脂肪基质细胞向软骨诱导分化及构建组织工程软骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
战时的复合型、多发性创伤以及平时各种外伤、骨关节病等均可造成全身各处软骨损伤、破坏,直接影响患者的外貌和功能,其稳定及便捷的修复对提高患者的生存质量至关重要。随着生活水平的提高,人们对美容的需求也日渐增长,应用软骨进行的临床整形美容治疗是整形修复外科研究的热点与难点。自体、同种异体软骨以及人工替代材料不断应用于临床,但它们存在来源受限、形态不匹配以及免疫排斥反应等问题。组织工程学是应用细胞生物学和工程学原理,研究和开发用于修复和改善人体各种组织、器官损伤后的功能和形态的一门科学,它可以避免传统治疗方法的缺陷,是解决组织缺损的一项理想途径。组织工程研究的两个关键因素是良好的种子细胞以及合适的支架材料。目前应用的种子细胞中,自体软骨细胞来源有限,会造成机体附加损伤;同种异体软骨细胞来源广泛,获取容易,但免疫排斥反应较强;胚胎干细胞和骨髓基质干细胞是种子细胞较佳的来源,但都受到伦理道德和取材数量的限制,使其在组织工程的应用上难以推广。支架材料方面,目前用于软骨组织工程支架材料主要有胶原海绵、纤维蛋白凝胶、聚丙交酯(polylactide, PLA )、聚乙交酯(polyglycolide, PGA )及其共聚物(Poly lactide-co-glycolide, PLGA )等,它们存在或亲水性差、细胞吸附力弱、降解慢,或免疫反应大,价格昂贵等诸多缺点。
     脂肪组织基质中存在着具有自我更新和一定的多能分化潜能、处于全能细胞和成熟细胞之间的成体干细胞,称为脂肪基质细胞(adipose tissue-derived stromal cells, ADSCs )。ADSCs具有多向分化的潜能,能向骨细胞、软骨细胞、上皮细胞、心肌细胞、骨骼肌细胞、平滑肌细胞、肝细胞及神经等细胞等定向诱导分化,从而参与组织的损伤修复。其容易获取、采集效率高,对机体损伤小,是一种新型的组织工程种子细胞。羟丙甲基纤维素(Hydroxypropyl methyl cellulose , HPMC)是一种无细胞毒,与机体相容性好,不诱发免疫排斥反应的热敏性水凝胶,其降解速度与组织生长速度相匹配,其可注射性及温度敏感性为创伤修复治疗和重建手术提供了方便、可塑性、微创的生物材料,是一种理想的组织工程生物支架材料。
     脂肪基质细胞(ADSCs)和羟丙甲基纤维素(HPMC)的联合应用为组织工程修复软骨缺损提供了一个新的途径与方法。
     材料与方法
     1.人脂肪基质细胞(ADSCs)的分离和培养取第四军医大学唐都医院整形科超声乳化后的脂肪组织溶液,经消化、过滤、分离、培养得到ADSCs,加入培养基培养,观察原代及传代后细胞形态,并用MTT法绘制生长曲线。
     2.流式细胞仪检测细胞表面标志物取6代细胞,流式细胞仪检测CD14、CD31、CD34、CD45、CD49d、CD56、CD105以及CD106等表面标志。
     3.人脂肪基质细胞(ADSCs)向软骨细胞诱导分化ADSCs消化传代,用成软骨培养基重悬培养细胞,接种于新培养瓶中,隔日换液。观察细胞形态变化,细胞爬片行免疫组化和AB/PAS染色以及天狼猩红染色。
     4.成软骨诱导细胞在裸鼠体内构建工程化软骨配制合适浓度的羟丙甲基纤维素(HPMC)与诱导细胞混和,分别注入3只裸鼠前后肢背部皮下,每只裸鼠有3个注射点为实验组,1个注射点作为对照,注射不含细胞的凝胶。裸鼠分别于饲养3w、5w和7w处死取材,进行组织和形态的观察。
     结果
     1.细胞形态与生长曲线原代培养的ADSCs 7d左右即达70%~80%融合,细胞呈漩涡状排列。经体外培养10代以后,细胞的增殖速度减慢。成软骨诱导细胞增殖速度显著快于未诱导细胞。
     用MTT法分别做ADSCs及成软骨诱导细胞的生长曲线。ADSCs第3d进入指数增长期,群体倍增时间为55 h左右,细胞在第4d进入平台期;成软骨诱导细胞第2d进入指数增长期,群体倍增时间为30 h左右,细胞增殖迅速,在第8d进入平台期。
     2.流式细胞仪检测结果
     ADSCs对CD31,CD34以及CD45,CD106表达很低,同时也可观察到CD14,CD56和CD105均呈较低表达,而其对CD49d却有较强的表达,CD49d为ADSCs特异性表达的标志物,而造血系统来源细胞并不表达此标记物。以上均说明实验中所获取的是ADSCs。
     3.成软骨诱导细胞的免疫组化和AB/PAS染色、天狼猩红染色结果免疫组化显示ADSCs在成软骨诱导后表达II型胶原;AB/PAS染色的细胞分泌有中性及酸性粘多糖成分,其中有较多的软骨细胞所特有的酸性糖蛋白基质;天狼猩红染色细胞爬片在偏振光下可见具有双折光性的红色和黄色纤维,也可见少量呈网状分布的多彩纤维,分别为诱导细胞分泌出的Ⅰ型和Ⅱ型胶原物质。
     4.裸鼠体内构建工程化软骨的结果
     裸鼠各个注射点皮肤色泽正常,注射混和凝胶的皮下组织毛细血管增生,在3w、5w和7w所取裸鼠分别在HE染色下观察到软骨细胞以及部分残留凝胶。其中实验组9个点中有4个点出现软骨,对照组3个点均未发现软骨形成。
     结论
     1.超声乳化后的脂肪组织溶液经消化、分离后可得到脂肪基质细胞(ADSCs)。
     2.经成软骨诱导培养后,ADSCs具有软骨细胞特征,可以作为软骨组织工程的种子细胞。
