大鼠脱细胞脊髓支架制备及相关性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     脊髓损伤近年来发病率有增高的趋势并呈现出高发生率,高致残率,高耗费,低死亡率的特点。组织工程学治疗脊髓损伤是目前研究的热点之一,它能整合治疗研究的各种有效策略,诱导轴突再生并提供良好的三维通道,减少胶质瘢痕和空洞形成。支架是组织工程研究中的关键,目前尚无与脊髓三维结构高度相似且在理化性能也与脊髓相似的支架材料。
     近年来一种新的趋势是采用天然的脱细胞基质作为神经组织的修复材料,即用同种异体来源的材料,采用脱细胞技术制备的脱细胞基质,经过去细胞、部分或完全去除有机质或无机质、去抗原等处理,形成生物衍生材料(bio-derived material ),用于组织工程研究。理论上讲将脊髓组织进行脱细胞处理构建理想的组织工程支架是可行的,但目前尚无相关文献报道。
     目的
     通过采用物理冻融结合化学萃取方法初步构建大鼠脱细胞脊髓支架并优化脱细胞方案,应用HE染色、髓鞘染色及扫描电镜等方法评价制备脱细胞脊髓支架的可行性,然后通过对支架的成分分析、免疫原性分析、细胞毒性、组织相容性,血液相容性、全身毒性反应等检测评价脱细胞脊髓支架的生物安全性,并将神经干细胞与支架复合,观察细胞在支架材料上的生长情况,评价支架材料的细胞相容性,从而为构建理想的组织工程脊髓支架提供实验基础。
     方法
     1.脱细胞方案的确定:采用冻融结合化学萃取方法制备脱细胞脊髓支架,并应用HE染色、髓鞘染色及扫描电镜等方法检测脱细胞效果以确定最合适脱细胞方案。
     2.脱细胞脊髓支架成分分析及免疫原性检测:应用免疫组织化学方案分析支架可能存在的成分;将脱细胞脊髓支架及同种异体脊髓组织分别进行大鼠椎旁皮下埋植后,于术后1w,2w,3w,4w周取材检测免疫排斥反应情况(免疫组织化学方法),评价免疫原性。
     3.脱细胞脊髓支架细胞毒性及全身毒性研究:通过浸提液与细胞共培养评价细胞毒性;通过溶血试验、凝血时间测定评价血液相容性;通过热原试验、全身毒性反应评价支架的全身毒性。
     4.脱细胞脊髓支架复合神经干细胞体外组织工程脊髓构建研究:将神经干细胞以不同浓度梯度接种在脱细胞脊髓支架上进行联合培养,观察细胞存活情况,比较不同接种密度上架细胞黏附率(Adhesive rate),绘制生长曲线。免疫组化结果用生物医学图像分析仪行平均光密度(AOD)分析,以重复资料的方差分析、t检验统计结果。
     结果及结论
     1、用冻融结合化学萃取法构建脱细胞脊髓组织工程支架是可行的,该支架具有良好的三维网状结构,脱细胞彻底,细胞外基质得到保存;
     2.构建的脱细胞脊髓支架材料为三维网状结构,具有相互沟通的孔隙,其孔径为6-150μm,孔隙率平均为(93.6±1.5)%,含水能力平均为(58.2±1.6)%。初步显示出支架材料具有良好的结构性能;
     3.构建的脱细胞脊髓支架材料含有Ⅳ型胶原、LN,FN等对细胞黏附、增殖、分化有利的活性成分,植入大鼠皮下后,未引发明显的炎性细胞浸润显示出支架具有极低的免疫原性;
     4.构建的支架材料对体外NIH3T3细胞的生长、增殖及代谢无明显抑制作用,无致热原存留,无溶血作用,对凝血功能无影响,无急性全身毒性作用,初步显示出支架材料具有良好的血液相容性及生物安全性;
     5.构建的支架材料与神经干细胞细胞构建细胞-支架复合体后神经干细胞能在支架内较长时间生存,显示出支架材料良好细胞相容性及广阔的应用前景。
Backgrounds :
     Spinal cord injury usually results in devastating and permanent loss of function below the injured place. Because the CNS axons lack the ability for spontaneous regeneration--further compounded by chemical (myelin inhibitors) and physical (e.g. glial scar) barriers to regeneration after spinal cord injury, patients normally experience poor functional recovery.
     Several methods have been investigated to overcome this hostile environment for regeneration and to promote partial functional recovery. Strategies to promote axonal extension through a site of injury include both the provision of nervous system growth factors and the implantation of substrates to support axon extension, such as cellular grafts. In general, however, the growth of axons is highly random and does not extend beyond the lesion site and into host tissue.Recently researchers have realized that it is difficult to achieve complete functional recovery relying on a single method. This has presented tissue engineering technology as an alternative strategy for the treatment of spinal cord injury. The scaffold can guide the linear growth of axons across a site of injury, in addition to providing neurotrophic and/or cellular support. This will help retain the native organization of regenerating axons across the lesion site and into distal host tissue, eventually increasing the probability of achieving function recovery.
     Various natural and synthetic polymeric materials have been used to promote the functional recovery after spinal cord injury. Nevertheless, further improvements are needed for all previously-reported approaches, which mimic a native extracellular matrix. Acellular scaffolds are among the various materials that have been recently used in tissue reconstruction. Acellular scaffolds are the noncellular part of a tissue and consist of such proteins as collagen and carbohydrate structures secreted by resident cells. They can be transplanted without rejection and can provide a conductive environment for normal cellular attachment, migration, proliferation, differentiation and angiogenesis as well as a framework for tissue regeneration, since they are completely replaced by the host tissue. In the last few years, acellular matrices have been successfully used to substitute and repair skin, bladder, urethra, small bowel, cardiac valve, blood vessel, skeletal muscle,peripheral nervous defects, among others. In an attempt to mimic the regenerative capacity of the spinal cord graft, we have investigated acellular spinal cord that provides the physical pathway for axonal regeneration.
     Objective:
     The acellular spinal cord scaffold prepared by freeze thawing and chemical extraction medthod. The program of decellulated was made and optimized. The acellular spinal cord scaffold was estimated by HE stain and Immunostaining, Myelin Staining, Scanning Electron Microscopy Analysis. The biological safety of acellular spinal cord scaffold was detected by component analysis, immunogenicity analysis, cytotoxicity, histocompatibility, blood compatibility, general toxicity reaction, thus provide rationale for constructing the ideal tissue engineering scaffold of spinal cord.
