CDK11相关蛋白及cyclin D3/CDK11调控雄激素受体转录活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CDK11相关蛋白及cyclin D3/CDK11调控雄激素受体转录活性的研究
     细胞周期素依赖的激酶11(p58)(CDK11~(P58),p58~(PITSLRE),p58~(GTA),p58~(clk-1))是最早被发现的CDK11家族蛋白,在β-1,4-半乳糖基转移酶1分离纯化过程中得到,能与β-1,4-半乳糖基转移酶1相互作用,并磷酸化β-1,4-半乳糖基转移酶1,对其活性起增强作用。CDK11~(p58)在细胞内特异性地表达于G2/M期,并且过表达CDK11~(p58)能导致细胞生长缓慢,形态发生变化,有丝分裂障碍,阻滞在G2/M期。CDK11~(p58)具有促凋亡作用,且该作用与其激酶活性密切相关。虽然CDK11~(p58)在细胞生长中发挥着负调控子的重要作用,但是它的上游调控因子和下游的效应分子还没有被发现。
     最近的研究发现CDK11家族另一主要成员CDK11~(p110)参与了RNAPⅡ转录复合物的形成,并与RNA剪切拼接因子RNPS1、cyclin L等相关,因此推测CDK11信号途径与转录及转录后加工有关。我们以全长的CDK11~(p58)为诱饵蛋白,利用LexA酵母双杂交系统,在人胎肝cDNA文库中筛选其相互作用蛋白,并发现一个MYST家族组蛋白乙酰转移酶HBO1(Histone acetyltransferase binding to ORC1)的羧基端(330~611位氨基酸)能与CDK11~(p58)在酵母内发生相互作用。接着我们利用GST-pull down和免疫共沉淀的方法,证明了全长的HBO1蛋白与CDK11~(p58)在体外的直接结合和在细胞内的相互作用。由于CDK11~(p58)特异表达在G2/M期,因此内源性CDK11~(p58)与HBO1的生理性相互作用也仅可在细胞周期的G2/M期检测到。利用免疫荧光结合激光共聚焦我们发现该两者的相互作用发生在细胞核内。HBO1是在1999年新被克隆的具有组蛋白乙酰转移酶(HAT)活性的蛋白分子,与转录、复制均有密切关系。我们进一步研究发现在体外HAT检测反应体系中直接加入原核表达的CDK11~(p58)纯化蛋白,能显著促进HBO1对的HAT活性;在细胞内过表达CDK11~(p58)后,内源性HBO1的HAT活性也有增强;作为对照,另一个著名的组蛋白乙酰转移酶p300的HAT活性在体外及细胞内均不受CDK11~(p58)的影响。这些结果提示CDK11~(p58)可能通过对HBO1的HAT活性的调控,参与特定靶基因的转录调控,从而发挥其阻遏细胞周期及促凋亡的功能。
     由于HBO1已证明是雄激素受体(AR)的一个转录共抑制子,而我们实验室也报道了细胞周期素D3(cyclin D3)能与甾体类激素受体——维生素D受体(VDR)、以及激活转录因子(ATF5)结合,并调节这两者的转录活性。Cyclin D3的同源蛋白cyclin D1对AR的抑制性调控已有多篇文献报道。结合上述情况,我们猜测作为HBO1和cyclin D3的相关分子,CDK11~(p58)可能参与了真核细胞的转录调控。我们从AR着手,发现CDK11~(58)能与AR在体外和细胞内发生相互作用,并且这种作用并不依赖于AR共抑制子HBO1的介导。AR在结构上可分为转录激活结构域(TAD)、DNA结合结构域(DBD)、铰链区和配体结合结构域(LBD)几个功能相对独立的区域。CDK11~(p58)蛋白则有一个位于中间的丝/苏氨酸激酶活性结构域和功能尚不明确的氨基端、羧基端。我们根据这两个蛋白的功能结构域,构建了一系列片段突变体,通过体内、体外结合实验证实了介导AR与CDK11~(p58)相互作用的结构域分别为AR转录激活结构域氨基端的转录激活单元1(TAU1)和CDK11~(p58)的丝/苏氨酸激酶活性结构域。
     雄激素和AR组成的信号通路对于男性个体生殖系统及其它组织器官的发育、分化,以及男性肿瘤如前列腺癌的发生、发展密切相关。作为核受体家族的成员之一,AR在结合了雄激素后,转位到核内,与靶基因启动子结合,发挥转录因子的活性。利用AR的报道基因MMTV-LUC,我们发现AR介导的转录能被CDK11~(p58)显著抑制,并有剂量-效应关系,这种效应并不因内源性HBO1受RNAi抑制表达而丧失。CDK11~(p58)对AR的调控是特异性的,因为其对CMV的转录并无影响,而对AR其它靶基因如PSA-LUC、ARE-LUC均有转录抑制作用。有趣的是,虽然CDK11家族两个主要成员CDK11~(p58)与CDK11~(p110)由同一mRNA编码,CDK11~(p110)除具有羧基端与CDK11~(p58)完全一致的蛋白序列外,还有一段独有的氨基端,但这两个蛋白在功能上却截然不同。和CDK11~(p58)对AR的抑制作用相反的是,CDK11~(p110)能显著促进AR介导的靶基因转录。但在细胞内并不能检测到CDK11~(p110)与AR的直接相互作用。
     为了验证CDK11~(p58)对AR的调控是否依赖其激酶活性,我们构建了CDK11~(p58)的激酶活性缺失型点突变体D224N。D224N丧失了与AR在体内体外相互作用的能力,却能显著促进AR的转录活性。过表达cyclin D3能促进CDK11~(p58)的激酶活性,并与CDK11~(p58)协同抑制AR;利用RNAi抑制cyclin D3的内源性表达后,导致CDK11~(p58)激酶活性和对AR调控作用的丧失。Cyclin D3也能与AR在体内外相互结合,并可能和CDK11~(p58)一起与AR形成三元复合物。为了研究AR受CDK11~(p58)调控的机制,我们从以下几个方面考虑:1)AR的表达;2)AR的核定位;3)AR与共激活子/共抑制子的结合;4)AR与反应元件的结合;5)AR内部N/羧基端功能结构域之间的相互作用;6)AR受cyclin D3/CDK11~(p58)的磷酸化。结果发现AR的表达、核定位、AR与共激活子p300或共抑制子HDAC1的相互作用、以及AR分子内部N/羧基端结构域相互作用均没有改变,而AR与其反应元件的结合受CDK11~(p58)的抑制。体外激酶活性检测发现AR的TAD能被CDK11~(p58)磷酸化。CDK11~(p58)也能在细胞内促进AR的磷酸化。利用RNAi抑制内源性cyclin D3表达后,CDK11~(p58)便不能增强AR的磷酸化水平。雄激素/AR信号途径也与前列腺癌细胞的凋亡密切相关。我们发现cyclin D3/CDK11~(p58)能通过抑制AR的转录活性,促进前列腺癌细胞的凋亡。而激酶活性缺失型CDK11~(p58)能对细胞的凋亡起保护作用。
     综上所述,我们发现cyclin D3/CDK11~(58)信号途径除能调控细胞周期外,也参与了
    真核细胞的转录调控。
Cyclin-dependent kinase 11 (p58) (CDK11~(p58), p58~(PITSLRE), p58~(GTA), p58~(clk-1)) is the earliest identified CDK11 family protein. It was obtained originally through purification of beta-1,4-galactosyltransferase 1 (GalT1). CDK11~(p58) interacts with, phosphorylates and enhances the glycosyltransferase activity of GalT1. CDK11~(p58) is uniquely expressed in G2/M phase of the cell cycle. Overexpression of CDK11~(p58) leads to the decreased cell growth, change in morphology, disorder in mitosis, and arrest in G2/M phase. CDK11~(p58) also enhances cell apoptosis in a kinase-dependent manner. Although CDK11~(p58) plays an important role in the regulation of cell growth and apoptosis, its upstream regulators and downstream effectors remain unknown.