     3.羟丙甲基纤维素(HPMC)与ADSCs相容性较好,未见其在裸鼠体内引起排斥反应,与诱导细胞混合后移植入裸鼠体内可形成软骨实质,可以作为一种组织工程的支架材料。
Battle wound and various kinds of diseases such as osteoarthrosis caused cartilage defects influence patient’s outward appearance and their function. It is significant to repair it stable and convenient for improve patient’s quality of life. Therefore, autologous, allogeneic cartilade and some artificial materials has been used in clinical. However, the disadvantages such as supply limited, hard to match and immunological rejection had restricted the development. Tissue engineering use the principles and methods of engineering and life sciences to repair and reconstruction of tissue defects. Seed cells and the material of scaffolds are key factors in the tissue engineering. The self-histiocyte has some question about quantity of localization, function aging and so on. The embryonic progenitor cells and marrow mesenchymal stem cells also have some ethical problems. On the other hand, the commonly used scaffolds in the tissue engineering have some disadvantages such as serious immune response, high price and so on.
     There is a kind of cells in the adipose tissue called adipose tissue-derived stromal cells (ADSCs )have the potential ability to differentiate into bone, cartilage, muscle and so on, ADSCs could be available in large quantities with minimal morbidity and discomfort associate with their harvest. They can be used as a new kind of seed cells in the tissue engineering. The injectable and thermosensitive Hydroxypropyl methyl cellulose (HPMC) has the advantages of convenience, plasticity and mini injury; it might be used as an ideal material of scaffolds in tissue engineering. This study focus on using ADSCs combined with HPMC to fabricate cartilage with tissue engineering technology.
     Materials and methods
     1. Cell culture and Differentiation Human adipose tissues were obtained from elective liposuction procedures under local anesthesia, then digested and centrifuge the lipoaspirates to obtain the useful cells. The cellar pellet was resuspended in proper mediums. We observed the appearance of cells and drew the growth curve.
     2. Flow Cytometry
     We detected the unique CD maker antigens-CD14, CD31, CD34, CD45, CD49d, CD56, CD105 andCD106 of the 6th generation ADSCs.
