镉对大豆的毒害效应及不同大豆品种耐镉差异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国土壤镉污染是一个非常严重的环境危胁。高效吸收和高耐镉植物已经被成功地用于镉污染土壤的修复。本论文的主要研究目的是:(ⅰ)研究不同浓度Cd对大豆幼苗生长发育、激素含量及主要逆境生理指标的影响;(ⅱ)Cd在大豆体内的分布、运转规律以及对氮、磷、钾、锌等主要营养元素吸收的影响;(ⅲ)不同类型土壤中Cd的化学形态及其与大豆Cd生物有效性的关系;(ⅳ)不同大豆品种Cd毒害效应及耐Cd差异性;(ⅴ)植物生长调节剂NAA和微量营养元素Zn对大豆Cd毒害的调控效应。结果如下:
     1.营养液培养试验表明,短时间(5d)低浓度Cd(0.25mg·L~(-1))胁迫可促进大豆株高及生物产量的积累,但差异不明显,对大豆幼苗生长素(IAA)、赤霉素(GA_3)和玉米素(Z)的合成有一定的促进作用。随着Cd浓度的增加和胁迫时间的延长,大豆株高和生物产量明显降低,3类激素的合成作用均受到抑制。不同浓度Cd处理均可促进大豆幼苗ABA的合成,且随Cd浓度的升高促进作用加强。
     2.土壤盆栽试验表明,Cd胁迫抑制大豆叶片IAA和Z的合成,且随Cd浓度的升高,抑制效应加强。对GA_3合成的影响则表现为低浓度下的刺激效应和高浓度下的抑制效应。至花荚期时,大豆叶片Z含量低于幼苗期,而IAA和GA_3含量高于幼苗期,使大豆在生育前期仍保持一定的生长势。对ABA合成的影响表现为明显的刺激效应,且随Cd浓度的升高和胁迫时间的延长而加强。
     3.大豆不同器官中的Cd浓度以根系最高,根系吸收转运到地上部的Cd主要分布在茎和叶中,荚壳和籽粒中相对较少。除对照外,红壤不同浓度Cd处理大豆根、茎、叶、荚壳、籽粒中Cd浓度比为1:0.48~0.81:0.48~0.80:0.09~0.34:0.09~0.40;河潮土则为1:0.25~0.75:0.22~0.69:0.08~0.33:0.06~0.22。从土壤中Cd的化学形态分析结果看,红壤水溶交换态Cd和生物有效态Cd含量显著高于河潮土,故红壤加Cd处理,大豆表现Cd中毒症状的浓度低于河潮土,表明河潮土的Cd环境容量高于红壤。
     4.从大豆籽粒中N、P、K、Zn含量的分析结果看,低浓度Cd(≤0.50mg·L~(-1))处理,P—Cd之间表现为协同作用,Cd浓度升高则转变为拮抗作用。N—Cd之间在不同浓度Cd处理下均表现为拮抗作用。籽粒中K—Cd在低浓度Cd胁迫下为拮抗作用,但根系中K—Cd却表现为协同作用。籽粒中Zn—Cd在不同浓度Cd处理下均表现为协同作用,但叶片中Zn—Cd则表现为拮抗作用。
     5.营养液培养试验表明,低浓度Cd刺激了大豆的根系活力,根系对Cd的吸收及Cd向茎叶的转运能力加强,Cd浓度增加,大豆根系活力降低,吸收和转运Cd的能力下降,根系中Cd积累量增加。相关分析表明,当Cd处理浓度≤1.00mg·L~(-1)时,大豆根系活力(5d)与茎叶和根系中Cd浓度之间具有极显著的正相关关系,其相关系数r分别为0.996~(**)和0.979~(**)(n=4)。当Cd处理浓度≥2.50 mg·L~(-1)时,大豆根系活力(5d)与茎叶和根系中Cd浓度之间则表现为极显著的负相关关系,其相关系数r分别为-0.995~(**)和-0.993~(**)(n=3)。
     6.土壤盆栽试验表明,河潮土和红壤加Cd处理,大豆幼苗期和花荚期叶片丙二醛(MDA)和脯氨酸(PRO)含量在Cd处理浓度低于或等于2.50 mg·kg~(-1)时随Cd浓度的升高而增加,继续增加Cd浓度,其含量降低,但仍高于对照。红壤加Cd处理,大豆叶片POD活性随Cd处理浓度的升高而增加,至Cd浓度为2.50 mg·kg~(-1)时,POD活性达最大值,以后又随Cd浓度的升高而下降。河潮土加Cd浓度小于或等于0.50 mg·kg~(-1)时,大豆叶片POD活性低于对照,增加Cd浓度,POD活性随Cd浓度的升高而增加,且明显高于对照。尽管Cd胁迫导致大豆叶片内MDA含量的增加,但由于POD活性的提高和ABA及PRO含量的增加,使大豆在低浓度Cd胁迫时表现一定的适应能力。
     7.主成分分析结果表明,Cd胁迫后大豆叶片叶绿素含量的降低率、根系活力、POD活性的增加率以及茎叶、根系中Cd含量能较好地反映不同大豆品种的耐Cd能力,可作为选育抗Cd大豆品种的参考指标。Cd的化学形态分析表明,大豆叶片和根系中的Cd主要以NaCl提取态形式存在,其分别占总提取态Cd量的87.64%和88.40%,其他形态的Cd含量较少。不同化学形态Cd含量的大小顺序在叶片和根系中均为F_(NaCl)>F_(HAC)>F_(H2O)>F_(乙醇)。大豆的耐Cd能力不仅与植株体内Cd的含量有关,也与Cd的化学形态关系密切。在不同Cd化学形态中,乙醇提取态和水提取态Cd含量低的品种,抗Cd能力较强,含量高的品种抗Cd能力相对较弱。
     8.外施NAA可提高大豆叶片中硝酸还原酶(NR)活性,降低叶片中游离脯氨酸(PRO)和丙二醛(MDA)含量,可减轻膜脂的过氧化作用和蛋白质的分解。施用锌肥也可降低Cd伤害大豆幼苗丙二醛和脯氨酸含量,对缓解大豆的Cd毒害具有积极的调控作用。
Cadmium contamination in soils is a serious environmental threat in China. Theplants with highly efficient Cd uptake and high tolerance have successfully used in Cdremediation in soils. The main objectives of this dissertation were: (ⅰ) to study theeffects of different concentration of Cadmium (Cd) on the growth, the amount ofphytohormones and the stress physiological indexes of Glycine max plants; (ⅱ) toinvestigate the distribution and transportation of Cd in Glycine max organic and theeffects of Cd on uptake of nitrogen. (N), phosphorous (P), potassium (K) and Zinc(Zn); (ⅲ) to study the fractions of Cd in different soils and their bioavailability; (ⅳ) toevaluate the toxic effects of Cd on Glycine max plants and the differentiation ofvarious Glycine max cultivars to Cd tolerances; (ⅴ) to investigate the influences ofexogenous hormone, naphthalene acetic acid (NAA) and micronutrient zinc (Zn), onCd toxicity. The results showed that:
     1. The nutrient hydroponic experiments showed that Cd stress with lowconcentrations (0.25 mg L~(-1)) for a short period (5 days) slightly increased the heightsand biomass of Glycine max plants without significant statistical difference and it alsostimulated the synthesis of indole-3-acetic acid (IAA), glibberellic acid (GA_3) andzeatin in Glycine max seedlings. However, the heights and biomass of Glycine maxplants thereafter significantly decreased with increasing Cd concentrations andelongating Cd stress period, and the synthesis of above three hormones decreased. Inaddition, all Cd concentrations increased the synthesis of abscisic acid (ABA) inGlycine max seedlings, and this increase enhanced with increasing Cd concentrations.