    CDK11~(p110), another member of CDK11 family, is reported to be associated with the formation of RNAP II complex, and the splicing factors including RNPS1 and cyclin L. Thus, it is suggested that CDK11 signaling may be involved in the eukaryotic transcription and posttranscriptional modification. We screened human fetal liver cDNA library using the full length of CDK11~(p58) as the bait. As a result, we found that the C-terminal fragment of HBO1 (histone acetyltransferase binding to ORC1), an MYST family histone acetyltransferase, interacted with CDK11~(p58) in yeast. The interaction between CDK11~(p58) and the full length of HBO1 was further confirmed in yeast, through GST-pull down assay in vitro and coimmunoprecipitation in vivo. In consistence with the unique expression of CDK11~(p58) in G2/M phase, coimmunoprecipitation of endogenous CDK11~(p58) and HBO1 was only detected in G2/M phase-synchronized HeLa cells. CDK11~(p58) and HBO1 were colocalized in cell nucleus as sporadic particles. HBO1 was first coloned as a new interacting protein of ORC1 and was found to possess intrinsic histone acetyltransferase (HAT) activity. We found that direct addition of recombinant CDK11~(p58) protein in the in vitro HAT activity assay enhanced HBO1 HAT activity significantly. Overexpression of CDK11~(p58) resulted in the increased HAT activity of endogenous HBO1 in HeLa cells. As a control, the HAT activity of p300, a well-known HAT and coactivator, remained unaffected by CDK1 l~(p58) in vitro and in vivo. The above data suggest that CDK11~(p58) may regulate the transcription of certain target genes through enhancing HBO1 HAT activity to inhibit cell cycle or promote apoptosis.
    According to the fact that HBO1 is a corepressor of AR, and that cyclin D3 is also involved in the regulation of transcription mediated by vitamin D receptor (VDR) or activating transcription factor 5 (ATF5), and that cyclin Dl is well identified as a corepressor of AR, we hypothesize that cyclin D3/CDK11~(p58) signaling may also play an important role in AR-mediated transcription. We found that CDK11~(p58) interacted with AR in vitro and in mammalian cells independent of HBO1. AR is structurally divided into four independent functional domains: transcription activation domain (TAD), DNA-binding domain (DBD), hinge region and ligand-binding domain (LBD). CDK11~(p58) contains a Ser/Thr protein kinase domain in the middle of the molecule, an N-terminal domain and a C-terminal domain with unknown function. We constructed the deletion mutants of the two proteins based on their functional domains. Coimmunoprecipitation assay showed that the interacting domains of the two proteins were mapped to the transacription activation unit 1 (TAU1) located in AR TAD, and the kinase domain of CDK11~(p58).
    Androgen/AR signaling is essential for the development and differentiation of male productive and non-productive systems, and is also closely related to the carcinogenesis of male tumors such as prostate cancer. Similar to other nuclear receptors, upon binding to androgen, AR is translocated into nucleus, binds to the promoters, and mediates transcription of target genes. Using the AR reporter gene MMTV-LUC, we found that AR-mediated transactivation was inhibited by CDK11~(p58) in a dose-dependent manner. This repressive effect of CDK11~(p58) on AR is specific because CMV-LUC which is driven by a CMV promoter is not affected by CDK11~(p58). Consistently, PSA-LUC and ARE-LUC, the other two AR reporter genes, are also inhibited by CDK11~(p58). The repressive role of CDK11~(p58) on AR is HBO1-independent. Interestingly, although CDK11~(p58) is encoded by the same mRNA as CDK11~(p110), and is structurally located to the C-terminal region of CDK11~(p110), the two CDK11 isoforms play distinct roles in AR regulation. CDK11~(p110) did not interact with AR in cells, but enhanced the transcriptional activity of AR markedly.
    In order to clarify whether CDK11~(p58) mediated AR regulation is dependent on its kinase activity, we constructed D224N, the kinase-deficient point mutant of CDK11~(p58). We found that D224N failed to bind to and repress AR, but enhanced AR-mediated transactivation remarkably. Cyclin D3 promoted the kinase activity of CDK11~(p58), and repressed the transcriptional activity of AR in synergy with CDK11~(p58), while the kinase activity and repressive effect of CDK11~(p58) were both lost when cyclin D3-targeted RNAi was used. Cyclin D3 interacted with AR in vitro and in vivo. Cyclin D3, CDK11~(p58) and AR may form a triple complex in vivo. To elucidate the molecular mechanism by which CDK11~(p58) represses
    AR function, the following possible patterns were considered: 1) AR expression, 2) AR nuclear translocation, 3) AR interaction with coactivators/corepressers,4) binding of AR to ARE, 5) AR N/C interaction, and 6) direct targeting of CDK11~(p58) to the AR TAD phosphorylation. We found that neither the expression, nor nuclear translocation, nor the interaction of AR with coregulators, nor the interaction of AR N/C-terminal domains was altered. But the binding of AR to its responsive element was inhibited by CDK11~(p58). The in vitro kinase activity assay revealed that AR TAD and TAU1 was phosphorylated by CDK11~(p58). Overexpression of CDK11~(p58) led to the increased phosphorylation of AR in vivo. In the presence of cyclin D3 RNAi, CDK11~(p58)-mediated AR phosphorylation was quenched. Androgen/AR signaling is essential for the viability of prostate cancer cells. Cyclin D/CDK11~(p58) complex is capable of promote the apoptosis of prostate cancer cells both in LNCaP cells or AR-overexpressing PC-3 cells, while the kinase-deficiently mutant D224N protected cells from apoptosis.
    In summary, we here report that cyclin D3/CDK11~(p58) signaling is involved in the transcriptional regulation in eukaryotic cells as well as the cell cycle regulation.
引文
[1] Grana, X. and Reddy, E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs) [J]. Oncogene, 7-20-1995, 11(2): 211-219.
    [2] Cardoso, M. C, Leonhardt, H., and Nadal-Ginard, B. Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication [J]. Cell, 9-24-1993, 74(6): 979-992.
    [3] Lees, E., Faha, B., Dulic, V., Reed, S. I., and Harlow, E. Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with p107 and E2F in a temporally distinct manner [J]. Genes Dev., 1992,6(10): 1874-1885.
    [4] Mateyak, M. K., Obaya, A. J., and Sedivy, J. M. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points [J]. Mol.Cell Biol., 1999, 19(7): 4672-4683.
    [5] Russo, A. A., Tong, L., Lee, J. O., Jeffrey, P. D., and Pavletich, N. P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a [J]. Nature, 9-17-1998, 395(6699): 237-243. [
    6] Serrano, M., Hannon, G. J., and Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 [J]. Nature, 12-16-1993, 366(6456): 704-707.
    [7] Akoulitchev, S., Chuikov, S., and Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes [J]. Nature, 9-7-2000, 407(6800): 102-106.
    [8] Shiekhattar, R., Mermelstein, F., Fisher, R. P., Drapkin, R., Dynlacht, B., Wessling, H. C, Morgan, D. O., and Reinberg, D. Cdk-activating kinase complex is a component of human transcription factor TFIIH [J]. Nature, 3-16-1995, 374(6519): 283-287.
    [9] Peng, J., Zhu, Y., Milton, J. T., and Price, D. H. Identification of multiple cyclin subunits of human P-TEFb [J]. Genes Dev., 3-1-1998, 12(5): 755-762.
    [10] Eipers, P. G, Barnoski, B. L., Han, J., Carroll, A. J., and Kidd, V. J. Localization of the expressed human p58 protein kinase chromosomal gene to chromosome 1p36 and a highly related sequence to chromosome 15 [J]. Genomics, 1991,11(3): 621-629.
    
    [11] Dickinson, L. A., Edgar, A. J., Ehley, J., and Gottesfeld, J. M. Cyclin L is an RS domain protein involved in pre-mRNA splicing [J]. J.Biol.Chem., 7-12-2002, 277(28): 25465-25473.
    
    [12] Zhang, S., Cai, M., Zhang, S., Xu, S., Chen, S., Chen, X., Chen, C, and Gu, J. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3 [J]. J.Biol.Chem., 9-20-2002, 277(38): 35314-35322.
    [13] Xiang, J., Lahti, J. M., Grenet, J., Easton, J., and Kidd, V. J. Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms [J]. J.Biol.Chem., 6-3-1994,269(22): 15786-15794.
    [14] Cornelis, S., Bruynooghe, Y., Denecker, G, Van, Huffel S., Tinton, S., and Beyaert, R. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site [J]. Mol.Cell, 2000, 5(4): 597-605.
    [15] Li, T., Inoue, A., Lahti, J. M., and Kidd, V. J. Failure to proliferate and mitotic arrest of CDK11(p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development [J]. Mol.Cell Biol., 2004,24(8): 3188-3197.
    [16] Bunnell, B. A., Adams, D. E., and Kidd, V. J. Transient expression of a p58 protein kinase cDNA enhances mammalian glycosyltransferase activity [J]. Biochem.Biophys.Res.Commun., 8-31-1990, 171(1): 196-203.