     3. Cell multiplication and induction.
     ADSCs cultured separated in different mediums were trypsinized and seeded in two 96-well plates at a density of 2×103/200μl. When the three groups of cells described above were cultured for 1day to 8days, cell proliferation was detected by MTT colorimetric method. 4. Fabrication of engineering cartilage using induced ADSCs in nude mice We injected the mixture of induced ADSCs and HPMC into the 3 mice’s hypodermis. In each mouse, 3 points were experimental group, the other 1 point was control. Mice were killed at the 3w, 5w and 7w after cell injection. Specimens were fixed in buffered formalin.
     Results
     1. ADSCs cultured in the two mediums grows and proliferate in different ways
     ADSCs arrange like a swirl, exhibited an average population doubling time of 55h using common medium. The cells could go down to the 9th passage, after that, the cells grew slowly and aging obviously. In contrast, the induction ADSCs grew faster than the former, cells were bigger, and some pseudopodium and nucleoli were observed. These cells went into index stage at the second day, exhibited population doubling time of 30h. The cells turned aging at about the15th passage.
     2. Phenotypic Characterization of ADSCs population: CD Marker profile
     CD maker profile was examined for characterize the ADSCs population, no expression of the hematopoietic lineage markers CD31, CD34, CD45 and CD106 was observed in the cells. CD14, CD56 and CD105 were expressed in low level. ADSCs expressed CD49d, whereas this antigen was not expressed in hematopoietic lineage, it can be seen as a significant marker for ADSCs.
     3. Immunehistochemenical and special staining. After cultured in chondrogenic medium, the cells secreted the specific cartilaginous matrices sulfated proteglycan and collagenⅡ. And we had observed the special staining of chondrocyte induced ADSCs under polarized microscope, which was characteristic cartilage matrix.
     4. Observation of the nude mice induced ADSCs and HPMC
     The skins of all nude mice were normal, the hypodermis became bloodshot. At the 3w, the 5w and 7w, we all observed the cartilage through the microscope.
     Conclusion
     1. Adipose derived stromal cells (ADSCs) could be obtained from the adipose tissue in elective liposuction of hypersound. The cells were identificated to be the ADSCs by flow cytometry.
     2. The ADSCs cultured in induced medium turned to have some characters of cartilage cells, and fabricated the cartilage in nude mice, suggested that the ADSCs were fit for the seed cells in tissue engineering.
     3. The HPMC and ADSCs were compatible, it wasn’t infected or discharged. It can be considered to be a suitable scaffold in tissue engineering.
引文
[1] Ochi M. Clinical results of transplantation of tissue-engineered cartilage and future direction of cartilage repair-novel approach with minimally invasive procedure. Yonsei Med J, 2004, 45 (Suppl):45-74.
    [2]许圣荣,赵劲民.组织工程软骨修复软骨缺损的研究进展. 医学综述, 2008,14(1):16-18.
    [3] Zuk PA, Zhu Min, Mizuno H. Multilineage cells from human adipose tissue: implication for cell-based therapies. Tissue Engineering, 2001, 7(2): 211-228.
    [4] 余方圆, 卢世壁, 袁玫, 黄靖香, 赵斌, 孙学明. 脂肪干细胞向软骨方向诱导的初步研究. 中国矫形外科杂志, 2004,12(10): 762-764.
    [5] Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, Lieberman JR. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng, 2005,11(1-2):120-129.
    [6] Yoo JW, Dharmala K, Lee CH. The physicodynamic properties of mucoadhesive polymeric films developed as female controlled drug delivery system. International Journal of Pharmaceutics, 2006, 309(1):139-145.
    [7] Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110):920-926.
    [8] Vacanti JP, Morse MA, Saltzman WM. Selective cell transplantation using bioabsorbable artifical polymers as matrices.J Pediatr Surg, 1988,23(1pt2):3-9.
    [9] Vacanti CA, Langer R, Schloo B, Vacanti JP. Synthetic polymers seededwith chondrocytes provide atemplate for new cartilage formation. Plast Reconstr Surg, 1991, 88(5):753-759.
    [10]Green WT Jr. Articular cartilage repair: Behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin Orthop, 1977, May(124):237-250.
    [11]Pollok JM, Vacanti P. Tissue engineering. Semin Pediatr Surg, 1996, 5(3):191-196.