     2. The pot experiments showed that Cd stress depressed the synthesis of IAA andzeatin in Glycine max leaves and this depress increased with increasing Cdconcentrations. However, a stimulated synthesis of GA_3 was found at low Cdconcentrations, while a depressed effect was exhibited at high Cd concentrations.Zeatin contents in Glycine max leaves at pod stage were lower than those at seedlingstage. As compared with the seedling stage, higher IAA and GA_3 contents were foundat pod stage, which could maintain a certain growth potential for Glycine max plants.The synthesis of ABA was distinctly stimulated by Cd stress. Moreover, thissimulative effect enhanced with increasing Cd concentrations and elongating Cdstress period.
     3. Cadmium concentrations in roots were the highest among different Glycinemax plant parts. Cd uptake by roots was mainly distributed in stems and leaves, butminor Cd in pods and seeds. Except the control treatment, the ratios of Cdconcentrations in roots, stems, leaves, pods and seeds of Glycine max plants for all Cdtreatments were 1:0.48-0.81:0.48-0.80:0.09-0.34:0.09-0.40 in the tested red soil,and 1:0.25-0.75:0.22-0.69:0.08-0.33:0.06-0.22 in the tested alluvial soil.Exchangeable Cd with water and bio-available Cd in the red soil were higher those inthe alluvial soil. Therefore, the critical concentration of Cd toxicity for Glycine maxplants in the red soil was lower than that in the alluvial soil, which indicated thatalluvial soils possesses of greater Cd environmental capacity compared to red soils.
     4. Interactive effects of N, P, K, Zn contents on Cd contents in Glycine max seedswere investigated in the present study. Phosphorus and Cd showed a synergistic effectat low Cd concentrations (≤0.50 mg L~(-1)), and an antagonistic effect at increased Cdconcentrations (>0.50 mg L~(-1)). Nitrogen and Cd exhibited obviously an antagonisticeffect. Moreover, K and Cd exhibited an antagonistic effect at low Cd concentrationsin Glycine max seeds, but a significant synergistic effect in Glyeine max roots. Zincand Cd exhibited consistently a synergistic effect for all Cd treatments in Glycine maxseeds, but a significant antagonistic effect in Glycine max leaves.
     5. In nutrient hydroponic experiments, low Cd concentrations stimulated rootactivity of Glycine max plants, enhanced Cd uptake by Glycine max roots and Cdtransportation to the stems and leaves. In reverse, high Cd concentrations decreasedthe root activity, Cd uptake and transportation, but increased Cd accumulation in theroots. When the Cd concentration was lower than or equal to 1.00 mg L~(-1), there weresignificantly positive relationships between the root activities (5 days) and the Cdcontents in Glycine max leaves and roots with correlation coefficients (n=4) of 0.996and 0.979, respectively. When the Cd concentration was higher than or equal to 2.50mg L~(-1), significantly negative relationships between the root activities (5 days) andthe Cd contents in Glycine max leaves and roots were obtained. Their correlationcoefficients (n=3) were-0.995 and -0.993, respectively.
     6. Treated with various Cd concentrations in the tested red soil and alluvial soil inpot experiments, the contents of malondialdehyde (MDA) and proline (PRO) ofGlycine max leaves at seedling and pod stages increased with increasing Cdconcentrations until 2.5 mg kg~(-1) of external Cd in the soils. Thereafter, these contentsdecreased with increasing Cd concentrations, but were still higher than that in the control treatment. In the red soil, peroxidase (POD) activities in Glycine max leavesincreased with increasing Cd concentrations with a maximum value at 2.5 mg Cd kg~(-1)soil, but it declined thereafter. In the alluvial soil, when Cd was lower than or equal to0.5 mg kg~(-1), Cd treatments showed a lower POD activity of Glycine max leaves thanthe control. However, when Cd concentration was higher than the above value, PODactivity increased with further increasing Cd concentrations, and it was significantlyhigher than that in the control. The results suggest that although Cd stress resulted inthe increased MDA contents in Glycine max leaves, Glycine max plants still exhibitedcertain suitability to Cd stress due to increase of POD activity and ABA and PROcontents.
     7. The results of the principal component analysis showed that decreased rates ofchlorophyll in Glycine max leaves, root activity, increment rates of POD activity andCd contents in the stems, leaves and roots of Glycine max plants due to Cd stress werewell response to Cd tolerance capacity of different Glycine max varieties, which couldbe used to select Glycine max varieties with high Cd tolerance. The extractive Cd withNaC1 solution was the main Cd form in Glycine max leaves and roots, accounting for87.6 % and 88.4 % of total extractive Cd contents, respectively. Different Cd forms inGlycine max plant leaves and roots were in the following sequence: F_(NaCl)>F_(HAc)>F_(H2O)>F_(ethanol). Capacity of Cd tolerance for Glycine max plants was not onlyrelated to Cd contents in the plants, but also to Cd forms. Those Glycine max varietieswith low contents of ethanol and water extractive Cd showed higher Cd tolerance.