    [17] Sachs, A. B. Cell cycle-dependent translation initiation: IRES elements prevail [J]. Cell, 4-28-2000, 101(3): 243-245.
    [18] Zhang, S. W., Xu, S. L., Cai, M. M., Yan, J., Zhu, X. Y, Hu, Y, and Gu, J. X. Effect of p58GTA on beta-1,4-galactosyltransferase 1 activity and cell-cycle in human hepatocarcinoma cells [J]. Mol.Cell Biochem., 2001, 221(1-2): 161-168.
    [19] Lahti, J. M., Xiang, J., Heath, L. S., Campana, D., and Kidd, V. J. PITSLRE protein kinase activity is associated with apoptosis [J]. Mol.Cell Biol., 1995, 15(1): 1-11.
    [20] Bunnell, B. A., Heath, L. S., Adams, D. E., Lahti, J. M., and Kidd, V. J. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle [J]. Proc.Natl.Acad.Sci.U.S.A, 1990, 87(19): 7467-7471.
    [21] Fiers, W., Beyaert, R., Boone, E., Cornelis, S., Declercq, W., Decoster, E., Denecker, G, Depuydt, B., De, Valck D., De, Wilde G, Goossens, V., Grooten, J., Haegeman, G, Heyninck, K., Penning, L., Plaisance, S., Vancompernolle, K., Van, Criekinge W., Vandenabeele, P., Vanden, Berghe W., Van de, Craen M., Vandevoorde, V, and Vercammen, D. TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis [J]. J.Inflamm., 1995, 47(1-2): 67-75.
    [22] Eipers, P. G, Lahti, J. M., and Kidd, V. J. Structure and expression of the human p58clk-1 protein kinase chromosomal gene [J]. Genomics, 1992, 13(3): 613-621.
    [23] Trembley, J. H., Hu, D., Hsu, L. C, Yeung, C. Y, Slaughter, C, Lahti, J. M., and Kidd, V. J. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity [J]. J.Biol.Chem., 1-25-2002, 277(4): 2589-2596.
    [24] Trembley, J. H., Hu, D., Slaughter, C. A., Lahti, J. M., and Kidd, V. J. Casein kinase 2 interacts with cyclin-dependent kinase 11 (CDK11) in vivo and phosphorylates both the RNA polymerase II carboxyl-terminal domain and CDK11 in vitro [J]. J.Biol.Chem., 1-24-2003, 278(4): 2265-2270.
    [25] Dickinson, L. A., Edgar, A. J., Ehley, J., and Gottesfeld, J. M. Cyclin L is an RS domain protein involved in pre-mRNA splicing [J]. J.Biol.Chem., 7-12-2002, 277(28): 25465-25473.
    [26] Hu, D., Mayeda, A., Trembley, J. H., Lahti, J. M., and Kidd, V. J. CDK11 complexes promote pre-mRNA splicing [J]. J.Biol.Chem., 3-7-2003, 278(10): 8623-8629.
    [27] Loyer, P., Trembley, J. H., Lahti, J. M., and Kidd, V. J. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo [J]. J.Cell Sci., 1998, 111 ( Pt 11)(1495-1506.
    [28] Jian, Y., Yan, J., Wang, H., Chen, C, Sun, M., Jiang, J., Lu, J., Yang, Y, and Gu, J. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity [J]. Biochem.Biophys.Res Commun., 9-30-2005, 335(3): 739-748.
    [29] Liu, W., Sun, M., Jiang, J., Shen, X., Sun, Q., Liu, W., Shen, H., and Gu, J. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity [J]. Biochem.Biophys.Res Commun., 9-3-2004, 321(4): 954-960.
    [30] Sterner, D. E. and Berger, S. L. Acetylation of histones and transcription-related factors [J]. Microbiol.Mol.Biol.Rev., 2000, 64(2): 435-459.
    [31] Iizuka, M. and Stillman, B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein [J]. J.Biol.Chem., 8-13-1999, 274(33): 23027-23034.
    [32] Borrow, J., Stanton, V. P., Jr., Andresen, J. M., Becher, R., Behm, F. G., Chaganti, R. S., Civin, C. I., Disteche, C, Dube, I., Frischauf, A. M., Horsman, D., Mitelman, F., Volinia, S., Watmore, A. E., and Housman, D. E. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein [J]. Nat.Genet., 1996, 14(1): 33-41.
    [33] Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A., and Lucchesi, J. C. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila [J]. EMBO J., 4-15-1997, 16(8): 2054-2060.
    [34] Pelletier, N., Champagne, N., Lim, H., and Yang, X. J. Expression, purification, and analysis of MOZ and MORF histone acetyltransferases [J]. Methods, 2003, 31(1): 24-32.
    [35] Reifsnyder, C, Lowell, J., Clarke, A., and Pillus, L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases [J]. Nat.Genet, 1996,14(1): 42-49.
    [36] Champagne, N., Bertos, N. R., Pelletier, N., Wang, A. H., Vezmar, M., Yang, Y, Heng, H. H., and Yang, X. J. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein [J]. J.Biol.Chem., 10-1-1999, 274(40): 28528-28536.
    [37] Kamine, J., Elangovan, B., Subramanian, T., Coleman, D., and Chinnadurai, G. Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator [J]. Virology, 2-15-1996, 216(2): 357-366.
    [38] Smith, E. R., Eisen, A., Gu, W., Sattah, M., Pannuti, A., Zhou, J., Cook, R. G, Lucchesi, J. C, and Allis, C. D. ESA1 is a histone acetyltransferase that is essential for growth in yeast [J]. Proc.Natl.Acad.Sci.U.S.A, 3-31-1998, 95(7): 3561-3565.
    [39] Sharma, M., Zarnegar, M., Li, X., Lim, B., and Sun, Z. Androgen receptor interacts with a novel MYST protein, HBO1 [J]. J.Biol.Chem., 11-10-2000, 275(45): 35200-35208.
    [40] Burke, T. W., Cook, J. G, Asano, M., and Nevins, J. R. Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1 [J]. J.Biol.Chem., 5-4-2001, 276(18): 15397-15408.
    [41] Merienne, K., Pannetier, S., Harel-Bellan, A., and Sassone-Corsi, P. Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities [J]. Mol.Cell Biol., 2001, 21(20): 7089-7096.
    [42] Hussein, M. R., Haemel, A. K., and Wood, G. S. Apoptosis and melanoma: molecular mechanisms [J]. J.Pathol., 2003, 199(3): 275-288.
    [43] White, P. S., Fujimori, M., Marshall, H. N., Kaufman, B. A., and Brodeur, G M. Characterization of the region of consistent deletion within 1p36 in neuroblastomas [J]. Prog.Clin.Biol.Res., 1994, 385(3-9.
    [44] Perlman, E. J., Valentine, M. B., Griffin, C. A., and Look, A. T. Deletion of 1p36 in childhood endodermal sinus tumors by two-color fluorescence in situ hybridization: a pediatric oncology group study [J]. Genes Chromosomes.Cancer, 1996, 16(1): 15-20.
    [45] Dave, B. J., Pickering, D. L., Hess, M. M., Weisenburger, D. D., Armitage, J. O., and Sanger, W. G Deletion of cell division cycle 2-like 1 gene locus on 1p36 in non-Hodgkin lymphoma[J]. Cancer Genet.Cytogenet., 1-15-1999, 108(2): 120-126.
    [46] Nelson, M. A., Ariza, M. E., Yang, J. ML, Thompson, F. H., Taetle, R., Trent, J. M., Wymer, J., Massey-Brown, K., Broome-Powell, M., Easton, J., Lahti, J. M., and Kidd, V. J. Abnormalities in the p34cdc2-related PITSLRE protein kinase gene complex (CDC2L) on chromosome band 1p36 in melanoma [J]. Cancer Genet.Cytogenet., 1-15-1999, 108(2): 91-99.
    [47] Chen, S., Yin, X., Zhu, X., Yan, J., Ji, S., Chen, C, Cai, M., Zhang, S., Zong, H., Hu, Y., Yuan, Z., Shen, Z., and Gu, J. The C-terminal kinase domain of the p34cdc2-related PITSLRE protein kinase (p110C) associates with p21-activated kinase 1 and inhibits its activity during anoikis [J]. J.Biol.Chem., 5-30-2003, 278(22): 20029-20036.
    [48] Cotteret, S., Jaffer, Z. M., Beeser, A., and Chernoff, J. p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD [J]. Mol.Cell Biol., 2003, 23(16): 5526-5539.