    [12]Sittinger M. Tissue engineering: artificial tissue replacement containing vital components. Laryngorhinootologie, 1995, 74(11):695-699.
    [13]东方晓.器官和组织移植的新军——组织工程学, 科学前沿, 2000(1): 9-10.
    [14] Vacanti JP, Langer R. Tissue engineering: The design and abrication of living replacement devices for surgical reconstruction andtransplantation.Lancet,1999, 354(Suppl):32-34.
    [15]Langer R, Vacanti JP. Artifical organs. Sci Ame, 1995, 273(3):100-103.
    [16] 候勇, 汤继文, 聂林. 创伤外科的研究现状与发展动态. 中国矫形外科杂志, 2003, 11(22): 1560-1563.
    [17] Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin equivalent tissue of full thickness.Science, 1981, 211(4486):1052-1054.
    [18]Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymetric template to synthesize a functional extension of skin. Science, 1982, 215(4529):174-176.
    [19]Kim WS, Vacanti CA. Cartilage engineered in prederwemined shapes employing cell transplantation on synthetic biodegradable polymers. Plast Recomstr Surg, 1994,94(2):233-237.
    [20] Vacanti CA, Kim W, Upton J, Vacanti MP, Mooney D, Schloo B, Vacanti JP. Tissue engineered growth of bone and cartilage. Transplantat Proc, 1993, 25(1):1019-1021.
    [21] Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, Vacanti JP. Experimental Tracheal replacement using tissue engineered cartilage. J Pediatr Surg, 1994, 29(2):201-204.
    [22] Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell constructs to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg, 1997,100(2):297-301.
    [23] 杨志明, 赵雍凡, 解慧琪, 黄富国,刘欣,李涛. 组织工程肋骨移植反复胸壁巨大缺损. 中国修复重建外科杂志, 2000, 14 (6):365-368.
    [24]Liu CX, Liao YF, Li HL, Zheng SB. Cytocompatibility of silk fibroin film with rabbit urinary bladder transitional epithelial cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(2):216-218.
    [25] Rahfoth B, Weisser J, Sternkopf F, Aigner T, von der Mark K, Br?uer R. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage, 1998, 6(1):50-65.
    [26]Huckle J, Dootson G, Medcalf N, McTaggart S, Wright E, Carter A, Schreiber R, Kirby B, Dunkelman N, Stevenson S, Riley S, Davisson T, Ratcliffe A. Differentiated chondrocytes for cartilage tissue engineering. Novartis Found Symp, 2003, 249:103-112.
    [27]金岩.组织工程学原理与技术.西安:第四军医大学出版社. 2004, 116-117.
    [28]Bonaventure J, Kadom L. Reexpression of cartilage-specific gene by dedifferentiated human articular chondrocytes cultured in alginate beads.Experimental Cell Research, 1994, 212(1):97-103.
    [29]Freesd LE, Vunjak-Novakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem, 1993,51(3):257-260.
    [30]Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol, 1982, 10(2):217-227.
    [31]Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med, 2001, 7(6):259-264.
    [32]Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181(1):67-73.
    [33]Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell transplant, 1997,6(2):125-134.
    [34]Noble BS, Dean V, Loveridge N, Thomson BM . Dextran sulfate promotes the rapid aggregation of porcine bone-marrow stromal cells. Bone, 1995,17(4):375-382.
    [35]Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng, 2006, 93 (6):1152-1163.
    [36]Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA.The differentiation of bone marrowmesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid ( PLLA) scaffolds. Biomaterials, 2006, 27 (22): 4069-4078.
    [37]Janjanin S, Li WJ, Morgan MT, Shanti RM, Tuan RS. Mold-Shaped, Nanofiber Scaffold-Based Cartilage Engineering Using Human Mesenchymal Stem Cells and Bioreactor. J Surg Res, 2008 Jan 28 [Epub ahead of print].
    [38] Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelsberg TC, Riggs BL. Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res, 1996,11(3):312-324.
    [39] Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS. Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells, 2003, 21(6):681-693.
    [40] Bruder SP, Jaiswal N, Haynesworth SE.Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation, J Cell Biochem,1997,64(2):278-294.