     8. NAA application increased nitratase activities in Glycine max leaves, butdecreased amounts of free PRO and MDA. Lipid peroxidation of cell membrane andprotein decomposition were also alleviated by NAA application. Furthermore, Znapplication decreased MDA and PRO contents in Glycine max seedlings, whichindicated that Zn could alleviate Cd toxicity to Glycine max plants.
引文
1 杨景辉.土壤污染与防治[M].北京:科学出版社,1995
    2 张守焰,黄文增.镉与高血压的研究进展[J].国外医学卫生学分册,1999,26(5):1434-1436
    3 龙漫海,赵金垣,刘爱萍.镉中毒性肾损伤是肾细胞内微量元素的改变[J].中国医药学,1997,11(2):125-126
    4 王云,魏复盛等编者.土壤环境元素化学[M].北京:中国环境科学出版社,1995
    5 周启星,吴燕玉.重金属Cd—Zn对水稻的复合污染与生态效应[J].应用生态学报,1994,5(4):438-441
    6 许嘉琳,鲍子平,杨居荣,等.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991,2(3):244-248
    7 Tessier M, Campbell P G C, Usson M, Sequential extraction procedure for the speciation of particulate trace metal[J]. Analy Chem, 1979, 51:844-851
    8 尚爱安,王玉茱,梁重山.土壤重金属的生物有效性研究进展[J].土壤,2000,(6):294-300
    9 陈怀满主编.土壤—植物—系统中重金属污染[M].北京:科学出版社,1996
    10 Ramos L, Hemamdes L M, Gomzalea J M. Seqaential fractionation of Copper. Cadmium and Zinc InSoil from or near Donana Natioual Prark[J]. J Environ Qual, 1994, 23:50-57
    11 Iskandar I K, Adriano C. Remediation of soil Contaminated With metals[M]. Advances in Environ mental science, Science Revivws. 1997
    12 Wang X, Wu Y Y, Liang R L, et al. Effect of Various modifiers on migration and accumulation of heavy metal[J]. Chi J Appl Ecol, 1994, 5(1):89-94
    13 Yang M J, Lin X Y, Yang X O. Impact of Cd on growth and nutrient accumulation of different plant species[J]. Chin J Appl Ecol, 1998, 9(1):89-94
    14 蔡保松,张国平.大、小麦对镉的吸收、运输及在籽粒中的积累[J],麦类作物学报,2002,22(3):82-86
    15 鲁如坤,熊礼明,时正元.关于土壤—作物生态系统中镉的研究[J].土壤,1992,24(3):129-132,137
    16 Kelly J M, Parker G R, Mcfee W W. Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium level[J]. J Environ Qual, 1979, 8:361-364
    17 夏增禄.土壤环境容量及其应用[M].北京:气象出版社,1988
    18 Cataldo D A, Garland T R, widung R E. Cadmium distribution and chemical fate in soybean plant[J]. Plant Physiol, 1981, 68:835-839
    19 何勇强,陶勤南,小烟仁,等.镉胁迫下大豆中的镉的分布状况及其籽粒品质[J].环境科学学报,2000,20(4):510-512
    20 杨居荣,鲍子平,张素芹.镉、铅在植物体内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268
    21 Salt D E, Picketing I J, Prince R C, et al. Metal accumulation by aquacultured seedlings of India Mustard[J]. Environ Sci Technol, 1997, 31:1636-1644
    22 朱波,青长乐,弁树森.紫色土外源锌、镉形态的生物有效性[J].应用生态学报,2002,13(5):555-558
    23 廖自基.微量元素的环境化学和生态效应[M].北京:中国环境科学出版社,1992
    24 余国莹,吴玉树.不同化合形态镉、锌及其复合污染对小麦生理的影响[J].生态学报,1992,12(1):93-96
    25 孔祥生,张妙霞,郭秀璞,等.Cd~(2+)毒害对玉米幼苗细胞膜透性及保护酶活性的影响[J].农业环境保护,1999,18(3):133-134
    26 陈志良,莫大伦,仇荣亮.镉污染对生物有机体的危害及防治对策[J].环境保护科学,2001,27(4):37-39
    27 周青,张辉,黄晓华,等.镧对镉胁迫下菜豆(Phaseolus vulgaris)幼苗生长的影响[J].环境科学,2003,24(4):48-53
    28 洪远仁,杨广笑.镉对小麦幼苗生长及超氧化物歧化酶过氧化物酶活性影响[J].天津师大学报(自然科学版),1992,(2):48-51
    29 王凯荣,周建林,龚惠群.土壤镉污染对苎麻的生长毒害效应[J]_应用生态学报,2000,11(5):773-776
    30 Sameni A M,莫治雄.石灰性土壤中蕃茄和甜玉米对不同镉水平的反应[J].土壤学进展,1990,18(2):42-45
    31 赵博生,莫华.镉对蒜根生长的毒害及抗坏血酸、铁盐的解毒效应[J].武汉植物学研究,1997,15(2):167-172
    32 张玲,李俊梅,王焕校.镉胁迫下小麦根系的生理生态变化[J].土壤通报,2002,33(1):61-65
    33 崔玮,张芬琴,金自学.Cd~(2+)处理对两种豆科作物幼苗生长的影响[J].农业环境科学学报,2004,23(1):60-63
    34 Greger M, Lindberg S. Effects of Cd~(2+) and EDTA on young sugar beats. I. Cd~(2+) uptake and sugar accumulation[J]. Physiol Plant, 1986, 66:69-74
    35 段昌群,王焕校,曲仲湘.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992,13(5):31-35
    36 王焕校,文传浩.Cd~(2+)、Al~(3+)处理对蚕豆胚根根尖细胞遗传学毒性效应研究[J].农业环境保护,1999,18(1):1-3
    37 Shahin S A, El-Amoodi K H. Induction ofmumerial chromosome aberrations during DNA synthesis using the fungicides nimrod and rubigan-4 in root tips of Vicia faba L.[J]. Mutat Res, 1991, 261:169-176
    38 Guttcrmsen G, Singh B R, Jeng B R. Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil pH[J]. Fertilizer Res, 1995, 41(1):27-32
    39 刘东华,蒋悟生,李懋学.镉对洋葱根生长和细胞分裂的影响[J].环境科学学报,1992,12(4):439-446
    40 Roder G. The toxic effects of tetraethyl lead and its derivatives on the Chrysophyte Poterioochromonas malhamensis-V Electron microscopical studies[J]. Emiron Experi Bot, 1984, 24(1): 17-30
    41 彭鸣,王焕校,吴玉树,等.镉、铅诱导的玉米(Zea mays L)幼苗细胞超生结构的变化[J].中国环境科学,1991,11(6):426-431
    42 徐勤松,施国新,杜开和.镉胁迫对水车前叶片抗氧化酶系统和显微结构的影响[J].农业生态环境,2001,17(2):30-34
    43 杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8(3):26-29