     Materials and Methods
     1. The program of acellular spinal cord scaffold preparation: the acellular spinal cord scaffold prepared by freeze thawing and chemical extraction medthod. The effect of acellular spinal cord scaffold was estimated by HE stain and Immunostaining, Myelin Staining, Scanning Electron Microscopy Analysis,thus the optimized program was determined.
     2.Component analysis and immunogenicity detection: Specimens were embedded in tissue-freezing medium, with temperature fixed at -20℃. Sections of 8 mm thick were obtained and routinely stained with immunostained for collagen typesⅣ, Laminin(LN), Fibronectin(FN).
     A bilateral surgical approach was made to implant the acellular spinal cord scaffolds into the subcutaneous back skins of SD rat. Thereafter, a small skin incision was made (10 mm long), and a pocket was created through blunt dissection. The scaffolds were then implanted through these skin incisions subcutaneously into the mid-portion of the back areas. The incision was sewed using conventional cotton sutures. The tissue was obtained at 1、2、3 and 4w after the operation, with inflammatory reaction evaluated by HE stain. The immunogenicity of acelular scaffold was tested by immunohistochemical examining the intensity of CD4+ and CD8+ cells that infiltrated the allografts.
     3. Cytotoxicity and general toxicity reaction investigation:
     The cytotoxicity was tested through co-incubation of scaffolds with NIH 3T3 cells. The blood compatibility was detected by hemolysis test and clotting time.With the haemolysis rate <5%, the scaffold is qualified for becoming bio-tissue engineering materials. With the haemolysis rate≥5%,the scaffold has hemoclasis. The general toxicity was evaluated through pyrogen test and general toxic reaction.
     4. The acellular spinal cord scaffold combinated neural stem cells to construct tissue engineering spinal cord: the neural stem cells was seeded in the scaffold by different concentration gradient and then co-cultured in incubator. The cell survival status was observed by microscope,then calculated the adhesive rate and drawed growth curve of cells.
     Results and Conclusions
     Macroscopic Observation
     There was a large amount of white-colored floss secreting from spinal cord during decellulation. After being treated, the spinal cord scaffold became ivory-white and translucent, and yet still shaped as a circular cylinder. However, the diameter shrank to 2/3-4/5 of that of the original spinal cord and the strength decreased slightly, although the tenacity remained unchanged and the viscosity increased slightly.
     HE Staining
     Normal spinal cord has generous neurons ,glial cells and myelin sheaths. In cross section, a network of the extracellular matrix was seen in the scaffold. The cells, myelin and axons disappeared after the spinal cord was treated with the detergents TritonX-100 and deoxycholate. Typical network of empty tubes were viewed in longitudinal sections .
     Myelin Staining
     Normal myelin sheath of spinal cord is black and has regulation shape. In acellular spinal cord, either no myelin sheaths is observed or only a small quantity of myelin-sheath pieces is detected.
     SEM Analysis
     In the scaffold, the cells have been removed completely, although the extracellular matrix and the pore have remained to form three diamensional network structures.The pore and the channel of scaffold diameter was 6-150μm and 119±26μm respectively.
     Immunohistochemistry
     Positive reaction to LN,FN and IV collagen is seen in both normal spinal cord and acellular spinal cord.The staining is weaker in acellular scaffold than in normal spinal cord, which indicates that the majority of the extracellular matrix is preserved after the decellulation treatment of spinal cords.
     Biocompatibility in Vitro
     A haemolysis rate <5% qualifies scaffold as bio-tissue engineering materials. After scaffolds were co-incubated with NIH 3T3 cells for 72 h, the NIH 3T3 cells showed no signs of cytotoxicity (loss of adherence, nuclear condensation, and cell soma contraction) and cells proliferated normally compared to cells in control wells, expanding from approximately 50–100% confluency within 72 h.
     Histocompatibility in Vivo
     The lymphocyte, neutrophilic granulocyte and fibroblast were seen in control groups and experimental group animals. The degree of infiltration in experimental groups was significantly weaker than in control groups after 1 week of implantation. There was no obvious increase of infiltrated cell of implantation and the neutrophilic granulocyte had vanished after 4 weeks. However, there was multiplicity lymphocyte and neutrophilic granulocyte infiltrated in control groups after 4w of implantation.
     There were sparing CD4+ and CD8+ leukomonocyte infiltration 1week and 2 weeks after implantation. Moreover, there were no obvious increase in experimental groups. There were massive CD4+ and CD8+ leukomonocyte infiltratration after implantation, and the staining intensity of positive cells were obviously stronger compared with the experimental groups.
     Our study first showed that segments from the spinal cord of Sprague–Dawley rats can be successfully extracted to become acellular. The outcome of the extraction was monitored by morphological methods and immunohistochemistry. The extraction procedure involved the removal of myelin following the weil’s myelin staining, and cells, leaving largely intact ECM. Immunohistochemistry analysis revealed the presence of Laminin, Fibronectin and IV collagen in the ECM.
     The scaffold of spinal cord is an emulated three-dimensional natural spinal cord which has fundamentally distinct and innate superiority over biological degradation materials. It is easy to obtain and is not confined by length or caliber. It can be isoloci transplantation and anatomy transplantation.
     Acellular spinal cord scaffolds created in this study have a number of positive properties that can potentially support axonal regeneration after nervous system injury. The scaffolds are soft and flexible, containing linear guidance pores extending through their full length. Because the scaffolds are stable under physiological conditions, there is no risk of introducing toxic molecules to the site of injury. Based on current findings, we believe that extracted spinal cord could be used as allografts, with the possibility of becoming useful for spinal cord repair in the future. Ongoing work in vivo will test their ability to support axonal regeneration after spinal cord injury. The experiments of functional nerve recovery as well as microscopical (and morphometric) analysis will be evaluated in more detail.
引文
[1] Branco F, Cardenas DD, Svircev JN, et al.Spinal Cord Injury: A Comprehensive Review[J].Physical Medicine and Rehabilitation Clinics of North America. 2007,18(4):651-679.
    [2] Stephanie M, Willertha, Shelly E. Cell therapy for spinal cord regeneration[J]. Advanced Drug Delivery Reviews. 2008,60(2): 263-276.
    [3] Jain A, Kim YT, McKeon RJ, et al.In situ gelling hydrogels for conformal repair of spinal cord defects and local delivery of BDNF after spinal cord injury[J]. Biomaterials, 2006,27 (3):497-504.
    [4] Liu LS, Thompson AY, Heidaran MA, et al. An osteoconductive collagen/hyaluronate matrix for bone regeneration[J]. Biomaterials, 1999, 20: 1097 - 1108.
    [5] Jason R, Thonhoffa, Dianne I,et al.Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro [J].Brain Research. 2008,1187(2): 42-51.