    [49] Schurmann, A., Mooney, A. F., Sanders, L. C, Sells, M. A., Wang, H. G., Reed, J. C, and Bokoch, G. M. p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis [J]. Mol.Cell Biol., 2000, 20(2): 453-461.
    [50] Heinlein, C. A. and Chang, C. Androgen receptor (AR) coregulators: an overview [J]. Endocr.Rev., 2002, 23(2): 175-200.
    [51] Shang, Y, Myers, M., and Brown, M. Formation of the androgen receptor transcription complex [J]. Mol.Cell, 2002, 9(3): 601-610.
    [1] Chang, C. S., Kokontis, J., and Liao, S. T. Molecular cloning of human and rat complementary DNA encoding androgen receptors [J]. Science, 4 -15-1988, 240(4850): 324-326.
    
    [2] Gregory, C. W., He, B., Johnson, R. T., Ford, O. H., Mohler, J. L., French, F. S., and Wilson, E. M. A mechanism for androgen receptor-mediated prostate cancerrecurrence after androgen deprivation therapy [J]. Cancer Res., 6-1-2001, 61(11): 4315-4319.
    [3] Marcelli, M, Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., Zhao, Y., DiConcini, D., Puxeddu, E., Esen, A., Eastham, J., Weigel, N. L., and Lamb, D. J. Androgen receptor mutations in prostate cancer [J]. Cancer Res., 2-15-2000, 60(4): 944-949.
    [4] Suzuki, H., Akakura, K., Komiya, A., Aida, S., Akimoto, S., and Shimazaki, J. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome [J]. Prostate, 1996, 29(3): 153-158.
    [5] Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinanen, R., Palmberg, C, Palotie, A., Tammela, T., Isola, J., and Kallioniemi, O. P. In vivo amplification of the androgen receptor gene and progression of human prostate cancer [J]. Nat.Genet., 1995, 9(4): 401-406.
    [6] MacLean, H. E., Warne, G. L., and Zajac, J. D. Localization of functional domains in the androgen receptor [J]. J.Steroid Biochem.Mol.Biol., 1997, 62(4): 233-242.
    [7] Christiaens, V., Bevan, C. L., Callewaert, L., Haelens, A., Verrijdt, G, Rombauts, W., and Claessens, F. Characterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control [J]. J.Biol.Chem., 12-20-2002, 277(51): 49230-49237.
    [8] Ikonen, T., Palvimo, J. J., and Janne, O. A. Interaction between the amino- and carboxyl-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators [J]. J.Biol.Chem., 11-21-1997,272(47): 29821-29828.
    [9] Aarnisalo, P., Palvimo, J. J., and Janne, O. A. CREB-binding protein in androgen receptor-mediated signaling [J]. Proc.Natl.Acad.Sci.U.S.A, 3-3-1998, 95(5): 2122-2127.
    [10] Shen, H. C, Buchanan, G, Butler, L. M., Prescott, J., Henderson, M., Tilley, W. D., and Coetzee, G. A. GRIP1 mediates the interaction between the amino- and carboxyl-termini of the androgen receptor [J]. Biol.Chem., 2005, 386(1): 69-74.
    [11] Yeh, S. and Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells [J]. Proc.Natl.Acad.Sci.U.S.A, 5-28-1996, 93(11): 5517-5521.
    [12] Gaughan, L., Logan, I. R., Cook, S., Neal, D. E., and Robson, C. N. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor [J]. J.Biol.Chem., 7-19-2002,277(29): 25904-25913.
    [13] Yang, F., Li, X., Sharma, M., Zarnegar, M., Lim, B., and Sun, Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6 [J]. J.Biol.Chem., 5-4-2001,276(18): 15345-15353.
    [14] Sharma, M., Zarnegar, M., Li, X., Lim, B., and Sun, Z. Androgen receptor interacts with a novel MYST protein, HBO1 [J]. J.Biol.Chem., 11-10-2000, 275(45): 35200-35208.
    [15] Shenk, J. L., Fisher, C. J., Chen, S. Y, Zhou, X. R, Tillman, K., and Shemshedini, L. p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction [J]. J.Biol.Chem., 10-19-2001, 276(42): 38472-38479.
    [16] Bodwell, J. E., Webster, J. C, Jewell, C. M., Cidlowski, J. A., Hu, J. M., and Munck, A. Glucocorticoid receptor phosphorylation: overview, function and cell cycle-dependence [J]. J.Steroid Biochem.Mol.Biol., 1998, 65(1-6): 91-99.
    [17] Blok, L. J., de Ruiter, P. E., and Brinkmann, A. O. Androgen receptor phosphorylation [J]. Endocr.Res., 1996, 22(3): 197-219.
    [18] Kim, J., Jia, L., Stallcup, M. R., and Coetzee, G A. The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus [J]. J.Mol.Endocrinol., 2005, 34(1): 107-118.
    [19] Salas, T. R., Kim, J., Vakar-Lopez, R, Sabichi, A. L., Troncoso, P., Jenster, G, Kikuchi, A., Chen, S. Y., Shemshedini, L., Suraokar, M., Logothetis, C. J., DiGiovanni, J., Lippman, S. M., and Menter, D. G. Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity [J]. J.Biol.Chem., 4-30-2004,279(18): 19191-19200.
    [20] Lin, H. K., Yeh, S., Kang, H. Y, and Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor [J]. Proc.Natl.Acad.Sci.U.S.A, 6-19-2001, 98(13): 7200-7205.
    [21] Reutens, A. T., Fu, M., Wang, C, Albanese, C, McPhaul, M. J., Sun, Z., Balk, S. P., Janne, O. A., Palvimo, J. J., and Pestell, R. G. Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner [J]. Mol.Endocrinol., 2001, 15(5): 797-811.
    [22] Burd, C. J., Petre, C. E., Moghadam, H., Wilson, E. M., and Knudsen, K. E. Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression [J]. Mol.Endocrinol., 2005, 19(3): 607-620.
    [23] Petre, C. E., Wetherill, Y. B., Danielsen, M., and Knudsen, K. E. Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity [J]. J.Biol.Chem., 1-18-2002, 277(3): 2207-2215.
    [24] Burd, C. J., Petre, C. E., Morey, L. M., Wang, Y., Revelo, M. P., Haiman, C. A., Lu, S., Fenoglio-Preiser, C. M., Li, J., Knudsen, E. S., Wong, J., and Knudsen, K. E. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation [J]. Proc.Natl.Acad.Sci.U.S.A, 2-14-2006, 103(7): 2190-2195.
    [25] Gregory, C. W, Johnson, R. T., Jr., Presnell, S. C, Mohler, J. L., and French, F. S. Androgen receptor regulation of G1 cyclin and cyclin-dependent kinase function in the CWR22 human prostate cancer xenograft [J]. J.Androl, 2001, 22(4): 537-548.
    [26] Yamamoto, A., Hashimoto, Y, Kohri, K., Ogata, E., Kato, S., Ikeda, K., and Nakanishi, M. Cyclin E as a coactivator of the androgen receptor [J]. J.Cell Biol., 8-21-2000, 150(4): 873-880.
    [27] Lim, J. T., Mansukhani, M, and Weinstein, I. B. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells [J]. Proc.Natl.Acad.Sci.U.S.A, 4-5-2005,102(14): 5156-5161.
    [28] Cornelis, S., Bruynooghe, Y, Denecker, G, Van, Huffel S., Tinton, S., and Beyaert, R. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site [J]. Mol.Cell, 2000, 5(4): 597-605.
    [29] Trembley, J. H., Hu, D., Hsu, L. C, Yeung, C. Y, Slaughter, C, Lahti, J. M., and Kidd, V. J. PITSLRE ~(p110) protein kinases associate with transcription complexes and affect their activity [J]. J.Biol.Chem., 1-25-2002, 277(4): 2589-2596.
    [30] Dickinson, L. A., Edgar, A. J., Ehley, J., and Gottesfeld, J. M. Cyclin L is an RS domain protein involved in pre-mRNA splicing [J]. J.Biol.Chem., 7-12-2002, 277(28): 25465-25473.
    [31 ] Hu, D., Mayeda, A., Trembley, J. H., Lahti, J. M, and Kidd, V. J. CDK11 complexes promote pre-mRNA splicing [J]. J.Biol.Chem., 3-7-2003, 278(10): 8623-8629.
    [32] Loyer, P., Trembley, J. H., Lahti, J. M., and Kidd, V. J. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo [J]. J.Cell Sci., 1998, 111 ( Pt 11)(1495-1506.