    44 Renkang Zhu, Sheila M, Macfie, et al. Cadmium-induced plant stress investigated by scanning electrochemical microscopy[J]. Journal of Experimental Botany, 2005, 56(421): 2831-2838
    45 孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121
    46 洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75
    47 李元,王焕校,吴玉树,等.Cd、Fe及其复合污染对烟草叶片和项生理指标的影响[J].生态学报,1992,12(2):147-153
    48 Cristina Ortega-Villasante, Ruben Rellan-Alvarez, Francisca F, et al. Cellular damage induced by cadmium and mercury in Medicago sativa[J]. Journal of Experimental Botany, 2005, 56(418): 2239-2246
    49 Chaoui A, Mazhoudi S, Ghorbal M N, et al. Cadmium and zinc induction of lipid peroxdation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.) [J]. Plant Science, 1991, 127:139-147
    50 Somashekaraiah B V, Padmaja K, Prassad A R K. Phytotoxicity of cadmium inos on germinating seedlings of mung bean (Phaseous vulgaris): involvement of lipid peroxides in chlorophyll degradation[J]. Physiol Plant, 1992, 85:85-89
    51 白嵩.镉对萌发水稻种胚细胞膜透性和抗氧化酶活性的影响[J].吉林农业大学学报,2006,28(3):237-239,248
    52 Vallee B I. Biochemical effects of mercury, cadmium and lead[J]. Annu Rev Biochem, 1972, 41:91-98
    53 罗立新,孙铁珩,靳月华,等.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18(5):495-499
    54 Stefania Astolfi, Sabrina Zuchi, Calvino Passera. Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize(Zea mays L.) leaves[J].Journal of Plant Physiology, 2004, 161(7): 795-799
    55 Muhammad Jaffar HASSAN,汪自强,张国平.硫对水稻镉毒害的生长抑制和氧化胁迫的缓解效应研究[J].水稻可持续生产——政策、技术与推广国际会议,中国杭州,2004
    56 Sandalio L M, Dalurzo H C, Gomez M, et al. Cadmium-induced changes in the growth and oxidative metabolism of pea plants[J]. Journal of Experimental Botany, 2001, 52(364): 2115-2126
    57 Obata H, Umebayashi M. Production of SH compounds in higher plants of different tolerance to Cd[J]. Plant and Soil, 1993, 155/156:533-536
    58 Murray B, Mcbride, M B. Cadmium uptake by crops estimated from soil total Cd and pH[J]. Soil science, 2002, 167(1): 62-67
    59 Haag-Kerwer A, Schafer H J, Heiss S, et al. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis[J]. Journal of Experimental Botany, 1999, 50(341): 1827-1835
    60 Yang X, Baligar V C, Martens D C, et al. Cadmium effects on the influx and transport of mineral nutrients in plant species. Journal of Plant Nutrition[J]. 1996,19: 643-656.
    61 Pankovic D, Plesnicar M, Arsenijevic-Maksimovic I, et al. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants[J]. Annals of Botany, 2000,86(4): 841-847
    62 Houda Gouia, Arika Suzuki, Jeanne Brulfert, et al. Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings[J]. Journal of Plant Physiology, 2003, 160(4): 367-376
    63 Chugh L K, Gupta V K, Sawahney S K. Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings[J]. Phytochemistry, 1992, 31:395-400
    64 Greger M, Bertell G. Effects of Ca~(2+) and Cd~(2+) on the carbohydrate metabolism in sugar beet (Beta vulgaris) [J]. J Exp Bot, 1992, 43:465-473
    65 Hernandez L E, Garate A, Carpena-Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum[J]. Plant Soil, 1997, 189:97-106
    66 Wickllff C, Evans H J, Carter K R, et al. Cadmium effects on the nitrogen fixation system of red alder[J]. J Environ Qual, 1980, 9:180-184
    67 Karina B, Balestrasse, Susana M, et al. Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants[J]. Plant and Soil, 2005, 270 (1/2): 343-354
    68 Balestrasse K B, Gallego S M, Tomaro M L. Cadmium-induced senescence in. nodules of soybean (Glycine max L.) plants[J]. Plant and Soil, 2004, 262 (1/2):373-381
    69 Arao T, Ae N, Sugiyama M, et al. Genotypic differences in cadmium uptake and distribution in soybeans[J]. Plant and Soil, 2003, 251 (2): 247-253
    70 Chen Y X, He Y F, Yang Y, et al. Effect of cadlnium on nodulation and N_2-fixation of soybean in contaminated soils[J]. Chemosphere, 2003, 50(6): 781-787
    71 Abdelilah Chaoui, Brahim Jarrar, Ezzedine Ferjani. Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions ofbea roots[J]. Journal of Plant Physiology, 2004, 161(11): 1225-1234
    72 马文丽,韩棋.镉胁迫对黑小麦POD及SOD同工酶的影响.山西大学学报,2004,27(4):414-417
    73 吴家燕,夏增禄,巴音,等.紫色土壤中镉、铜、铅、砷污染对作物根系酶活性的影响[J].农业环境保护,1991,10(6):244-247
    74 汤春芳,刘云国,曾光明,等.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响.植物生理与分子生物学学报.2004,30(4):469-474.
