75)Mn~(II)_(0.04)Mn~(III)_(0.21)(OH)_2](CO_3)_(0.11)· nH_2O, J. Mater. Chem., 1994, 4, 1117-1121
    [45] Yun S. K., Pinnavaia T. J., Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides, Chem. Mater., 1995, 7, 348-354
    [46]Miyata S., Physico-chemical properties of synthetic hydrotalcites in relation to composition, Clays Clay Miner., 1980,28(1), 50-56
    [47] Valente J., Figueras F., Gravelle M., Khumbar P., Lopez J., Besse J. P., Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions, J. Catal., 2000, 189, 370-381
    [48]Velu S., Suzuki K., Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Topic Catal., 2003, 22(3-4), 235-244
    [49]Takita Y., Lunsford J., Surface reactions of oxygen ions. 3. Oxidation of alkanes by ozonide (1-) ion on magnesium oxide, J. Phys. Chem., 1979, 83, 683-688
    [50]Kruk M., Jaroniec M, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater., 2001,13, 3169-3183
    [51]He J., Li B., Evans D. G., Duan X., Synthesis of layered double hydroxides in an emulsion solution, Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 251, 191-196
    
    [52]Rives V., Characterization of layered double hydroxides and their decomposition products, Mater. Chem. Phys., 2002, 75, 19-25
    [53]Zhang L. H., Li F., Evans D. G., Duan X., Structure and surface characteristics of Cu-based composite metal oxides derived from layered double hydroxides, Mater. Chem. Phys., 2004, 87, 402-410
    [54]Arco M. D., Cebadera E., Gutierrez S., Martin C, Montero M. J., Rives V., Rocha J., Sevilla M. A., Mg, Al layered double hydroxides with intercalated indomethacin: Synthesis, characterization, and pharmacological study, J. Pharm. Sci., 2004, 93, 1649-1658
    [55]Meng J. H., Studies of assembly, supramolecular structure and properties of sorbic acid, lactic acid and glyphosate intercalated layered double hydroxides, PhD Thesis, Beijing University of Chemical Technology, 2005
    [56]Aboukais A., Galtayries A., Abi-Aad E., Courcot D., Grimblot J., Spectroscopic and surface potential variations study of a CuCe oxide catalyst using H_2S as a probe molecule, Colloids Surf. A: Physicochem. Eng. Aspects, 1999,154, 335-342
    [57]Fernandez-Garcia M., Gomez Rebollo E., Guerrero Ruiz A., Conesa J. C, Soria J., Influence of ceria on the dispersion and reduction/oxidation behaviour of alumina-supported copper catalysts, J. Catal., 1997,172, 146-159
    [58]Larachi F., Pierre J., Adnot A., Bernis A., Ce 3d XPS study of composite CexMn_(1-x)O_(2-y) wet oxidation catalysts, Appl. Surf. Sci., 2002,195, 236-250
    [59]Stanko H., Jurka B., Janez L., Wet oxidation of phenol on Ce_(1-x)Cu_xO_(2-y) catalyst, J. Catal., 1999, 184,39-48
    [60]Zhang L. H., Zhu J., Jiang X. R., Evans D. G., Li F., Influence of nature of precursors on the formation and structure of Cu-Ni-Cr mixed oxides from layered double hydroxides, J. Phys. Chem. Solids, 2006, (in press)
    [61]Velu S., Suzuki K., Osaki T., Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl layered double hydroxides, Catal. Lett., 1999,62(2-4), 159-167
    [62] Liu W., Flytzani-Stephanopoulos M., Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu-CeO_2, Chem. Eng. J., 1996,64,283-294
    [63]Hori C. E., Permana H., Ng K. Y. S., Brenner A., More K., Rahmoeller K. M., Belton D., Thermal stability of oxygen storage properties in a mixed CeO_2-ZrO_2 system, Appl. Catal. B: Environ., 1998, 16, 105-117
    [64]Metcalfe I. S., Sundaresan S., Oxygen storage in automobile exhaust catalyst, Chem. Eng. Sci., 1986,41, 1109-1112
    [65]Trovarelli A., de Leitenburg C, Boaro M., Dolcetti G., The utilization of ceria in industrial catalysis, Catal. Today, 1999, 50, 353-367
    [66] Li B., Domen K., Maruya K., Onishi T., Dioxygen adsorption on well-outgassed and partially reduced cerium oxide studied by FT-IR, J. Am. Chem. Soc, 1989, 111, 7683-7687
    [67]Gellings P. J., Bouwmeester H. J. M., Solid state aspects of oxidation catalysis, Catal. Today, 2000,58, 1-53
    [68]Bunluesin T., Putna E. S., Gorte R. J., A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh, Catal. Lett., 1996, 41,1-5
    [69]Ferrandon M., Ferrand B., Bjornbom E., Klingstedt F., Kalantar Neyestanaki A., Karhu H., Ayrynen I. J. V., Copper oxide-platinum/alumina catalysts for volatile organic compound and carbon monoxide oxidation: Synergetic effect of cerium and lanthanum, J. Catal., 2001, 202, 354-366
    [70]Yu-Yao Y.-F., Kummer J. T., Low-concentration supported precious metal catalysts prepared by thermal transport, J. Catal., 1987, 106, 307-312
    [71]Dictor R., Roberts S., Influence of ceria on alumina-supported rhodium: observation of rhodium morphology made using FTIR spectroscopy, J. Phys. Chem., 1989, 93, 5846-5850
    [72] Le Normand F., Hilaire L., Kili K., Krill G., Maire G., Oxidation state of cerium in cerium-based catalysts investigated by spectroscopic probes, J. Phys. Chem., 1988, 92,2561-2568
    [73] Wen B., He M. Y., Schrum E., Li C, NO reduction and CO oxidation over Cu/Ce/Mg/Al mixed oxide catalyst in FCC operation, J. Mol. Catal. A: Chem., 2002,180, 187-192
    [74] Pestryakov A. N., Davydov A. A., The influence of modifying additions of La and Ce oxides on electronic state of surface atoms and ions of supported copper, Appl. Surf. Sci., 1996, 103,479-483
    [75]Alejandre A., Medina F., Salagre P., Fabregat A., Sueiras J. E., Characterization and activity of copper and nickel catalysts for the oxidation of phenol aqueous solutions, Appl. Catal. B Environ., 1998, 18, 307-315
    [76]Duprez D., Delanoe F., Barbier Jr J., Isnard P., Blanchard G., Catalytic oxidation of organic compounds in aqueous media, Catal. Today, 1996, 29, 317-322
    [77]Fu G. Y, Bao Y. M., Li C, Synthesis and Characterization of Hydrotalcite Like - Containing Rare Earth Europium, J. Inner Mongolias Teacher's College Nationalities, 1999,14(2), 148-150
    [78]Bao Y. M., Li L. S., Ma S. J., Xiong D. C, Fu G Y, Feng S. H., Xu R. R., Synthesis and Characterization of Hydrotalcite - Like [Cd_xMg_(6-x)Al_2(OH)_(16)]~(2+)[S.2H_2O]~(2-), Chem. J. Chin. Univ., 1996, 17(3), 355-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700