    [33] Bunnell, B. A., Adams, D. E., and Kidd, V. J. Transient expression of a ~(p58) protein kinase cDNA enhances mammalian glycosyltransferase activity [J]. Biochem.Biophys.Res.Commun., 8-31-1990, 171(1): 196-203.
    [34] Zong, H., Li, Z., Liu, L., Hong, Y, Yun, X., Jiang, J., Chi, Y, Wang, H., Shen, X., Hu, Y, Niu, Z., and Gu, J. Cyclin-dependent kinase 1 l(p58) interacts with HBO1 and enhances its histone acetyltransferase activity [J]. FEBS Lett., 7-4-2005, 579(17): 3579-3588.
    [35] Zhang, S., Cai, M., Zhang, S., Xu, S., Chen, S., Chen, X., Chen, C, and Gu, J. Interaction of p58 (PITSLRE), a G2/M-specific protein kinase, with cyclin D3 [J]. J.Biol.Chem., 9-20-2002, 277(38): 35314-35322.
    [36] Knudsen, K. E., Cavenee, W. K., and Arden, K. C. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability [J]. Cancer Res., 5-15-1999, 59(10): 2297-2301.
    [37] Lahti, J. M., Xiang, J., Heath, L. S., Campana, D., and Kidd, V. J. PITSLRE protein kinase activity is associated with apoptosis [J]. Mol.Cell Biol., 1995, 15(1): 1-11.
    [38] Jemal, A., Murray, T, Ward, E., Samuels, A., Tiwari, R. C, Ghafoor, A., Feuer, E. J., and Thun, M. J. Cancer statistics, 2005 [J]. CA Cancer J.Clin., 2005, 55(1): 10-30.
    [39] Petre-Draviam, C. E., Cook, S. L., Burd, C. J., Marshall, T. W., Wetherill, Y B., and Knudsen, K. E. Specificity of cyclin D1 for androgen receptor regulation [J]. Cancer Res., 8-15-2003, 63(16): 4903-4913.
    [40] Lin, H. K., Hu, Y. C, Lee, D. K., and Chang, C. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells [J]. Mol.Endocrinol., 2004, 18(10): 2409-2423.
    [41] Wang, L., Hsu, C. L., and Chang, C. Androgen receptor corepressors: an overview [J]. Prostate, 5-1-2005, 63(2): 117-130.
    [42] Trembley, J. H., Hu, D., Slaughter, C. A., Lahti, J. M., and Kidd, V. J. Casein kinase 2 interacts with cyclin-dependent kinase 11 (CDK11) in vivo and phosphorylates both the RNA polymerase II carboxyl-terminal domain and CDK11 in vitro [J]. J.Biol.Chem., 1-24-2003,278(4): 2265-2270.
    [43] Weigel, N. L. Steroid hormone receptors and their regulation by phosphorylation [J]. Biochem.J., 11-1-1996, 319 (Pt 3)(657-667.
    [44] Yeh, S., Lin, H. K., Kang, H. Y., Thin, T. H., Lin, M. F., and Chang, C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells [J]. Proc.Natl.Acad.Sci.U.S.A, 5-11-1999, 96(10): 5458-5463.
    [45] Moilanen, A. M., Karvonen, U., Poukka, H., Janne, O. A., and Palvimo, J. J. Activation of androgen receptor function by a novel nuclear protein kinase [J]. Mol.Biol.Cell, 1998, 9(9): 2527-2543.
    [46] Wang, L., Lin, H. K., Hu, Y. C, Xie, S., Yang, L., and Chang, C. Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells [J]. J.Biol.Chem., 7-30-2004, 279(31): 32444-32452.
    [47] Lu, S., Jenster, G, and Epner, D. E. Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex [J]. Mol.Endocrinol., 2000, 14(5): 753-760.
    [48] Collins, L. L., Lee, H. J., Chen, Y. T., Chang, M, Hsu, H. Y, Yeh, S., and Chang, C. The androgen receptor in spermatogenesis [J]. Cytogenet.Genome Res., 2003, 103(3-4): 299-301.
    [49] Niu, Z., Shen, A., Shen, H., Jiang, J., Zong, H., and Gu, J. Protein expression pattern of CDK1 l(p58) during testicular development in the mouse [J]. Mol.Cell Biochem., 2005, 270(1-2): 99-106.
    [50] Sachs, N. A. and Vaillancourt, R. R. Cyclin-dependent kinase 11~(p110) and casein kinase 2 (CK2) inhibit the interaction between tyrosine hydroxylase and 14-3-3 [J]. J.Neurochem., 2004, 88(1): 51-62.
    [1] Chang, C. S., Kokontis, J., and Liao, S. T. Molecular cloning of human and rat complementary DNA encoding androgen receptors [J]. Science, 4-15-1988, 240(4850): 324-326.
    [2] Riegman, P. H., Vlietstra, R. J., van der Korput, J. A., Brinkmann, A. O., and Trapman, J. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element [J]. Mol.Endocrinol., 1991, 5(12): 1921-1930.
    [3] Rennie, P. S., Bruchovsky, N., Leco, K. J., Sheppard, P. C, McQueen, S. A., Cheng, H., Snoek, R., Hamel, A., Bock, M. E., MacDonald, B. S., and . Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene [J]. Mol.Endocrinol., 1993, 7(1): 23-36.
    [4] Fasciana, C, van der Made, A. C, Faber, P. W., and Trapman, J. Androgen regulation of the rat keratinocyte growth factor (KGF/FGF7) promoter [J]. Biochem.Biophys.Res Commun., 3-27-1996, 220(3): 858-863.
    [5] Lu, S., Jenster, G, and Epner, D. E. Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex [J]. Mol.Endocrinol., 2000, 14(5): 753-760.
    [6] Zhang, M., Magit, D., and Sager, R. Expression of maspin in prostate cells is regulated by a positive ets element and a negative hormonal responsive element site recognized by androgen receptor [J]. Proc.Natl.Acad.Sci.U.S.A, 5-27-1997, 94(11): 5673-5678.
    [7] Dai, J. L. and Burnstein, K. L. Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA [J]. Mol.Endocrinol., 1996, 10(12): 1582-1594.
    [8] Gregory, C. W., He, B., Johnson, R. T., Ford, O. H., Mohler, J. L., French, F. S., and Wilson, E. M. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy [J]. Cancer Res., 6-1-2001, 61(11): 4315-4319.
    [9] Barrack, E. R. Androgen receptor mutations in prostate cancer [J]. Mt.Sinai J.Med., 1996, 63(5-6): 403-412.
    [10] Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinanen, R., Palmberg, C, Palotie, A., Tammela, T., Isola, J., and Kallioniemi, O. P. In vivo amplification of the androgen receptor gene and progression of human prostate cancer [J]. Nat.Genet, 1995, 9(4): 401-406.
    [11] Bagchi, M. K., Tsai, M. J., O'Malley, B. W., and Tsai, S. Y. Analysis of the mechanism of steroid hormone receptor-dependent gene activation in cell-free systems [J]. Endocr.Rev., 1992, 13(3): 525-535.
    [12] Jenster, G, van der Korput, H. A., van, Vroonhoven C, van der Kwast, T. H., Trapman, J., and Brinkmann, A. O. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization [J]. Mol.Endocrinol., 1991,5(10): 1396-1404.
    [13] Jenster, G, van der Korput, H. A., Trapman, J., and Brinkmann, A. O. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor [J]. J.Biol.Chem., 3-31-1995, 270(13): 7341-7346.
    [14] Chang, C. S., Kokontis, J., and Liao, S. T. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors [J]. Proc.Natl.Acad.Sci.U.S.A, 1988, 85(19): 7211-7215.
    [15] Anzick, S. L., Kononen, J., Walker, R. L., Azorsa, D. O., Tanner, M. M., Guan, X. Y., Sauter, G, Kallioniemi, O. P., Trent, J. M., and Meltzer, P. S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer [J]. Science, 8-15-1997, 277(5328): 965-968.
    [16] Liu, Y. Z., Chrivia, J. C., and Latchman, D. S. Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44(MAPK) cascade [J]. J.Biol.Chem., 12-4-1998, 273(49): 32400-32407.
    [17] Tanese, N., Saluja, D., Vassallo, M. F., Chen, J. L., and Admon, A. Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100 [J]. Proc.Natl.Acad.Sci.U.S.A, 11-26-1996,93(24): 13611-13616.
    [18] Tut, T. G, Ghadessy, F. J., Trifiro, M. A., Pinsky, L., and Yong, E. L. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility [J]. J.Clin.Endocrinol.Metab, 1997, 82(11): 3777-3782.