    [41] Isaikina Y, Kustanovich A, Svirnovski A. Growth kinetics and self-renewal of human mesenchymal stem cells derived from bone marrow of children with oncohematological diseases during expansion in vitro. Exp Oncol, 2006, 28(2):146-151.
    [42]Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001, 7(2):211-228.
    [43]Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to the tissue engineering of fat.Clin Plast Surg, 1999, 26(4):587-596.
    [44]Boquest AC, Shahdadfar A, Brinchmann JE, Collas P. Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol, 2006, 325:35-46.
    [45]Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med, 2005, 54(3):132-141.
    [46]Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg, 2004, 32(6): 370-373.
    [47]Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg, 2006,118(3suppl): 121S-8S.
    [48]Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg, 2008, 32(1): 48-55.
    [49] Fang B, Song YP, Liao LM, Han Q, Zhao RC. Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant, 2006,38(5): 389-390.
    [50] Fang B, Song Y, Lin Q, Zhang Y, Cao Y, Zhao RC, Ma Y. Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transplant, 2007, 11(7): 814-817.
    [51] Fang B, Song Y, Zhao RC, Han Q, Lin Q. Using human adiposetissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis. Transplant Proc, 2007, 39(5): 1710-1713.
    [52] Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF. Recent advances in andrology-related stem cell research. Asian J Androl, 2008,10(2):171-175.
    [53] Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun, 2002,290: 763–769.
    [54] De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I,Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs, 2003,174(3): 101-109.
    [55] Nathan S, Das DS, Thambyah A, Fen C, Goh J, Lee EH. Cellbased therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng, 2003,9(4): 733-744.
    [56]Christophel JJ, Chang JS, Park SS. Transplanted tissue engineered cartilage. Arch Facial Plast Surg, 2006, 8 (2):117-122.
    [57] Jin XB, Luo ZJ, Wang J. Treatment of rabbit growth plate injuries with an autologous tissue engineered composite. Cells Tissues Organs, 2006,183 (2) :62-67.
    [58]Li X, Jin L, Balian G, Laurencin CT, Greg Anderson D. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials, 2006, 27(11):2426-2433.
    [59]Yanaga H, Yanaga K, Imai K, Koga M, Soejima C, Ohmori K. Clinical application of cultured autologous human auricular chondrocytes with autologous serum for craniofacial or nasal augmentation and repair. Plast - 58 -Reconstr Surg, 2006,117 (6): 2019-2030.
    [60]王伟, 范明, 张力等.透明质酸凝胶在成肌细胞体外培养中的应用. 解剖科学进展, 2007,13(3):215-218.
    [61] Paige KT, Cima LG, Yaremchuk MJ. Injectable cartilage. Plast Reconstr Surg, 1995,96(6):1390-1395.
    [62] Cao YL, Lach E, Kim TH, HRodríguez A, Arévalo CA, Vacanti CA. Tissue engineered nipple reconstruction. Plast Reconstr Surg, 1998, 102(7):2293-2301.
    [63] 郝彤, 刘暾, 吕双红, 王常勇. 采用温敏性壳聚糖水凝胶体外构建组织工程化软骨的实验研究. 解放军医学杂志, 2007,32(5):500-502.
    [64]Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000, 21(21):2155-2161.
    [65] Hoemann CD, Sun J, Légaré A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage, 2005, 13(4):318-329.
    [66]张巍. 药用辅料羟丙甲基纤维素(HPMC) 的应用.中国药学杂志, 2002,37(2):92-93.
    [67] 单玉华.羟丙基甲基纤维素(HPMC) 在片剂生产中的应用.齐鲁药事, 2004,23(2):56-57.
    [68]沈丽琳.羟丙甲基纤维素在药物制剂方面的应用与研究.中国药业, 2007,16(12):64-66.
    [69] 高佳 . 羟丙甲基纤维素在外用混悬型制剂中的应用 . 中国药师 , 2002,5(9):543.
    [70] Vinatiera C, Magnea D, Weissa P, Trojanib C, Rochetb N, Carleb GF,Vignes-Colombeixc C, Chadjichristosd C, Galerad P, Daculsia G, Guicheux J. A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture ofchondrocytes. Biomaterials, 2005, 26 (8):6643–6651.