    [6] Liu s, Said G, Tadie M. Regrowth of the rostral spinal axons into the caudal ventral roots through a collagen tube implanted into hemisected adult rat spinal cord[J]. Neurosurgy, 2001, 49(1): 143-150.
    [7]孟晓梅,王春婷,游思维,等.纤维蛋白胶包裹嗅鞘细胞促进脊髓轴突再生的实验研究[J].解剖学报,2003,34(3):246-248.
    [8]程映华,梁晶,王晓冬,等.壳聚糖神经干细胞复合物修复大鼠完全性脊髓损伤的组织学观察[J].中华实验外科杂志2004 21(1):26-27.
    [9] Moore MJ, Friedman JA, Lewellyn EB, et al.Multiple-channel scaffolds to promote spinal cord axon regeneration[J]. Biomaterials,2006,27(3):419-429.
    [10] Zhang RY, Ma PX. Porous poly(L-lactic acid)/apatite composites created by biomimetic process[J]. J Biomed Mater Res, 1999,45:258-293.
    [11] Novikov LN, Novikova LN, Mosahebi A, et al. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury[J]. Biomaterials,2002,23(16): 3369-3376.
    [12] Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells[J].Proc Natl Acad Sci USA,2002,99(5): 3024-3029.
    [13] Duerstock BS, Borgens RB. Three-dimensional morphometry of spinal cord injury following polyethylene glycol treatment[J].J Exp Biol,2002,205(1):13-24.
    [14] Vacanti MP, Leonard JL, Dore B, et al. Tissue-engineered spinal cord[J]. Transplant Proc, 2001,33:592-598.
    [15] Pabrizius HD,Cooper SL .A comparison of the adsorption of three adhesive protiein to biomaterial surface[J]. J Biomater Sci Polym Ed,1991,3(1):27-32.
    [16] Menconi MJ,Owen T , Dasse KA, et al .Molecular approaches to the characterization of cell and blood/biomaterial interactions[J]. J Card Sur,1992, 7(2): 177 -184.
    [17] Lefkovits J. Plow EF. ToPol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine[J]. N Engl J Med, 1995; 332: 1553-1562.
    [18] Kirkpatrick CI, Bittinger F. Adhesion of human mesotheIial and endothelial cell to vascular prostheses[J]. Colloid and Surf B:Biointerfaces, 1994: 2(2): 251-259.
    [19] Takami Y, Matsuda T, Yoshitake M, Hanumadass M, Walter RJ. Dispase/detergent treatment dermal matrix as a dermal substitute[J]. Burns, 1996;22:182–190.
    [20] Sutherland RS, Baskin LS, Hayward SW, Cunha GR. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix[J]. J. Urol 1996;156: 571–577.
    [21] Bolland F, Korossis S, Wilshaw SP, Ingham E, Fisher J, Kearney JN, Southgate J.Development and characterization of a full-thickness acellular porcine bladder matrix for tissue engineering[J]. Biomaterials 2007;28:1061-1070.
    [22] Parnigotto PP, Gamba PG, Conconi MT, Midrio P. Experimentaldefect in rabbit urethra repaired with acellular aortic matrix[J]. Urol Res 2000;28: 46–51.
    [23] Pahari MP, Raman A, Bloomenthal A, et al.A Novel Approach for Intestinal Elongation Using Acellular Dermal Matrix: An Experimental Study in Rats[J]. Transplantation Proceedings, 2006; 38:1849–1850.
    [24] Pahari MP, Brown ML, Elias G, et al. Development of a bioartificial new intestinal segment using an acellular matrix scaffold[J]. Gut, 2007;56:885-886.
    [25] Knight RL, Wilcox HE, Korossis SA, et al.The use of acellular matrices for the tissue engineering of cardiac valves[J]. Proc Inst Mech Eng. 2008;222:129-143.
    [26] Conconi MT, Nico B, Mangieri D, et al.Angiogenic response induced by acellularaortic matrix in vivo[J]. Anat Rec A Discov Mol Cell Evol Biol. 2004;281:1303-1307.
    [27] Marzaro M, Conconi MT, Perin L, et al. Autologous satellite cell seeding improves in vivo biocompatibility of homologous muscle acellular matrix implants[J]. J. Mol. Med, 2002; 10:177–182.
    [28] Zhong H, Chen B, Lu S, et al.Nerve regeneration and functional recovery after a sciatic nerve gap is repaired by an acellular nerve allograft made through chemical extraction in canines[J]. J Reconstr Microsurg 2007;23:479-487.
    [29] Kajbafzadeh AM, Payabvash S, Salmasi AH . Time-Dependent Neovasculogenesis and Regeneration of Different Bladder Wall Components in the Bladder Acellular Matrix Graft in Rats[J]. Journal of Surgical Research,2007, 139(2):189-202.
    [30] Mirsadraee S,Helen E. Kevin G., et al. Biocompatibility of Acellular Human Pericardium [J]. Journal of Surgical Research,2007,143(2):407-414.
    [31] Hudson TW, Zawko S, Deister C, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration[J].Tissue Eng, 2004, 10(11-12): 1641-1651.
    [32]孙明学,唐金树,王鑫,等.去细胞处理对化学去细胞异体神经免疫原性的影响[J].中华外科杂志, 2006,44(4): 275-278.
    [33] Rovak JM, Bishop DK, Boxer LK, et al. Peripheral nerve transplantation: the role of chemical acellularization in eliminating allograft antigenicity[J]. J Reconstr Microsurg, 2005, 21(3): 207-213.
    [34] Hu J, Zhu QT, Liu XL, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells[J].Experimental Neurology,2007,(in press,Available online 10 January,2007).
    [35] Ribatti D, Conconi MT, Nico B, et al. Angiogenic response induced by acellular brain scaffolds grafted onto the chick embryo chorioallantoic membrane[J].Brain Res, 2003 , 989 (1): 9-15.
    [36] Li Y, Field PM, Raisman G. Regeneration of Adult Rat Corticospinal Axons Induced by Transplanted Olfactory Ensheathing Cells[J]. Neuroscience, 1998, 18(24): 10514–10524.
    [37] Sondell M, Lundborg G, Kanje M. Regeneration of the rat sciatic nerve into allograftsmade acellular through chemical extraction[J].Brain Res,1998,795:44-54.
    [38] Angele P, Abke J, Kujat R, et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials[J]. 2004 ,25 (14):2831-2841.
    [39] Uluoglu C, Zengil tj. Comparison of different de-endothelization procedures in the isolated rat thoracic aorta:a short communication[J]. Res Common Mol Pathol Pharmacol. 2003;113:289-297.