    [19] La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy [J]. Nature, 7-4-1991, 352(6330): 77-79.
    [20] Wong, C. I., Zhou, Z. X., Sar, M., and Wilson, E. M. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains [J]. J.Biol.Chem., 9-5-1993, 268(25): 19004-19012.
    [21] Gloss, B., Bernard, H. U., Seedorf, K., and Klock, G. The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones [J]. EMBO J., 12-1-1987, 6(12): 3735-3743.
    [22] Shen, R., Sumitomo, M., Dai, J., Hardy, D. O., Navarro, D., Usmani, B., Papandreou, C. N., Hersh, L. B., Shipp, M. A., Freedman, L. P., and Nanus, D. M. Identification and characterization of two androgen response regions in the human neutral endopeptidase gene [J]. Mol.Cell Endocrinol., 12-22-2000, 170(1-2): 131-142.
    [23] Cleutjens, K. B., van Eekelen, C. C, van der Korput, H. A., Brinkmann, A. O., and Trapman, J. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter [J]. J.Biol.Chem., 3-15-1996, 271(11): 6379-6388.
    [24] Jenster, G, Trapman, J., and Brinkmann, A. O. Nuclear import of the human androgen receptor [J]. Biochem.J., 8-1-1993,293 (Pt 3)(761-768.
    [25] Zhou, Z. X., Sar, M., Simental, J. A., Lane, M. V., and Wilson, E. M. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences [J]. J.Biol.Chem., 5-6-1994, 269(18): 13115-13123.
    [26] Marcelli, M., Zoppi, S., Grino, P. B., Griffin, J. E., Wilson, J. D., and McPhaul, M. J. A mutation in the DNA-binding domain of the androgen receptor gene causes complete testicular feminization in a patient with receptor-positive androgen resistance [J]. J.Clin.Invest, 1991, 87(3): 1123-1126.
    [27] Zoppi, S., Marcelli, M., Deslypere, J. P., Griffin, J. E., Wilson, J. D., and McPhaul, M. J. Amino acid substitutions in the DNA-binding domain of the human androgen receptor are a frequent cause of receptor-binding positive androgen resistance [J]. Mol.Endocrinol., 1992, 6(3): 409-415.
    [28] Fang, Y., Fliss, A. E., Robins, D. M., and Caplan, A. J. Hsp90 regulates androgen receptor hormone binding affinity in vivo [J]. J.Biol.Chem., 11-8-1996, 271(45): 28697-28702.
    [29] Colvard, D. S. and Wilson, E. M. Transformation of the 10S androgen receptor in a hamster ductus deferens tumor cell line [J]. Endocrinology, 1987, 121(3): 931-940.
    
    [30] Grino, P. B., Griffin, J. E., and Wilson, J. D. Transformation of the androgen receptor to the deoxyribonucleic acid-binding state: studies in homogenates and intact cells [J]. Endocrinology, 1987, 120(5): 1914-1920.
    [31] Deslypere, J. P., Young, M., Wilson, J. D., and McPhaul, M. J. Testosterone and 5 alpha-dihydrotestosterone interact differently with the androgen receptor to enhance transcription of the MMTV-CAT reporter gene [J]. Mol.Cell Endocrinol., 1992, 88(1-3): 15-22.
    [32] Yu, X., Li, P., Roeder, R. G, and Wang, Z. Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split [J]. Mol.Cell Biol., 2001, 21(14): 4614-4625.
    [33] ALLFREY, V. G, FAULKNER, R., and MIRSKY, A. E. ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS [J]. Proc.Natl.Acad.Sci.U.S.A, 1964, 51(786-794.
    [34] Blanco, J. C., Minucci, S., Lu, J., Yang, X. J., Walker, K. K., Chen, H., Evans, R. M., Nakatani, Y, and Ozato, K. The histone acetylase PCAF is a nuclear receptor coactivator [J]. Genes Dev., 6-1-1998,12(11): 1638-1651.
    [35] Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases [J]. Cell, 11-29-1996, 87(5): 953-959.
    [36] Spencer, T. E., Jenster, G, Burcin, M. ML, Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y, Tsai, M. J., and O'Malley, B. W. Steroid receptor coactivator-1 is a histone acetyltransferase [J]. Nature, 9-11-1997, 389(6647): 194-198.
    [37] Doetzlhofer, A., Rotheneder, H., Lagger, G, Koranda, M., Kurtev, V., Brosch, G, Wintersberger, E., and Seiser, C. Histone deacetylase 1 can repress transcription by binding to Sp1 [J]. Mol.Cell Biol., 1999, 19(8): 5504-5511.
    [38] Reutens, A. T., Fu, M., Wang, C, Albanese, C., McPhaul, M. J., Sun, Z., Balk, S. P., Janne, O. A., Palvimo, J. J., and Pestell, R. G Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner [J]. Mol.Endocrinol., 2001, 15(5): 797-811.
    [39] Ohara-Nemoto, Y., Nemoto, T., Sato, N., and Ota, M. Characterization of the nontransformed and transformed androgen receptor and heat shock protein 90 with high-performance hydrophobic-interaction chromatography [J]. J.Steroid Biochem., 1988, 31(3): 295-304.
    [40] Miyamoto, H., Yeh, S., Lardy, H., Messing, E., and Chang, C. Delta5-androstenediol is a natural hormone with androgenic activity in human prostate cancer cells [J]. Proc.Natl.Acad.Sci.U.S.A, 9-15-1998, 95(19): 11083-11088.
    [41] Miyamoto, H., Yeh, S., Wilding, G, and Chang, C. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells [J]. Proc.Natl.Acad.Sci.U.S.A, 6-23-1998, 95(13): 7379-7384.
    [42] Lee, S. R., Ramos, S. M., Ko, A., Masiello, D., Swanson, K. D., Lu, M. L., and Balk, S. P. AR and ER interaction with a p21-activated kinase (PAK6) [J]. Mol.Endocrinol., 2002, 16(1): 85-99.
    [43] Schrantz, N., da Silva, Correia J., Fowler, B., Ge, Q., Sun, Z., and Bokoch, G M. Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling [J]. J.Biol.Chem., 1-16-2004, 279(3): 1922-1931.
    [44] Dedhar, S., Rennie, P. S., Shago, M., Hagesteijn, C. Y., Yang, H., Filmus, J., Hawley, R. G, Bruchovsky, N., Cheng, H., Matusik, R. J., and . Inhibition of nuclear hormone receptor activity by calreticulin [J]. Nature, 2-3-1994, 367(6462): 480-483.
    [45] Walther, R. F., Lamprecht, C., Ridsdale, A., Groulx, I., Lee, S., Lefebvre, Y. A., and Hache, R. J. Nuclear export of the glucocorticoid receptor is accelerated by cell fusion-dependent release of calreticulin [J]. J.Biol.Chem., 9-26-2003,278(39): 37858-37864.
    [46] Wheeler, D. G, Horsford, J., Michalak, M., White, J. H., and Hendy, G N. Calreticulin inhibits vitamin D3 signal transduction [J]. Nucleic Acids Res, 8-25-1995, 23(16): 3268-3274.
    [47] Burns, K., Duggan, B., Atkinson, E. A., Famulski, K. S., Nemer, M., Bleackley, R. C, and Michalak, M. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor [J]. Nature, 2-3-1994, 367(6462): 476-480.
    [48] Salas, T. R., Kim, J., Vakar-Lopez, F., Sabichi, A. L., Troncoso, P., Jenster, G, Kikuchi, A., Chen, S. Y., Shemshedini, L., Suraokar, M., Logothetis, C. J., DiGiovanni, J., Lippman, S. M., and Menter, D. G. Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity [J]. J.Biol.Chem., 4-30-2004,279(18): 19191-19200.
    [49] Sharma, M., Zarnegar, M., Li, X., Lim, B., and Sun, Z. Androgen receptor interacts with a novel MYST protein, HBO1 [J]. J.Biol.Chem., 11-10-2000, 275(45): 35200-35208.
    [50] Heinlein, C. A. and Chang, C. Androgen receptor (AR) coregulators: an overview [J]. Endocr.Rev., 2002, 23(2): 175-200.
    [51] Gong, J., Zhu, J., Goodman, O. B., Pestell, R. G, Schlegel, P. N., Nanus, D. M., and Shen, R. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells [J]. Oncogene, 1-23-2006,
    [52] Wong, H. Y., Burghoorn, J. A., Van, Leeuwen M., De Ruiter, P. E., Schippers, E., Blok, L. J., Li, K. W., Dekker, H. L., De, Jong L., Trapman, J., Grootegoed, J. A., and Brinkmann, A. O. Phosphorylation of androgen receptor isoforms [J]. Biochem.J., 10-15-2004, 383(Pt 2): 267-276.