    75 周青,黄晓华.Sm-Gly-VB_6对Pb-Cd胁迫下五种树木若干生理生化指标的影响[J].环境污染与防治,2002,24(4):201-203
    76 Gil J, Moral R, Gomez L, et al. Effects of cadmium on physiological and nutritional aspects of tomato plant Ⅰ. Chlorophyll(a and b) and carotenoids[J]. Fresenius Environ Bull, 1995, 4: 430-435
    77 李元,王焕校,吴玉树,等.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153
    78 付宝荣,李法云,藏树良,等.锌营养条件下镉污染对小麦生理特性的影响[J].辽宁大学学报(自然科学版),2000,27(4):366-370
    79 刘云国,汤春芳,曾光明,等.镉诱导萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的变化[J].广西植物,2005,25(2):164-168
    80 Scandalios J G Oxygen stress and superoxide dismutase[J]. Plant Physiol, 1993, 101(1): 7-12
    81 洪仁远.镉对小麦幼苗超氧化物歧化酶活性和脂质过氧化作用变化的影响[G].中国植物生理学会第6次全会论文汇编,1993
    82 Bower C, Montagu M V, et al. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Physiol Plant Mol-Bi-ol, 1992, 43:83-116.
    83 Nakayame T, kodame K. Free radical formation in DXA by lipid peroxidation[J]. Agric Biol Chem, 1984,48:571-572
    84 黄玉山,罗广华,关文,等.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526
    85 Ashraf Metwally, Vera Ⅰ Safronova, Andrei A Belimov, et al. Genotypic variation of the response to cadmium toxicity in Pisum sativum L[J]. Journal of Experimental Botany, 2005, 56 (409): 167-178
    86 Fornazier R F, Ferreira R R, Vitoria A P, et al. Effects of cadmium on antioxidant enzyme activities in sugar cane[J]. Biologia Plantarum, 2002, 45:91-97
    87 刘海亮,彭永康,王振英,等.蔬菜幼苗生长及氧化酶同工酶对镉害的响应[J].农业环境保护,1995,14(2):58-61
    88 刘海亮,崔世民,李强,等.镉对作物种子萌发、幼苗生长及氧化酶同工酶的影响[J].环境科学,1991,12(6):29-31
    89 杨居荣,贺建群.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113-117
    90 杨居荣,蒋婉茹.小麦耐受镉胁迫的生理生化机制探讨[J].农业环境保护,1996,15(3):97-101
    91 陈朝明,龚惠群,王凯荣,等.Cd对桑叶品质生理生化特性的影响及其机理研究[J].应用生态学报,1996,7(4):471-423
    92 Huang C Y, Brzzaz F A. The inhibition of soybean metabolism by cadmium and lead[J]. Plant Physiol, 1974, 54:122-124
    93 Bartolf M, Brerman E. Partial characterization of a cadmium-binding protein from the roots of cadmium treated tomato[J]. Plant Physiol, 1980, 66:438-441
    94 罗立新,孙铁珩,靳月华,等.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998,18(1):72-75
    95 Chiraz Chaffei, Karine Pageau, Akira Suzuki, et al. Cadmium toxicity induced changes in nitrogen management in leading to a metabolic safeguard through an amino acid storage strategy[J]. Plant & Cell Physiology, 2004, 15 (45): 1681-1693
    96 段昌群,王焕校.pb~(2+)、Cd~(2+)、Hg~(2+)对蚕豆(Vicia faba)乳酸脱氢酶的影响[J].生态学报,1998,18(40):413-417
    97 杨居荣,鲍子平,张素芹,等.镉、铅在植物细胞内的分布及其可溶态结合形态[J].中国环境科学,1995,6(1):87-912
    98 Romero-Puertas M C, Palma J M, Gomez M, et al. Cadmium cause the oxidative modification of proteins in pea plants[J]. Plant Cell Environ, 2002, 25:677-686
    99 李俊明,耿庆汉.低温玉米不同耐冷类型自交系生理生化变化[J].华北农学报,1989,4(20):15-19
    100 秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50
    101 汤章城.逆境条件下植物脯氨酸的累积及其可能意义.植物生理学通讯,1984,(1):15-21
    102 Burzynski M. The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings[J]. Acta Physiologiae Plantarum,1987, 9(4):229-238
    103 杨明杰,林咸永,杨肖娥,等.Cd对不同种类植物生长和养分积累的影响[J].应用生态学报,1998,9(1):89-94
    104 王焕校.污染生态学基础[M].昆明:云南大学出版社,1990:71-148
    105 Chaffei C H. Gorbel M H. Nitrogen metabolism of tomato under cadmium stress conditions[J]. J Plant Nurt, 2003, 26:1671-1634
    106 Fabio F Nocito, Livia Pirovano, Maurizio Cocucci, et al. Cadmium-induced sulfate uptake in maize roots[J]. Plant Physiology, 2002, 129(4): 1872-1880
    107 Blarney F P C, Joyee D C, Edwards D G. et al. Role of trichomes in sunflower tolerance to manganese toxicity[J]. Plant Soil, 1986, 91: 171-180
    108 Kupper H, Zhao F J, Mc Grath S P. Cellular compartmentation of zinc in leaves of hyperaccumulator Thlaspi caerulescens[J]. Plant Physiol, 1999, 119:305-311
    109 Lasat M M, Baker A J M, Kochian L V. Physiological characterization of root Zn~(2+) absorption to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi[J]. Plant Physiol, 1996, 112:1715-1722
    110 Salt D E, Prince R C, Picketing I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard[J]. Plant Physiol, 1995, 109:1427-1433
    111 Brooks R R, Show S, Marfil A A. The chemical form and physiological function of nickel in some Iberian alyssum species[J]. Plant Physiol, 1981, 51:167-170
    112 De Vos C H R, Vonk M J, Vooijs R, et al. Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus[J]. Plant Physiol, 1992, 98:853-858
    113 De Kencht J A, Koeviets P L M, Verkleij J A C, et al. Evidence against a role for phytochelatin in naturally selected increased cadmium tolerance in Silene vulganris (Moenech) Garcle[J]. New Phyto, 1992, 122:681-688
    114 Meharg A A. Integrated tolerance mechanisms: constitutive and adaptive responses to elevated concentration in the environment[J]. Plant Cell Envion, 1994, 17:989-993
    115 杨志敏,郑绍建,赵秀兰,等.磷对小麦细胞镉、锌的积累及在亚细胞内分布的影响[J].环境科学学报,1999,19(6):693-695