    [40] Bodnar E, Olsen EG, Florio R. Damage of porcine aortic valve tissue caused by the surfactant sodiumdodecyl sulpahate [J].Thorac cardiovase surg.1986,34(2):82-85.
    [41]詹秋鹏,张镜方,林秋雄.猪主动脉瓣去细胞的初步研究[J].国际卫生导报,2004,10:4-6.
    [42] Fishbein MC, Levy RJ, Ferrans VJ, et al. Calcification of cardiac valve bioprosthese:biochemical, histologic, and ultrastructural observations in a subcutaneous implantation model system[J]. J Thorac Cardiovasc Surg, 1982, 83; 602-609.
    [1] Meredith JE, Fazeli B,Schwartz MA.The extracellular matrix as a cell survival factor[J]. Mol Biol Cell, 1993;4(9):953-961.
    [2] Thoumine O, Nerem RM, Girard PR.Oscillatory shear stress And hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells[J]. In Vitro Cell Dev Biol Anim,1995;31(1):45
    [3] Lee RT, Berditchevski F, Cheng GC, et al. Integrin-mediated collagen matrix reorganization by cultured human vascular smooth muscle cells[J].Circ Res, 1995; 76(2): 209-215.
    [4] Robert P.Lanza, Robert Langer, Joseph Vacanti. Principles of Tissue engineering [M], Second edition, pp39-51.
    [5]鄂征,刘流主编,医学组织工程技术与临床应用[M],北京出版社,2003,05.
    [6] Gulati AK. Immunological fata of Schwann cell populated acellular basal lamins nerve allografts [J].Transplantation,1995,59(11):1618-1622.
    [7] Masunaga T,Shimizu H,Ishiko A,et aI.Localization of Iaminin-S in the epidermal basement membrane[J].J Histochem Cytochem,1996;44:1223-1230.
    [8] Yurchenco PD,Cheng Y,Colognato H. Laminin forms an independent net-work in basement membranes[J]. J. Cell Biol. 1992;1I7:l119-1133.
    [9] Tom VJ, Doller CM, Malouf AT, et al.Astrocyte-associated fibronectin is critical for axonal regeneration in adult white matter[J]. J Neurosci, 2004, 24(42): 9282-9290.
    [10] Blackmore M, Letourneau PC. Changes within maturing neurons limit axonal regeneration in the developing spinal cord [J]. J Neurobiol, 2006, 66(4): 348-360.
    [11] Miller C, Jeftinija S, Mallapragada S. Micropatterned schwann cell-seeded biodegradable polymer substrates significantly enhance neurite alignment and outgrowth [J].Tissue Eng, 2001,7(6): 705-715.
    [12] BiranR, Webb K, Noble MD, et al. Surfactant-immobilized fibronectin enhances bioactivity and regulates sensory neurite outgrowth[J]. J Biomed Mater Res, 2001,55(1):1-12.
    [13]陈治清主编。最新口腔材料学.第一版.四川科学出版社,成都,1999.
    [14] Matlie DR, Bajpai PK. Analysis of the biocompatibility of ALCAP ceramics in rat femurs[J]. J Biomedical Material Res,1998,22:1101-1113.
    [15] Arnaud JP, Eloy R, Adloff M, et al. In vivo exploration of the tensile strength of theabdominal wall after repair with different prosthetic materials Experimental study in the rat[J].Eur Surg Res,1979,11(1):1-7.
    [16] Fishbein MC, Levy RJ, Ferrans VJ, et al. Calcification of cardiac valve bioprosthese:biochemical,histologic and ultrastructural observationsin a subcutaneous implantation model system[J]. J Thorac Cardiovasc Surg, 1982, 83:602-609.
    [17]贾战生.淋巴细胞亚群的检测及临床意义[J].国外医学.临床生物化学检验分册,1992,13:157-158.
    [18]金伯泉,赵修竹,王成济.细胞和分子生物学[M].北京:世界图书出版公司,1995, 1:259-286.
    [19] Wood land DL, Dutton RW. Heterojgenecty of CD4+and CDB+ T cells[J]: Curr Opin Immuno1,2003;15(3):336-342.
    [20] Sundrud MS, Grill SM, Ni D, et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation [J].J Immuno1, 2003; 171(7): 3542-3549.
    [21] Bradley LM. Migration and T lymphocyte effector function[J]. Current opinion in Immuno1 ,2003;15:343-348.
    [22] Ohteki T, Koyasu S. Role of antigen-presenting cells in innate immune system[J]. Arch Immunol Therap Experiment,2001;49:47-52.
    [23] Suciu-Foca N, Manavalan JS, Cortesini R, Generation and function of antigen-specific suppressor and regulatory T cells[J].Transpl Immuno1, 2003; 11(3-4): 235 -244.
    [24]孙忱,金伯泉.可溶性细胞因子研究进展[J].国外医学,免疫学分册,1994, 2: 70.
    [25] Trumble TE, Shon FG.. The physiology of nerve transplantation[J].Hand Clin, 2001, 16(1): 105- 122.
    [26] Gulati AK. Immunological fate of Schwann cell-populated acellular basal lamina nerve allografts [J]. Transplantation, 1995 , 59(11): 1618-1622.
    [27] Hudson TW, Zawko S, Deister C, et al . Optimized acelular nerve graft is immunologically tolerated and supports regeneration[J].Tisue Eng,2004,10(11-12):1641-1651.
    [28] Rovak JM, Bishop DK, Boxer IX, et a1. Peripheral nerve transplantation:the role of chemical acelularization in eliminating allograft antigenicity[J].J Reconstr Microsurg, 2005, 21(3):207-213.
    [29]孙明学,唐金树,王鑫,等.去细胞处理对化学去细胞异体神经免疫原性的影响[J].中华外科杂志,2006,44(4):275-278.
    [1] ISO Standard 10.993-12. Biological evaluation of medical apparatus: preparation of reference samples and materials.
    [2] ISO 7405:1997 (E).Dentistry-prelinical evaluation of biocompatibility of medical devices used in dentistry-test methods for dental materials.
    [3] ISO 1 0993-4:2002 Biological evaluation of medicaldevices.Part 4:Selection of tests for interactions with blood.
    [4]冷永祥,黄楠.氧化钽薄膜的制备及其血液相容性研究[J].功能材料,1998,9(6):639-641.
    [5] ISO 10993-5:1999 Biological evaluation ofmedicaldevices.Part 5:Tests for in vitro cytotoxicity.
    [6]国家质量技术监督局.2003.GB/T16886.5-2003医疗器械生物学评价第5部分:体外细胞毒性试验[s].北京:中国标准出版社.