    [53] Taneja, S. S., Ha, S., Swenson, N. K., Huang, H. Y., Lee, P., Melamed, J., Shapiro, E., Garabedian, M. J., and Logan, S. K. Cell-specific regulation of androgen receptor phosphorylation in vivo [J]. J.Biol.Chem., 12-9-2005, 280(49): 40916-40924.
    [54] Jenster, G, de Ruiter, P. E., van der Korput, H. A., Kuiper, G G, Trapman, J., and Brinkmann, A. O. Changes in the abundance of androgen receptor isotypes: effects of ligand treatment, glutamine-stretch variation, and mutation of putative phosphorylation sites [J]. Biochemistry, 11-29-1994, 33(47): 14064-14072.
    
    [55] Gioeli, D., Ficarro, S. B., Kwiek, J. J., Aaronson, D., Hancock, M., Catling, A. D., White, F. M., Christian, R. E., Settlage, R. E., Shabanowitz, J., Hunt, D. F., and Weber, M. J. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites [J]. J.Biol.Chem., 8-9-2002, 277(32): 29304-29314.
    [56] Blok, L. J., de Ruiter, P. E., and Brinkmann, A. O. Androgen receptor phosphorylation [J]. Endocr.Res, 1996, 22(3): 197-219.
    [57] Lee, D. K., Duan, H. O., and Chang, C. From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator [J]. J.Biol.Chem., 3-31-2000, 275(13): 9308-9313.
    [58] Lim, J. T., Mansukhani, M., and Weinstein, I. B. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells [J]. Proc.Natl.Acad.Sci.U.S.A, 4-5-2005,102(14): 5156-5161.
    [59] Ray, M. R., Wafa, L. A., Cheng, H., Snoek, R., Fazli, L., Gleave, M., and Rennie, P. S. Cyclin G-associated kinase: a novel androgen receptor-interacting transcriptional coactivator that is overexpressed in hormone refractory prostate cancer [J]. Int.J.Cancer, 3-1-2006, 118(5): 1108-1119.
    [60] Rigas, A. C, Ozanne, D. M., Neal, D. E., and Robson, C. N. The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway [J]. J.Biol.Chem., 11-14-2003, 278(46): 46087-46093.
    [61] Yang, F., Li, X., Sharma, M., Zarnegar, M., Lim, B., and Sun, Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6 [J]. J.Biol.Chem., 5-4-2001,276(18): 15345-15353.
    [62] Salas, T. R., Kim, J., Vakar-Lopez, R, Sabichi, A. L., Troncoso, P., Jenster, G, Kikuchi, A., Chen, S. Y., Shemshedini, L., Suraokar, M., Logothetis, C. J., DiGiovanni, J., Lippman, S. M., and Menter, D. G Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity [J]. J.Biol.Chem., 4-30-2004,279(18): 19191-19200.
    [63] Sun, M., Yang, L., Feldman, R. I., Sun, X. M., Bhalla, K. N., Jove, R., Nicosia, S. V., and Cheng, J. Q. Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85alpha, androgen receptor, and Src [J]. J.Biol.Chem., 10-31-2003, 278(44): 42992-43000.
    [64] Goueli, S. A., Holtzman, J. L., and Ahmed, K. Phosphorylation of the androgen receptor by a nuclear cAMP-independent protein kinase [J]. Biochem.Biophys.Res Commun., 9-17-1984, 123(2): 778-784.
    [65] Moilanen, A. M., Karvonen, U., Poukka, H., Janne, O. A., and Palvimo, J. J. Activation of androgen receptor function by a novel nuclear protein kinase [J]. Mol.Biol.Cell, 1998, 9(9): 2527-2543.
    [66] Nazareth, L. V. and Weigel, N. L. Activation of the human androgen receptor through a protein kinase A signaling pathway [J]. J.Biol.Chem., 8-16-1996, 271(33): 19900-19907.
    [67] Sadar, M. D. Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways [J]. J.Biol.Chem., 3-19-1999, 274(12): 7777-7783.
    [68] Kim, J., Jia, L., Stallcup, M. R., and Coetzee, G A. The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus [J]. J.Mol.Endocrinol., 2005, 34(1): 107-118.
    [69] Robinson, M. J. and Cobb, M. H. Mitogen-activated protein kinase pathways [J]. Curr.Opin.Cell Biol., 1997, 9(2): 180-186.
    [70] Cuschieri, J. and Maier, R. V. Mitogen-activated protein kinase (MAPK) [J]. Crit Care Med., 2005, 33(12 Suppl): S417-S419.
    [71] Peterziel, H., Mink, S., Schonert, A., Becker, M., Klocker, H., and Cato, A. C. Rapid signalling by androgen receptor in prostate cancer cells [J]. Oncogene, 11-4-1999, 18(46): 6322-6329.
    [72] Culig, Z., Bartsch, G., and Hobisch, A. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth [J]. Mol.Cell Endocrinol., 11-29-2002, 197(1-2): 231-238.
    [73] Lin, D. L., Whitney, M. C., Yao, Z., and Keller, E. T. Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression [J]. Clin.Cancer Res., 2001, 7(6): 1773-1781.
    [74] Ueda, T., Bruchovsky, N., and Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways [J]. J.Biol.Chem., 3-1-2002, 277(9): 7076-7085.
    [75] LaFevre-Bernt, M. A. and Ellerby, L. M. Kennedy's disease. Phosphorylation of the polyglutamine-expanded form of androgen receptor regulates its cleavage by caspase-3 and enhances cell death [J]. J.Biol.Chem., 9-12-2003, 278(37): 34918-34924.
    [76] Gioeli, D., Black, B. E., Gordon, V., Spencer, A., Kesler, C. T., Eblen, S. T., Paschal, B. M., and Weber, M. J. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization [J]. Mol.Endocrinol., 2006, 20(3): 503-515.
    [77] Gullick, W. J., Berger, M. S., Bennett, P. L., Rothbard, J. B., and Waterfield, M. D. Expression of the c-erbB-2 protein in normal and transformed cells [J]. Int.J.Cancer, 8-15-1987, 40(2): 246-254.
    [78] Myers, R. B., Brown, D., Oelschlager, D. K., Waterbor, J. W, Marshall, M. E., Srivastava, S., Stockard, C. R., Urban, D. A., and Grizzle, W. E. Elevated serum levels of p105(erbB-2) in patients with advanced-stage prostatic adenocarcinoma [J]. IntJ.Cancer, 10-21-1996, 69(5): 398-402.
    [79] Leitzel, K., Teramoto, Y., Konrad, K., Chinchilli, V. M., Volas, G., Grossberg, H., Harvey, H., Demers, L., and Lipton, A. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer [J]. J.Clin.Oncol., 1995, 13(5): 1129-1135.
    [80] Yeh, S., Lin, H. K., Kang, H. Y, Thin, T. H., Lin, M. F., and Chang, C. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells [J]. Proc.Natl.Acad.Sci.U.S.A, 5-11-1999, 96(10): 5458-5463.
    [81] Mellinghoff, I. K., Vivanco, I., Kwon, A., Tran, C, Wongvipat, J., and Sawyers, C. L. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability [J]. Cancer Cell, 2004, 6(5): 517-527.
    [82] Gregory, C. W., Whang, Y. E., McCall, W., Fei, X., Liu, Y., Ponguta, L. A., French, F. S., Wilson, E. M., and Earp, H. S., III. Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth [J]. Clin.Cancer Res., 3-1-2005, 11(5): 1704-1712.
    [83] Harashima, K., Akimoto, T., Nonaka, T., Tsuzuki, K., Mitsuhashi, N., and Nakano, T. Heat shock protein 90 (Hsp90) chaperone complex inhibitor, radicicol, potentiated radiation-induced cell killing in a hormone-sensitive prostate cancer cell line through degradation of the androgen receptor [J]. Int.J.Radiat.Biol., 2005, 81(1): 63-76.
    [84] Solit, D. B., Zheng, F. F., Drobnjak, M., Munster, P. N., Higgins, B., Verbel, D., Heller, G, Tong, W, Cordon-Cardo, C, Agus, D. B., Scher, H. I., and Rosen, N. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts [J]. Clin.Cancer Res., 2002, 8(5): 986-993.