    116 杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,13(6):20-26
    117 Nishizono H, Ichikawa H, Suzuki S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yoloscense[J]. Plant Soil, 1987, 101:15-20
    118 杨红玉,王焕校.绿藻的Cd结合蛋白及其耐性初探[J].植物生理学报,1985,11(4):357-365
    119 Wagner G J, Trotter M M. Inducible cadmium binding complexes of cabbage and tobacco[J]. Plant Physiol, 1982, 69:804-809
    120 Gill E. Phytochelatins: the principal heavy metal complexing peptides of higher plants[J]. Science, 1985, 230:674-676
    121 Margoshes M, Vallee B L. A cadmium protein from equine kidney cortex[J]. J Am Chem. Soc, 1957, 79:4813-4814
    122 Ma M, Tsang W K, Kwan K M, et al. Preliminary studies of the indentification and expression of metallothionein like gene in Festuca rubra[J]. Acta Bot Sin, 1997, 39: 1078-1081
    123 Lane B, Lajioka R, Kejjedy T. The wheat germ Ec protein is a zinc-containing metallothionein[J]. Biochem Cell Biol, 1987, 65:1001-1005
    124 Grill E, Winnacker E L, Zenk M H. Phytochelatins, a class of heavy-metal-binding peptides from plant, are functionally analogous to metallothioneins [J]. Proc Natl Acad Sci USA, 1987, 84:439-443
    125 Gupta S C, Goldsbrough P B. Phytochelatin accumulation and cadmium tolerance in selected tomoto cell lines[J]. Plant Physiology, 1991, 97:306-312
    126 黄玉山,邱国华.紫羊茅根铜结合肽的分离纯化[J]_应用与环境生物学报,1998,4(4):335-339
    127 Kneer R, Zend M H. Phytochelatins protect plant enzymes from heavy metal poisoning[J]. Phytochemistry, 1992, 31: 2663-2667
    128 Knecht J A. Phytochelatin in cadmium-sensitive and cadmium-tolerant Silene vulgaris[J]. Plant Physiology, 1994, 104:255-261
    129 Elstner E f. Oxgen activation and oxgen toxicity[J]. Ann Rev Plant Physoil, 1992, 43(2):73-96
    130 Jimenez A, Hernandez J A, del Rio L A, et al. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J]. Plant Physiology, 1997, 114:275-284
    131 Singh B R, Kristen M. Cadmium uptake by barely as effected by Cd sources and pH[J]. Geoderma, 1998, 84:185-194
    132 Rufus L,Chaney. Adjusting pH boosts plant's metals uptake[J]. Agricultural Research, 2005, 53(11): 23-29
    134 Szteke B, Jedrzejczak R, et al. Influence of the environmental factors on cadmium content in Strawberry fruit [J]. Fruit Science Reports, 1989, 16(1): 1-6
    135 Arno Kaschl, Volker Romheld, Yona Chen. Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid wasted compost[J]. Journal of Environmental Quality, 2002, 31(6): 1885-1892
    136 Richard N Collins, Graham Merrington, Mike J McLaughlin, et al. Organic ligand and pH effects on isotopically exchangeable cadmium in polluted soils[J]. Soil Science Society of America Journal, 2003, 67(1): 112-122
    137 陈英旭,林琦,陆芳,等.有机酸对铅、镉植株危害的解毒作用研究[J].环境科学学报,2000,20(4):467-472
    138 廖敏,黄昌勇.黑麦草生长过程中有机酸对镉毒性的影响[J].应用生态学报,2002,13(1):109-112
    139 华珞,陈世宝,白玉玲,等.有机肥对镉、锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59
    140 蒋先军,骆永明,赵其国.镉污染土壤植物修复的EDTA调控机理[J].土壤学报,2003,40(2):205-209
    141 Hardiman R T, Jacoby B. Absorption and translocation of Cd in bush beans (Phaseolus ualgaris) [J]. Physiol Plant, 1984, 61:670-674
    142 傅桂平,衣纯真.潮土中锌对油菜吸收镉的影响[J].中国农业大学学报,1996,1(5):85-88
    143 Jarvis J C, Jones L H P. Cadmium uptake from solution by plants and its transport from roots to shoots[J]. Plant and Soil, 1976, 44:179-191
    144 Pawlik B, Skowronski T. Transport and toxicity of cadmium: its regulation in the cyanobacterium Synechocystis aquatilis[J]. Environ and Experi Botany, 1994, 34:225-233
    145 李花粉,张福锁,毛达如.小麦根表铁氧化物植物铁载体对植物吸收镉的影响[J].中国环境科学,1997,17(5):432-436
    146 Hagemeyer J, Waisel Y. Uptake of Cd~(2+) and Fe~(2+) by exised roots of Tamarix aphylla[J]. Physiol Plant, 1989, 77:247-253
    147 Abdel-Sabour M F, Mortvedt J J, Kelsoe J J. Cadmium-Zinc interactions in plants and extractable cadmium and zinc fractons in soils[J]. Soil Science, 1988, 145(6): 424-431
    148 Moraghan J.T. Accumulation of Cadmium and selected elements in flax seed grown on a calcareous soil[J]. Plant and Soil, 1994, 150:61-68
    149 Oliver D P, Hannam R, Tiller K G, et al. Heavy metals in the environment. The effects of zinc fertilization on cadmium concentration in wheat grain[J]. Journal of Environmental Quality, 1994, 23:705-711
    150 Mclaughlin M J, Palmer L T, Tiller K G, et al. Increased salinity causes elevated Cadmium concentrations in field-grown potato tubers[J]. Journal of Environ Mental Quality, 1994, 23: 1013-1018
    151 Zhu Y G, Zhao Z Q, Li H Y, et al. Effect of zinc-cadmium Interactions on the uptake of zinc and cadmium by winter wheat(Triticum aestivum) grown in pot culture[J]. Bulletin of Environmental contamination and Toxicology, 2003, 71:1289-1296
    152 Abdelilah C, Mohamed H G, Ezzedine E F. Effect of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgariso L.) [J]. Plant Science, 1997, 126:21-28