    [7]国家质量技术监督局.1997.GB/T16886.1 1-1997医疗器械生物学评价第11部分:全身毒性试验[s].北京:中国标准出版社.
    [8] ISO 10993—11:1993 Biological evaluationofmedicaldevices.Part ll:Tests for systemic toxicity.
    [9] GB/T 16175—1996医用有机硅材料生物学评价试验方法[s].热原试验.
    [10]中华人民共和国卫生部药典委员会编.中华人民共和国药典.第二部.XI,2005.
    [11]米征,惠俊峰,范代娣等.类人胶原蛋白生物相容性实验研究[J].西北大学学报(自然科学版),2004,34(2):66-69.
    [12]李玉宝主编.生物医学材料,第一版,化学工业出版社,北京,2003; 9.
    [13]刘月辉,文三立,肖尊文.复合活性轻基磷灰石陶瓷的研制及其生物相容性研究[J],中国生物医学工程学报,2000,19(1):56-57.
    [14] Risbud MV,Hambir S,Jog J, et al, Biocompatibility assessment polytetrafluoreoethy- lene/wollastonite of composites using endotheial cells and macrophages[J]. J Bimater Sci Polyn Ed,2001,12(11):1177-1125.
    [15] GB/T14233,医用输液、输血、注射器具检验方法.第二部分:生物试验方法. PP2-93.
    [16] Gomes M E, Reis RL, Cunha AM, et a1. Cytocompatibility and response of osteoblastic-1ike cells to starch-based polymers:effect of several additives andprocessing conditions[J]. Biomaterials,2001:22(13):1911-1917.
    [17] Pizzoferrato A, Ciapetti G, Stea S.Cell culture methods for testing biocompatibility [J].Clin Mater,1994,15(3):173-190.
    [18] Dahiyat BI,Richards M,Leong KW.Controlled release from poly(phosphoester) matrices[J].J Controlled Release,1995,33(1):13-21.
    [19] Mosmann T.Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays[J].J Immunol Methods,1983,65(12):55-63.
    [20]李国华,陈吉华.牙科全瓷材料3Y—TZP生物相容性初步评价[J].口腔医学研究,2007,23(1):4-6.
    [21] Thonemann B, Schmalz G, Hiller KA,et a1.Responses of L929 mouse fibroblasts,primary and immortalized bovine dental papilla-derived cell lines to dental resin components[J].Dent Mater ,2002,l8(4):318-323.
    [22] Meryon SD.The influence of surface area on the in vitro cytotoxicity of a railge of dental materials[J].J Biomed Mater Res,1987,21(l0):l179-1l86
    [23] Tampieri A, Celotti G, Sprio S, et a1.Porosity graded hydroxyapatite ceramics to replace natural bone[J].Biomaterials, 2001,22(11):1365-l370.
    [24] Rupprecht RD, Homing CM, Towle HJ, et al. A clinica1 evaluation of hydroxyapatite cement in the treatment of Class III funcation defects[J].J Periodontol, 200l,72(10):1443-1450.
    [25] Mollnes TE.Biocompatibility: complement as mediator of tissue damage and as indicator of incompatibility[J].Exp Clinical Tiunogenet, 1997,14(11):24-29.
    [26] Denissen H,van Beek E,vanden B, et a1.Hydroxyapatite and fluor hydroxyapatite layered film on titanium processed by a sol gel route for hard tissue implants[J].J Biomed Mater Res B Appl Biomater, 2004,7l(l1):66-76.
    [27]薛庆善.体外培养的原理技术[M].北京:科学出版社,2001:343.
    [1] Mahoney MJ, Chen RR,Tan J, et a1.The influence of microchannels on neurite growth and architecture[J].Biomaterials 2005:26(7):771-778.
    [2] Letic-Gavnlovic A, Piattelli A, Abe K.Nerve growth factor beta(NGFbeta) delivery via a collagen/hydroxyapatite(Col/HAp)composite and its efects on new bone ingrowth [J].J Mater Sci Mater Med ,2003;14(2):95-102.
    [3] Piotrowicz A,Shoichet MS. Nerve guidance channels as drug delivery vehicles [J] .Biomatedals, 2006;27(9):2018-2027.
    [4] Langer R, Vacanti JP. Tissue engineering[J].Science, 1993,260(5110):920-926.
    [5]侯天勇,伍亚民,张玉波.组织工程脊髓修复脊髓损伤的研究进展[J].中华创伤杂志,2005,21(4):316-318.
    [6] Merzkirch C,Davies N,Zilla P.Engineering of vascular ingrowth matrics are protein domains an alternative to peptide[J].Ana Rec,2001,263:379-387.
    [7] Krijgsman B,Seifalian AM,Salacinski HJ,et a1.An assessment of covalent grafting of RGD peptides to the surface of a compliant poly(carbonate—urea)urethane vascular conduit versus conven-tional biological coatings:its role in enhancing cellular retention [J].Tissue Eng,2002,8(4):673-680.
    [8] Johnson HJ, Northup SJ, Seagraves PA, et al. Biocompatibility test procedures for materials in vitro objective methods of toxicity assessment[J]. J Biomed Mater Res,1985,19(5):489-508.
    [9] Sabita Stivastava, Stephen DG . Screenin of in vitro cytotoxicity by the adhesive test[J]. Biomaterials,1990,11(3):133-136.
    [10] Snyder EY, Deitcher DL , Walsh C , et al . Multipotent neural cell lines can engraft and participate in development of mouse cerebellum[J ] . Cell ,1992 ,68 (1) :33-51.
    [11] Cheng A, Chan SL, Milhavet O, et al.P38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells[J]. J Biol chem ,2001,276(46):4320-4327.
    [12] Lacorazza HD, Flax JD,Snyder EY, et al. Expression of humanβ-hexosaminidaseα-subunit gene (the gene defect of Tay-Sachs disease )in mouse brains upon engraftment of transduced progenitor cells[J]. Nature,1996,2(4):424-429.
    [13] Liu Y, Himes BT, Solowska J, et al.In-traspinal delivery of neurotrophin-3 using neural stem cells genetically modified by re-combinan tretrovirus[J].Exp Neurol, 1999, 158:9-26.
    [14] Park KI,Liu SX ,Flax JD,et a1.Transplantation of neural progenitor and stem cells:developmental insights may suggest new therapies for spinal cord and other CNS dysfunction[J].J Neurol,1999;16;675-680.
    [15] Anseline K. Osteoblast adhension on biomaterials[J]. Biomaterials. 2000,21:667-681
    [16] Thull R. Physicochemical principles of tissue material interactions[J].BiomolecularEngineering ,2002;19(26):43-50.