    [71] Trojani C, Weissc P, Michielsa JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials, 2005, 26 (6) :5509–5517.
    [72] Sims CD, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WP, Vacanti CA, Yaremchuk MJ. Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg, 1996,98(5):843-850.
    [73] Pedrozo HA, Schwartz Z, Gomez R, Ornoy A, Xin-Sheng W, Dallas SL, Bonewald LF, Dean DD, Boyan BD.Growth plate chondrocytes store latent transforming growth factor ( TGF) -beta 1 in their matrix through latent TGF-beta 1 binding protein-1. J Cell Physiol, 1998, 177(2): 343-354.
    [74] Lawrence A.Latent-TGF-beta: an overview. Mol Cell Biochem, 2001,219(1-2): 163-170.
    [75] Anita B. Roberts, molecular and cell biology of TGF-β. Miner and Electrolyte Metab, 1998, 24(1): 111-119.
    [76]Joyce ME, Roberts AB, Sporn MB, Bolander ME. Transforming growth factor-β and the initiation of chondrogenesis and osteogenesis in the rat fumur. J Cell Biol, 1990,110(6):2195-2207.
    [77] Seyedin SM, Rosen DM, Segarini PR. Modulation of chondroblast phenotype by transforming growth factor- β .Pathol ImmuneopatholRes,1988,7(1-2):38-42.
    [78] de Haart M, Marijnissen WJ, van Osch GJ, Verhaar JA. Optimization of chondrocyte expansion in culture. Effect of TGF beta-2, bFGF and L-ascorbic acid on bovine articular chondrocytes. Acta Orthop Scand,1999,70(1):55-61.
    [79] Guo CA, Liu XG, Huo JZ, Jiang C, Wen XJ, Chen ZR. Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-beta1-transfected mesenchymal stem cells grown on chitosan scaffolds. J Biosci Bioeng, 2007,103(6):547-556.
    [80] Moretti M, Wendt D, Dickinson SC, Sims TJ, Hollander AP, Kelly DJ, Prendergast PJ, Heberer M, Martin I. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng, 2005, 11 (9-10) : 1421-1428.
    [81] Mizuta H, Sanyal A, Fukumoto T, Fitzsimmons JS, Matsui N, Bolander ME, Oursler MJ, O'Driscoll SW. The spatiotemporal expression of TGF-beta1 and its receptors during periosteal chondrogenesis in vitro. J Orthop Res, 2002,20(3):562-574.
    [82] Boumediene K, Vivien D, Macro M, Bogdanowicz P, Lebrun E, Pujol JP. Modulation of rabbit articular chondrocyte (RAC) proliferation by TGF-beta isoforms. Cell Prolif, 1995, 28(4):221-234.
    [83] Cornell CN, Lane JM. Newest factors in fracture healing. Clin Orthop Relat Res, 1992,277: 297-311.
    [84] Gensburger C, Labourdette G, Sensenbrenner M. Effect of basic FGF on the proliferation of rat neuroblasts in culture. C R Acad Sci III, 1986, 303(11):465-468.
    [85] Veilleux N, Spector M. Effects of FGF-2 and IGF-1 on adult caninearticular chondrocytes in type Ⅱ collagen glycosaminoglycan scaffolds in vitro. Osteoarthritis Cartilage, 2005, 13 (4): 278-286.
    [86] Ding XB, Cheng NX, Chen B, Xia WY, Cui L, Liu W, Cao YL. Regeneration of autologous tissue engineered cartilage by using basic fibroblast growth factor in vitro culture. Zhonghua Zheng XinWai Ke Za Zhi, 2004, 20 (3): 215-218.
    [87]Shida JI, Jingushi S, Izumi T, Ikenoue T, Iwamoto Y. Basic fibroblast growth factor regulates expression of growth factors in rat epiphyseal chondrocytes. J Orthop Res, 2001,19(2):259-264.
    [88]Maniwa S, Ochi M, Motomura T, Nishikori T, Chen J, Naora H. Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture.Acta Orthop Scand,2001,72(3):299-303.