    153 Greger M, Lindberg S. Effects of Cd~(2+) and EDTA on young sugar beets (Beta vulgaris) I.Cd~(2+) uptake and sugar accumulation[J]. Physiol Plant, 1986, 66:69-74
    154 周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1994,13(4):148-151
    155 夏增禄,穆丛如.Cd、Zn、Pb及其相互作用对烟草小麦的影响[J].生态学报,1984,4(3):231-236
    156 Grant C A, Bailey L D. Effects of phosphorus and zinc fertilizer management effects on cadmium accumulation in flaxseed[J]. Journal of Science Food and Agriculture, 1997, 73: 307-314
    157 Maier N A, Mclaughlin M J, Heap M, et al. Effects of current-season application ofcalciti lime and phosphorus fertilization on soil pH. Potato, growth, yield, dry matter content and Cadmium concentration[J]. Communications in Soil Science and Plant Analysis, 2002, 33(13-14): 2145-2165
    158 赵中秋,朱永官,蔡运龙.镉在土壤、植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286
    159 杨志敏,郑绍建,赵秀兰,等.磷对小麦细胞镉、锌的积累及在亚细胞内分布的影响[J].环境科学学报,1999,19(6):693-695
    160 杨志敏,郑绍键,胡霭堂.不同磷水平和pH值对玉米和小麦体内Cd含量的影响[J].南京农业大学学报,1999,22(1):46-50
    161 华珞,白玲玉,韦东普,等.有机肥—镉—锌交互作用对土壤镉锌形态和小麦生长的影响[J].中国环境科学,2002,22(4):346-350
    162 Bingham F T, Garrison S, Strong J E. The effect of chloride on the availability of cadmium[J]. Journal of Environmental Quality, 1984, 13:71-74
    163 Bingham F T, Garrison S, Strong J E. The effect of sulfate on the availability of cadmium[J]. Soil Science, 1986, 141:172-177
    164 依纯真,傅桂平.不同钾肥对水稻吸收运转的影响[J].中国农业大学学报,1996,1(3):65-70
    165 Sparrow L A, Salanini A A, Jonstone J. Field studies of Cd in potatoes (Solarnum tuberosum L.): Ⅲ. Response of cv. Russet Burbank to sources of banded potassium[J]. Australian Journal of Agricultural Research, 1994, 45:243-249
    166 Grant C A, Bailey L D, Therien M C. Effect of N, P, and KCl fertilizers on grain yield and Cd concentration of malting barley[J]. Fertilizer Reseach, 1996, 45: 153-161.
    167 Li Y M, Chaney R L, Schneiter A A. Effect of soil chloride level on cadmium concentration in sunflower kernels[J]. Plant and Soil, 1994, 167:275-280
    168 Norvell W A, Wu J, Hopkins D G, et al. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium[J]. Soil Science Society of America Journal, 2000, 64:2162-2168
    169 Mclaughlin M J, Andrew S J, Smart M K, et al. Effects of sulfate on cadmium uptake by swiss chard: Ⅰ. Effects of complexation and calcium competition in nutrient solutions[J]. Plant and Soil, 1998, 202:211-216
    170 Mclaughlin M J, Lambrechts R M, Smolders E, et al. Effects of sulfate on cadmium uptake by swiss chard: Ⅱ. Effects due to sulfate addition to soil[J]. Plant and Soil, 1998, 202: 217-222
    171 杨居荣,贺建群,黄翌,等.农作物Cd耐性的种内和种间差异Ⅰ.种间差[J].应用生态学报,1994,5(2):192-196
    172 杨居荣,蒋婉茹.不同耐镉作物体内镉结合体的对比研究[J].作物学报,1995,21(5):605-611
    173 吴启堂,陈卢,王广寿,等.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107
    174 Marchiol L, Leita M, Martin A, et al. Physiological responses of two soybean cultivars to cadmiuln[J]. Journal of Environmental Quality, 1996, 25(3): 562-567
    175 王凯荣.镉对不同基因型水稻生长毒害影响的比较[J].农村生态环境,1996,12(3):18-23
    176 Belimov A A, Safronova V I, Tsyganov V E, et al. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisumsativum L.) [J]. Euphytica, 2003, 131:25-35
    177 White M C, Decker A M, Chancy R L. Differential cultivar tolerance in soybean to phytotoxic levels of soil Zn. I. Range of cultivar response[J]. Agronomy Journal, 1979,71: 121-126.
    178 De Knecht J A, van Dillen M, Koevoets P L M, et al. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris[J]. Plant Physiology, 1994, 104:255-261
    179 江行玉,王长海,赵可夫.芦苇抗镉污染机理研究[J].生态学报,2003,23(5):856-862
    180 王凯荣,陈朝明,龚惠群,等.Cd污染农田农业生态整治与安全高效利用模式[J].中国环境科学,1998,18(2):97-101
    181 刘广余,薄官庆,张文敏,等,施用沸石对水萝卜吸收镉的影响[J].北京农业科学, 1989,(6):20~23
    182 郭栋生,席玉英,王爱英,等.植物激素类除草剂对玉米幼苗吸收重金属的影响[J].农业环境保护,1999,18(4):182-184,191
    183 周红卫,施国新,陈景辉,等.6-BA对水花生抗氧化酶系Hg~(2+)毒害的缓解作用[J].生态学报2003,23(2):387-392
    184 Ashraf Metwally, Iris Finkemeier, Manfred Georgi, et al. Salicylic acid alleviates the cadmium toxicity in barley seedlings[J]. Plant Physiology, 2003, 132(1): 272-282
    185 Shanti S, Sharma,Vijay Kumar. Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium[J]. Journal of Plant Physiology, 2002, 159(12): 1323-1327
    186 黄会一,蒋德明,张春兴,等.镉土治理林业生态工程的研究[J].中国环境科学,1989,9(6):419-426
    187 秦天才,吴玉树,黄巧云,等.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志,1997,16(3):31-34
    188 周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究[J].应用与环境生物学报,1999,5(1):11-15
    189 杨居荣,贺建群,张国强,等.农作物对镉毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87-91
    190 Chien H F, Kao C H. Accumulation of ammonium in rice leaves in response to excess cadmium[J]. Plant Sci, 2000, 156:111-115
    191 Burzynski M. The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings[J]. Acta Physiologiae Plantarum, 1987, 9(4):229-238