    [17] Pabrizius HD,Cooper SL.A comparison of the adsorption of three adhesive protein to biomaterial surface[J].J Biomater Sci Polym Ed,1991,3(1):27-32.
    [18] Menconi MJ,Owen T,Dasse KA,et a1.Molecular approaches to the characterization of cell and blood/biomaterial interactions[J].J Card Sur,1992,7(2):177-184.
    [19] Lefkovits J,Plow EF, ToPol EJ.Platelet glycoprotein II b/lll a receptors in cardiovascular medicine[J].N Engl J Med,l995,332(231):l553-l559.
    [20]杨志明.组织工程[M].北京:化学工业出版社,2002:215-228.
    [21] Booth C, Korossis S, Wi1Cox HE, et al. Tissue engineering of cardiac valve protheses:Development and histologlcal charactization of an acellular poricine aortic heart valve[J].J Heart Valve Disease,2002,11:457-462.
    [1] Dumont CE, Hentz VR. Enhancement of axon growth by detergent-extracted nerve grafts[J]. Transplantation, 1997 , 63(9):1210-1215.
    [2] Sondell M,Lundborg G,Kanje M.Regeneration of the rat sciatic nerve into auografts made acellular through chemical extraction[J].Brain Res,1998,795(1-2):44-54.
    [3] Hudson TW, Liu SY, Schmidt CE . Engineering an improved acellular nerve graft via optimized chemical processing [J]. Tissue Eng, 2004,10(9-10): 1346-1358.
    [4] Hudson TW, Zawko S, Deister C, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration[J].Tissue Eng, 2004 ,10(11-12): 1641-1651.
    [5]衷鸿宾,卢世璧,侯树勋,等.人类去细胞同种异体神经移植物化学萃取方法的研究[J].中华显微外科杂志,2006, 29(5):350-352.
    [6]衷鸿宾,侯树勋,陈秉耀,等.粗大去细胞神经移植物的化学萃取及组织学研究[J].中华外科杂志,2003,41(1):60-63.
    [7]刘承吉,孙景致,佟晓杰,等.组织工程化天然神经支架的制备[J].解剖科学进展,2003,9(3): 197-200.
    [8]沈楠,金岩,张勇杰,等.去细胞周围神经移植物的制备及生物相容性评测[J].中国临床康复,2006,10(21):82-84.
    [9]孙明学,唐金树,王鑫,等.去细胞处理对化学去细胞异体神经免疫原性的影响[J].中华外科杂志,2006,44(4): 275-278.
    [10] Rovak JM, Bishop DK, Boxer LK, et al. Peripheral nerve transplantation: the role of chemical acellularization in eliminating allograft antigenicity[J]. J Reconstr Microsurg,2005, 21(3): 207-213.
    [11]陈秉耀,侯树勋,赵敏,等.化学去细胞异种神经移植后宿主的许旺细胞在移植物内的增殖[J].中国矫形外科杂志, 2003,11(16):1117-1119.
    [12]陈秉耀,侯树勋,衷鸿宾,等.兔化学去细胞神经移植修复大鼠坐骨神经缺损[J].中国矫形外科杂志,2003,11(21): 1476-1478.
    [13] Kim BS, Yoo JJ, Atala A. Peripheral nerve regeneration using acellular nerve grafts[J].J Biomed Mater Res A, 2004 68(2): 201-209.
    [14]衷鸿宾,卢世璧,侯树勋,等.去细胞神经同种异体移植的运动功能恢复[J].中华创伤杂志, 2002,18( 9) :533-535.
    [15]孙明学,唐金树,许文静,等.化学去细胞同种异体神经移植的实验研究[J].中华骨科杂志,2006, 26(4): 267-271.
    [1] Zhang N,Yan H,Wen X.Tissue-engineering approaches for axonal guidance[J].Brain Res Brain Res Rev,2005,49:48-64.
    [2] Takezuwa T.A strategy for the development of tissue engineering scaffolds that regulate cell behavior[J]. Biomaterials,2003,24:2267-2275.
    [3] Yu TT,Shoiehet MS.Guided cell adhesion and outgrowth in peptide-modifiedchannels for neural tissue engineering[J].Biomaterials,2005,26(13):1507-1514.
    [4] Prang P,Muller R,Eljaouhari A,et al.The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels [J].Bioma- terials,2006,27(19):3560-3569.
    [5] Liu s, Said G, Tadie M. Regrowth of the rostral spinal axons into the caudal ventral roots through a collagen tube implanted into hemisected adult rat spinal cord[J]. Neurosurgy, 2001, 49(1): 143-150.
    [6]吴立志,曾园山,李海标,等.胶原或明胶吸附施万细胞移植促进全横断脊髓损伤修复的研究[J].解剖学报,2003,34(3):289-293.
    [7] Marchand R, Woerly S, Bearand L,et a1. Evaluation of two cross—linked collagen gels implanted in the transected spinal cord[J].Brain Res Bull,1993,30(3-4):415-22.
    [8]章庚嫒,罗卓荆,李明全,等.神经组织工程基体材料的研制及其生物相容性研究[J].脊柱外科杂志,2004,2:158—162.
    [9]李晓光,杨朝阳,张皑峰,等.应用壳聚糖导管-生物活性载体系统修复大鼠脊髓损伤[J].中国康复理论与实践,2003,9(3):176-178.
    [10]程映华,梁晶,王晓冬,等.壳聚糖神经干细胞复合物修复大鼠完全性脊髓损伤的组织学观察[J].中华实验外科杂志,2004 21(1):26-27.
    [11] Novikov LN,Novikova LN, Mosahebi A,et al. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury[J]. Biomaterials,2002,23(16): 3369-3376.
    [12] Iwakawa M, Mizoi K, Tessler A, et al. Intraspinal implants of fibrin glue containing glial cell line-derived neurotrophic factor promote dorsal root regeneration into spinal cord[J]. Neurorehabil Neural Repair,2001; 15(3): 173-82.
    [13]孟晓梅,王春婷,游思维,等.纤维蛋白胶包裹嗅鞘细胞促进脊髓轴突再生的实验研究[J].解剖学报,2003,34(3):246-248.
    [14] Taylora SJ, McDonald JW, Sakiyama-Elberta SE. Controlled release of neurotrophin-3 from fibrin gelsfor spinal cord injury[J]. Journal of Controlled Release,2004,98(2): 81–94.
    [15] Stokols S,Tuszynski MH.Freeze-dried agarose scafolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury [J].Biomaterials,2006,27(3):443-451.
    [16] Jain A,Kim YT,Mckeon RJ,et at.In situ gelling hydrogels for conformal of spinal cord defects and local delivery of BDNF after spinal cord injury[J].Biomaterials,2006,27(3):497-504.