    [89]Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res, 2001, 268(2):189-200.
    [90]Kellner K, SchulzMB, Gêpferich A. Insulin in tissue engineering of cartilage: a potential model system for growth factor app lication. J Drug Target, 2001, 9 (6) : 439-448.
    [91] Huang JR, Liu SL, SongWD. Stimulation of insulin-like growth factor1 to chondrogenesis of enineering cartilage tissue. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2004, 18 (1) : 49-52.
    [92] Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH. Interaction between insulin like growth factor-1 with other growth factors in serum depleted culture medium for human cartilage engineering. Med J Malaysia, 2004,59( Supp l B) : 7-8.
    [93] Hiraki Y, Tanaka H, Inoue H, Kondo J, Kamizono A, Suzuki F. Molecular cloning of a new class of cartilage-specific matrix, chondromodulin-I, which stimulates growth of cultured chondrocytes. Biochem Biophys Res Commun, 1991,175 (3):971-977.
    [94] Hiraki Y, Shukunami C. Chondromodulin-1 as a novel cartilage specific growth modulating factor. PediatrNephol, 2000, 14 (7): 602-605.
    [95]Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis Cartilage. 2006, 14(5):403-412.
    [96] 朱晓海,何清濂,林子豪. 人前脂肪细胞培养及增殖与分化模型的建立. 中华整形烧伤外科杂志. 1999, 15(3):199-200.
    [97]Carraro R, Li ZH, Johnson JE, Jr., Gregerman RI. Islets of preadipocytes highly committed to differentiation in cultures of adherent rat adipocytes. Light- and electron-microscopic observations. Cell Tissue Res, 1991, 264(2): 243-251
    [98]陈希哲, 林云峰, 乔鞠.人脂肪基质细胞分离培养及其成骨潜能.实用口腔医学杂志, 2004, 20(1):12-15.
    [99]罗盛康,席菁乐. 成人前脂肪细胞的原代培养. 第一军医大学学报, 2005,(3):270-273.
    [100]Fried SK, Moustaid-Moussa N.Culture of adipose tissue and isolated adipocytes .Methods Mol Biol, 2001, 155: 197-212.
    [101]夏蓉. 脂肪细胞和前脂肪细胞培养的研究进展. 同济大学学报(医学版),2004, 24(3):249-251.
    [102]Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J ClinInvest, 1976, 58(3): 699-704.
    [103]Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002 ,13(12):4279-4295.
    [104]De Ugarte DA, Alfonso Z, Zuk PA. Differential expression of stem cellmobilization-associated molecules on multi-lineage cells from adiposetissue and bone marrow. Immunol Lett, 2003, 89(2-3):267-270 .
    [105]Rodriguez, Anne-Marie, Pisani, Didier,Dani, Christian. Transplantationof a multipotent cell population from human adipose tissue induces dystrophin expression in the immunoc-ompetent mdx mouse. J Exp Med,2005,201(9):1397-1405.
    [106]Leonard CM, Fuld HM, Frenz DA, Downie SA, Massagué J, Newman SA. Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol. 1991, 145(1):99-109.
    [107]Kulyk WM, Rodgers BJ, Greer K, Kosher RA. Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta. Dev Biol,1989,135(2):424-430.
    [108]Weisser J, Rahfoth B, Timmermann A, Aigner T, Br?uer R, von der Mark K.Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose. Osteoarthritis Cartilage, 2001, 9 Suppl A:S48-54.
    [109]Williams KA, Saini S, Wick TM. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog, 2002, 18(5):951-963.
    [110]Martial A, Dousset B, Dardenne M, Engasser JM, Nabet P, Marc A. Insulin utilization and kinetic effect on hybridoma metabolism in batch andcontinuous cultures,1994,34(2):195-203.
    [111]魏明旺.博士学位论文.上海:华东理工大学,1996.
    [112]杨光成, 严金海, 刘春利.组织工程学——新兴医学学科.医学与哲学,1999,20(10):52-54.
    [113] Lo H, Kadiyala S, Guggino SE, Leong KW. Poly (L - lactic acid) foams with cell seeding and controlled - release capacity. J Biomed Mater Res, 1996, 30 (4):475-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700