    192 强维亚,陈拓,汤红官,等.重金属(Cd)和增强UV-B辐射复合对大豆生长和生理代谢的影响[J].西北植物学报,2003,23(2):236-239
    193 中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999
    194 王若仲,萧浪涛,蔺万煌,等.亚种间杂交稻内源激素的高效液相色谱测定法[J].色谱,2002,20(2):148-150
    195 Daie J, Compbell W F. Response of tomato plants to stressful temperatures[J]. Plant Physiol, 1981, 67:26-29.
    196 马文丽,金小弟,王转花.镉处理对乌麦种子萌发幼苗生长及抗氧化酶的影响[J].农业环境科学学报,2004,23(1):55-59
    197 张玉秀,柴团耀,Gerard Burkard.植物耐重金属机理研究进展[J].植物学报,1999,41(5):453-457
    198 张继澍.植物生理学[M].西安:世界图书出版公司,1999
    199 王臣立,韩士杰,黄明茹.干旱胁迫下沙地樟子松脱落酸变化及生理响应[J].东北林业大学学报,2001,29(1):40-43
    200 严寒静,谈锋.自然降温过程中栀子叶片脱落酸,赤霉素与低温半致死温度的关系[J].西南师范大学学报(自然科学版),2001,26(2):195-199
    201 柯玉琴,潘廷国.NaCl胁迫对甘薯叶片水分代谢、光合速率、ABA含量的影响[J].植物营养与肥料学报,2001,7(3):337-343
    202 Blackman P G, Davies W J. Root to shoot communication in maize plants of the effects of soil drying[J]. J Exp Bot, 1985, 36:39-48
    203 Zhang, J H, Davies, W J. Changes in the concentration of ABA in xylem sap as a function of changing soil water status will account for changes in leaf conductance plant[J]. Cell Environ, 1990, 13:277-285
    204 汪良驹,王业迟,刘友良.盐逆境中无花果叶片蛋白质合成与脱落酸及脯氨酸积累的关系[J].江苏农业学报,1991,7(1):38-44
    205 Asada k. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants[J]. Physiol Plant, 1992, 85:235-241
    206 朱延姝.大豆幼叶抗氧化酶对PEG和NaCl胁迫反应的定量分析[J].辽宁农业科学,2005,(5):1-5
    207 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    208 Harter R D. Effect of soil pH on absorption of lead, copper, zinc and nickel[J]. Soil Sci Soc Am J, 1983, 47:47-51.
    209 王果,李建超,杨佩玉,等.有机物料影响下土壤溶液镉形态及其有效性研究[J].环境科学学报,2000,20(5):621-626
    210 韩碧文.植物生理生化进展(第三版)[M].北京:科学出版社.1984:125-127
    211 Marschner H. Mineral nutrition of higher plants(2nd ed.)[M]. Academic Press, 1995: 347-364
    213 夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996
    214 Liu J P, Zhu J K. Proline accumulation and salt-stress-induced gene expression in salt-hypersensitive mutant of Arabidopsis[J]. Plant Physiol, 1997, 114:591-596
    215 曾敏,廖柏寒,曾清如.土壤—植物系统中模拟酸雨与Cd复合污染的短期环境效应—黄豆盆栽试验[J].环境科学学报,2005,25(12):1687-1692
    216 Larst W J. Factors responsible for genotypic manganese tolerance in cowpea(Vigna ungiculata)[J]. Plant and Soil, 1983, 72:213-218
    217 Bell M J, Mclaughlin M J, Wright G C, et al. Inter-and instraspecitic variation in accumulation of cadmium by peanut, soybean and navy bean[J]. Australia Journal of agricultural research, 1997, 48:1151-1160
    218 Yang J R, Zhang S Q. The distribution and binding of Cd and Pb in plant cell[J]. China Environmental Science, 1993, 13(4):263-268
    219 Klobus G, Buczek J. Chlorophyll content, cells chloroplast number and cadmium distribution in Cd-treated cucumber plants[J]. Acta Physiologic Plant, 1985, 7(3):139-147
    220 Yang J R, He J Q, Zhang G X. Tolerance mechanism of crops to Cd pollution[J]. Chinese J Applied Ecology, 1995, 6(1):87-91
    221 曹锡清.脂质过氧化对细胞与机体的作用[J].生物化学和生物物理进展,1986,(2):1721
    222 王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):524-529
    223 张健,吴美艳,肖炜.Hg~(2+)对苜蓿叶片的毒害效应[J].广西植物,2002,22(6):553-556
    224 覃鹏,刘叶菊,刘正虎.干旱胁迫对烟草叶片丙二醛含量和细胞膜透性的影响[J].亚热带植物科学,2004,33(4):8-10
    225 周青,黄晓华.镧—甘氨酸配合物对镉伤害小白菜的影响[J].环境科学,1999,20(1):91-94
    226 周青,黄晓华.La-Gly对Pd胁迫下大豆幼苗生理生化特性的影响[J].中国稀土学报,1999,17(4):381-384
    227 Liu Y Y, Sun L, Luo S G; et al. Effects of Se on reducing membrane lipid peroxidation of soybean under continuous cropping stress[J]. Journal of Northeast Agricultural University, 2002, 9(1):1-8
    228 余让才,李明启,范燕萍.高等植物硝酸还原酶的光调控[J].植物生理学通讯,1997,33(1):51-55
    229 Rufty T W, Vock R J. Alterations in enrichment of NO~(3-) and reduced-N in xylem exudates during and after extended plant exposure to NO~(3-)[J]. Plant and Soil, 1986, 91:329-333
    230 黄运湘,廖柏寒,肖浪涛,等.镉处理对大豆幼苗生长及激素含量的影响[J].环境科学,2006,27(7):1398-1401
    231 Obata H, Kawamura S, Senook. Chang in leaves of protein and activity of Cu/Zn-superoxide dismutase in Zinc deficient rice plant (oryze sativa L.)[J]. Soil Sci Plant Ntr, 1999, 45:891-896
    232 Cakmak I, Marschner H. Increase in membrane permeability and exudation in roots of Zn deficient plant[J]. Joumal Plant Physiol, 1988, 132:356-361
    233 Cakmak I, Ekiz H, YIlmaz A, et al. Differential response of ryz, tritical,bread and durum wheats to Zinc deficiency in calcareous soils[J]. Plant and Soil, 1997, 188(1):1-10
    234 Cakmak I, Ozturk L, Eker S, et al. Concentration of zinc and activity of cupper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency[J]. Journal Plant Physiol, 1997, 151:91-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700