    [17] Patist CM, Mulder MB, Gautier SE, et al. Freeze-dried poly(D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord[J]. Biomaterials, 2004,25(9): 1569-1582.
    [18] Lain KH,Nijenhuis AJ,Bartels H,el a1.Reinforced poly(L-lactic acid)fibres as suture material[J].Appl Biomater,1995,6(3):191-197.
    [19] Vacanti MP, Leonard JL, Dore B, et al. Tissue-Engineered Spinal Cord [J]. Transplantation Proceedings,2001,33:592-598.
    [20] Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells[J].Proc Natl Acad Sci USA,2002,99(5): 3024-3029.
    [21] Newman KD, McBurney MW. Poly(d,l-lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells[J]. Biomaterials, 2004, 25:5763–5771.
    [22] Moore MJ,Friedman JA,Lewellyn EB,et a1.Multiple-channel scaffolds to promote spinal cord axon regeneration[J].Biomaterials,2006,27(3):419-429.
    [23] Shire MS,Anderson JM.Biodegradation an d biocompatibility of PLA and PLGA microspheres[J].Adv Drug Deliv Rev,1997,28(1):5-24.
    [24] Shi R, Borgens RB. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol[J].J Neurocytol,2000,29(9): 633-643.
    [25] Borgens RB, Shi R, Bohnert D. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol[J]..J Exp Biol. 2002,205(Pt 1): 1-12.
    [26] Duerstock BS, Borgens RB. Three-dimensional morphometry of spinal cord injury following polyethylene glycol treatment[J].J Exp Biol,2002,205(Pt 1):13-24.
    [27] Laverty PH,Leskovar A,Breur GJ,et a1.A preliminary study of intravenous surfactants in paraplegic dogs : polymer therapy in canine clinical SCI[J] . J Neurotrauma,2004,21(12):1767-l777,
    [28] Woerly S, Pinet E, Robertis Ld, Diep DV, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials 2001;22: 1095–1111.
    [29] Woerly S,Doan VD, SosaN, et al.Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord[J].J Neurosci Res,2004,75(2): 262-272.
    [30] Tsai EC, Dalton PD, Shoichet MS, et al. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transaction[J]. J Neurotrauma, 2004 21 (6):789-804.
    [31] Tsai EC,Dalton PD.Mamx inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection[J].Biomaterials,2006,27(3):519-533.
    [1]胥少汀,郭世绂.脊髓损伤基础与临床[M].第2版.北京:人民卫生出版社,2002:597.
    [2]胥少汀,葛宝丰,徐印坎,等.实用骨科学[M].第2版.北京:人民军医出版社,2005:589.
    [3] Arun P,Michael L.Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury[J].Congress Neurol Surg,1999;44(5):1027-1039.
    [4] Belegu V,Oudega M,Gary DS,et a1.Restoring function after spinal cord injury:promoting spontaneous regeneration with stem cells and activity based therapies[J].Neurosurg Clin N Am,2007;18(1):143—168.
    [5] Fournier AF, Strittmatter SM.Repulsive factors and axon regeneration in theCNS[J].Curt Oein Neurobiol,2001;l1(1):89-94.
    [6] Kojun T,Kazuo1.A role of migratory Schwann cells in a conditioning effect peripheral nerve regeneration[J].Exp Neurol,1999;160(27):99-108.
    [7] Azanchi R,Eterna lG ,Gupta R,et a1. Combined demyelination plus Schwann ce ll transplan tation therapy increases spread of cells an d axonal regeneration following contusion injury[J]. Neurotrauma ,2004,21:775- 788.
    [8] Martin D,Schoenen J,Delree P,et a1.Grafts of syngenetic cultured adult dorsal root ganglion derived Schwann cells to the injured spinal cord of adult rats Preliminary morphological studies [J].Neurosci Lett,1991;12(4):44-48.
    [9] Keirstead H,Morgan S,Wilby M,et a1.Enhanced axonal regeneration following combined demyelination plus Schwann cell transplantation therapy in the injured adult spinal cord[J].Exp Neurol,1999;159(1):225—236.
    [10] Joosten EA,Houweling DA.Local acute application of BDNF in the lesioned spinal cord antiflannnatory and anti-oxidant effects[J].Neuro report,2004,15:1163-1166.
    [11] Li J,Sun CR,Zhang H et a1.Induction of functional recovery by cotransplantation of neural stem cells and Schwann cells in a rat spinal cord contusion injury mode1[J].Biomed Environ Sci,2007;20:242—249.
    [12] Schanl SM , Kitay BM, Cho KS et a1 . Schwann celtransplantation improves teticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion[J].Cel Transplant,2007;16:207-228.
    [13] Papastefanaki F,Chen J,LavdasAA et a1.Grafts of Schwanncells engineered to expree PSA- NCAM promote functional recovery after spinal cord injury[J]. Brain,2007;130:2159—2174.
    [14] [Barakat DJ,Gaglani SM ,Neravetla SR,et a1.Survival, integration and axon growth support of gila transplanted into the chro nically contused spinal cord[J].Cell Transplant,2005,14(4):225-240.
    [15] Imaizumi T, Lankford KL,Koesis JD.Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord [J].Brain Res,2000;854(12):70-78.
    [16] Tusxynski MH ,Gabriel K,Cage FH,et a1.Nerve growth factor delivery by gene transfer induces diferential outgrowth of sensory motor and noradrenergic neuritis afteradult spinal cord injury [J].Exp Neurol,1996;137(8):157-173.
    [17]冯世庆,王金宝,孔晓红,等.神经生物膜介导NSCs联合施万细胞移植治疗脊髓损伤[J].中华实验外科杂志,2006;23(11):1401-1403.
    [18] Chen L, Gao L, Piao Y,et al.pSVPoM cat modifying Schwann cell to protect injured spinal neurons in rats[J].Chin J Traumatol,2002;5:316.
    [19] Lopez VR,Garcia-Alias G,Fores J, el a1.Increased expression of cyct-oxygenase2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells [J] .Neurotrauma,2004;21:1031.
    [20] Lang KJ,Rathjen J,Vassilieva s,et a1.Diferentiation of embryonic stem ceHs to a neural fate :a route to rebuilding the nervous system [J].Neurosci Res,2004;76(2):184-192.
    [21] Thomson JA,Waknitz MA,Swiergid JJ,et a1.Embryonic stem cell lines derived fro m human blustocysts[J].Science,1998,282(5391):1145-1147.
    [22] Kawaguchi S,lseda T,Nishio T.Effects of an embry onic repair graft on recovery from spinal cord injury[J].Prog Brain Res,2004,144:155-162.
    [23] Peterson CA,Murphy RJ,Dupont-Versteegden EE,et a1.Cycling exercise and fetal spinal cord tra ns plantation act synergistically on atrophied muscle following chronic spinal cord injury in rats.NeurorehabilNeural Repair,2000,14:85-91.
    [24] Donald JW ,Liu XZ,Qu Y,et a1.Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord[J].Nat Med,2000;6:358-360.
    [25] Lebkowaki J,Nistor G,Bernal G,et a1.Transplantation of human embryonic stem cell[J].Mol Ther,2004;9(suppl1 ):89-90
    [26] Gage F.Mammalian neural stem cells[J].Science,2000;287(54-57):1433-1438.
    [27] Jang JE,Shaw K,Yu XJ,et a1.Specific and stable gene transfer to human embryonic stem cells using pseudotyped lentiviral veclors[J].StemCells Dev,2006,15(1):109-117.
    [28] Kwon BK,TetzlaffW.Spinal cord regeneration:from gene to transplants [J].Spine,2001;26(24 Supp1)13-22.
    [29] Kafimi-Abdolrezaee S,Eftekharpour E,Wang J,et a1.Delay transplantation of adult neural precursor cells promotes remyelination and functional neurological recoveryafter spinal cord injury[J].Neuroscience,2006;26(13) :3377-3389.
    [30] Parr AM,Kulbatski 1,Tater CH et al.Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury[J].J Neurotrauma,2007:24:835-845.
    [31]王岩峰,吕刚,李花,等.神经干细胞移植对大鼠脊髓损伤后BDNF ,GAP-43(GAP-43)基因表达的影响[J].中华矫形外科杂志,2004,12(23、24):1870- 1872.
    [32] Tnda H,Takahushi J,Mizoguchi A,et a1.Neurons generated from adult rat hippocampal stem cells from functional glutamargic and GABAergic synapses in vitro[J].Exp Nerol,2000,165(1):66-76.
    [33] Nakamura M ,Toyama Y,Okano H. Trans plantation of neural stem cells for spinal cord injury[J].Rinsho Shinkeigaku,2005,45(11):874- 876.
    [34]孙广运,蔡培强,Oudega Martin,等.移植分泌神经营养因子-3的人胚NSC对大鼠脊髓损伤后功能恢复的影响[J].中华创伤杂志,2007;23(2):122-126.
    [35] Cao Q,Zhang Y,Howard R,et a1.Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage[J].Exp Neurol,2001;167(1):48-58.
    [36] Li Y,Field PM ,Raisman G.Repair Of adult rats corticospinal tract transplants of olfacory ensheathing cells[J].Science,1997;277(5334):2000-2007.
    [37]张迎宏,马芙蓉.嗅鞘细胞移植治疗中枢神经损伤研究进展[J].中国医学文摘:耳鼻咽喉科学,2005;20(4):211-214.
    [38] Lepez-Vales R,Fores J,Verdu E,et a1.Acute and de1ayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord[J].Neurobiol Dis,2006;21(1):57-86.
    [39] Ronald D,Guido CK,Marijke L,et a1.Neurite outgrowth promoting efects of enriched and mixed OEC/CNF cultures[J].Neurosci Lett,2006;397(1-2):20-24.
    [40] Lipson AC,Widenfalk J,Indqvist E,et a1.Neurotrophic properties of olfactory ensheathing glia[J].Exp Neurol,2003;180(2):167-171.
    [41] Toft A,Scott DT,Barnett SC et a1.Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury [J].Brain,2007,130:970-984.
    [42] Pearse DD,Sanch AR,Pereira FC, et at.SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cordrepair[J].J Neurosci,2007;27:7208-722l.
    [43] Rtamon-Cueto,Plant GW.Avila J,et al. Long distance axonal regeneration in the transected adult rat spinal cord in promoted by olfactory ensheathing glia transplant [J].J Neurosci,1998;18(1):3803-3810.
    [44] Keyvan-Fouladi N,Raisman G,Li Y.Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats[J].J Neurosci,2003,23(28):9428-9434.
    [45]黄红云.嗅鞘细胞移植治疗脊髓损伤的基础与临床研究[J].中国临床康复,2002;14(6):2027-2028.
    [46] Ankeny DP,Mctigue DM ,Jakeman LB,et a1.Bone marrow transplants provide tissue pro- tection and directional guidance for axons after contusive spinal cord injury in rats[J].Exp Neurol,2004,190(1):17-31.
    [47] Chen X,Katakowski M, Li Y,et a1. Human bone nlarrow stromal cell cultures conditioned by traumatic brain tissue extracts:growth factor production[J]. Neuro sci Res,2002,69:687-691.
    [48] Takenaga M, Ohta Y, Tokura Y, et a1.Localization of bone marrow stromal cells in injured spinal cord treated by intravenous route depends on the hemorrhagic lesions in traumatized spinal tissues[J].Neurol Res,2007,29:21-26.
    [49] Li Y,Chen J,Wan gL,et a1.Treatment of stroke in rat with intra carotid administration of marrow stromal cells[J].Neurology,2001,56(12):1666-1672.
    [50] Mahmood A ,Lu D,W ang L,et a1. 1ntra cerebral transplantation of bone stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury[J].Neuro trauma,2002,19(12):1609-1617.
    [51] Satake K,Lou J,Lenke LG.Migration of mesenchymal stem cells through cerebro spinal fluid into injury spinal cord tissue[J].Spine,2004,29(18):1971-1979.
    [52] lnoue M ,Honmou O ,Oka S,et a1.Comparative analysis of remyelinating potential of focal and intra venous administra tion of autologons bone marrow cells into the rat demyelinated spinal cord[J].Gila,2003,44(2):111-118.
    [53] Deng W,Obrocka M,Fischer I,et a1.In vitro diferentiationof human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J].Biochem Biophys Res Commun,2001;282(1):148-152.
    [54] Bianco P,Gehron Robey P . Marrow stromal stem cells [ J ].Clin Invest.2000,105(12):1663-1668.
    [55] Pittengen MF,Maokay AM,Beck SC,et a1.Multilineage potential of adult human mesenehymal stem cells [ J ].Science,1999;284(541) :143- 147.
    [56] Blackmore WF , Crang AT . Extensive oligodendroeyte remyelination following injection of cultured central nervous system cells into demyelinating lesions in adult central nervous system [J].Develop Neurosci,1998;10(1):1-11.
    [57] Rapalino O,Lazarov-Spiegler O,Agranov E,et a1.Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats[J].Nat Med,1998;4(7):814-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700