    [85] Sugita, S., Kawashima, H., Tanaka, T., Kurisu, T., Sugimura, K., and Nakatani, T. Effect of type I growth factor receptor tyrosine kinase inhibitors on phosphorylation and transactivation activity of the androgen receptor in prostate cancer cells: Ligand-independent activation of the N-terminal domain of the androgen receptor [J]. Oncol.Rep., 2004,11(6): 1273-1279.
    
    [86] Majumder, P. K. and Sellers, W. R. Akt-regulated pathways in prostate cancer [J]. Oncogene, 11-14-2005,24(50): 7465-7474.
    [87] Cheng, J. Q., Ruggeri, B., Klein, W. M., Sonoda, G, Altomare, D. A., Watson, D. K., and Testa, J. R. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA [J]. Proc.Natl.Acad.Sci.U.S.A, 4-16-1996, 93(8): 3636-3641.
    [88] Miwa, W., Yasuda, J., Murakami, Y, Yashima, K., Sugano, K., Sekine, T., Kono, A., Egawa, S., Yamaguchi, K., Hayashizaki, Y, and Sekiya, T. Isolation of DNA sequences amplified at chromosome 19q13.1-q13.2 including the AKT2 locus in human pancreatic cancer [J]. Biochem.Biophys.Res Commun., 8-23-1996, 225(3): 968-974.
    [89] Sun, M., Wang, G, Paciga, J. E., Feldman, R. I., Yuan, Z. Q., Ma, X. L., Shelley, S. A., Jove, R., Tsichlis, P. N., Nicosia, S. V., and Cheng, J. Q. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells [J]. Am.J.Pathol., 2001, 159(2): 431-437.
    [90] Van de, Sande T., Roskams, T., Lerut, E., Joniau, S., Van, Poppel H., Verhoeven, G, and Swinnen, J. V. High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB [J]. J.Pathol., 2005, 206(2): 214-219.
    [91] Liao, Y., Grobholz, R., Abel, U., Trojan, L., Michel, M. S., Angel, P., and Mayer, D. Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer [J]. Int.J.Cancer, 11-20-2003, 107(4): 676-680.
    [92] Wolk, A., Mantzoros, C. S., Andersson, S. O., Bergstrom, R., Signorello, L. B., Lagiou, P., Adami, H. O., and Trichopoulos, D. Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study [J]. J.Natl.Cancer Inst., 6-17-1998, 90(12): 911-915.
    [93] Broderick, D. K., Di, C, Parrett, T. J., Samuels, Y. R., Cummins, J. M., McLendon, R. E., Fults, D. W., Velculescu, V. E., Bigner, D. D., and Yan, H. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas [J]. Cancer Res, 8-1-2004, 64(15): 5048-5050.
    [94] Bachman, K. E., Argani, P., Samuels, Y, Silliman, N., Ptak, J., Szabo, S., Konishi, H., Karakas, B., Blair, B. G, Lin, C, Peters, B. A., Velculescu, V. E., and Park, B. H. The PIK3CA gene is mutated with high frequency in human breast cancers [J]. Cancer Biol.Ther., 2004, 3(8): 772-775.
    [95] Lin, H. K., Yeh, S., Kang, H. Y, and Chang, C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor [J]. Proc.Natl.Acad.Sci.U.S.A, 6-19-2001, 98(13): 7200-7205.
    
    [96] Sun, M., Yang, L., Feldman, R. I., Sun, X. M., Bhalla, K. N., Jove, R., Nicosia, S. V, and Cheng, J. Q. Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85alpha, androgen receptor, and Src [J]. J.Biol.Chem., 30-31-2003, 278(44): 42992-43000.
    [97] Yang, L., Wang, L., Lin, H. K., Kan, P. Y, Xie, S., Tsai, M. Y, Wang, P. H., Chen, Y. T, and Chang, C. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells [J]. Biochem.Biophys.Res.Commun., 6-6-2003, 305(3): 462-469.
    [98] Lee, S. O., Lou, W., Hou, M., Onate, S. A., and Gao, A. C. Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway [J]. Oncogene, 9-11-2003, 22(39): 7981-7988.
    [99] Salas, T. R., Kim, J., Vakar-Lopez, F., Sabichi, A. L., Troncoso, P., Jenster, G, Kikuchi, A., Chen, S. Y., Shemshedini, L., Suraokar, M., Logothetis, C. J., DiGiovanni, J., Lippman, S. M., and Menter, D. G Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity [J]. J.Biol.Chem., 4-30-2004,279(18): 19191-19200.
    [100] Frame, S. and Cohen, P. GSK3 takes centre stage more than 20 years after its discovery [J]. Biochem.J., 10-1-2001, 359(Pt 1): 1-16.
    [101] Salas, T. R., Reddy, S. A., Clifford, J. L., Davis, R. J., Kikuchi, A., Lippman, S. M., and Menter, D. G. Alleviating the suppression of glycogen synthase kinase-3beta by Akt leads to the phosphorylation of cAMP-response element-binding protein and its transactivation in intact cell nuclei [J]. J.Biol.Chem., 10-17-2003, 278(42): 41338-41346.
    [102] Wang, L., Lin, H. K., Hu, Y. C, Xie, S., Yang, L., and Chang, C. Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells [J]. J.Biol.Chem., 7-30-2004, 279(31): 32444-32452.
    [103] Mazor, M., Kawano, Y, Zhu, H., Waxman, J., and Kypta, R. M. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth [J]. Oncogene, 10-14-2004, 23(47): 7882-7892.
    [104] Sterner, D. E. and Berger, S. L. Acetylation of histones and transcription-related factors [J]. Microbiol.Mol.Biol.Rev., 2000, 64(2): 435-459.
    [105] Fu, M., Wang, C, Zhang, X., and Pestell, R. G. Acetylation of nuclear receptors in cellular growth and apoptosis [J]. Biochem.Pharmacol., 9-15-2004, 68(6): 1199-1208.
    
    [106] Fu, M., Wang, C, Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., Ogryzko, V., Avantaggiati, M. L., and Pestell, R. G p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation [J]. J.Biol.Chem., 7-7-2000, 275(27): 20853-20860.
    [107] Fronsdal, K., Engedal, N., Slagsvold, T., and Saatcioglu, F. CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1 [J]. J.Biol.Chem., 11-27-1998,273(48): 31853-31859.
    [108] Gaughan, L., Logan, I. R., Cook, S., Neal, D. E., and Robson, C. N. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor [J]. J.Biol.Chem., 7-19-2002, 277(29): 25904-25913.
    [109] Fu, M., Rao, M., Wang, C, Sakamaki, T., Wang, J., Di, Vizio D., Zhang, X., Albanese, C., Balk, S., Chang, C, Fan, S., Rosen, E., Palvimo, J. J., Janne, O. A., Muratoglu, S., Avantaggiati, M. L., and Pestell, R. G Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth [J]. Mol.Cell Biol., 2003, 23(23): 8563-8575.
    [110] Kalkhoven, E. CBP and p300: HATs for different occasions [J]. Biochem.Pharmacol., 9-15-2004,68(6): 1145-1155.
    [111] Aarnisalo, P., Palvimo, J. J., and Janne, O. A. CREB-binding protein in androgen receptor-mediated signaling [J]. Proc.Natl.Acad.Sci.U.S.A, 3-3-1998, 95(5): 2122-2127.
    [112] Tilley, W. D., Buchanan, G, Hickey, T. E., and Bentel, J. M. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence [J]. Clin.Cancer Res., 1996, 2(2): 277-285.
    [113] Thomas, M., Dadgar, N., Aphale, A., Harrell, J. M., Kunkel, R., Pratt, W. B., and Lieberman, A. P. Androgen receptor acetylation site mutations cause trafficking defects, misfolding, and aggregation similar to expanded glutamine tracts [J]. J.Biol.Chem., 2-27-2004, 279(9): 8389-8395.
    [114] Fu, M., Wang, C, Wang, J., Zhang, X., Sakamaki, T., Yeung, Y. G, Chang, C, Hopp, T., Fuqua, S. A., Jaffray, E., Hay, R. T., Palvimo, J. J., Janne, O. A., and Pestell, R. G Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function [J]. Mol.Cell Biol., 2002, 22(10): 3373-3388.
    [115] Fu, M., Rao, M., Wu, K., Wang, C., Zhang, X., Hessien, M., Yeung, Y. G, Gioeli, D., Weber, M. J., and Pestell, R. G. The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity [J]. J.Biol.Chem., 7-9-2004, 279(28): 29436-29449.
    [116] Pickart, C. M. Mechanisms underlying ubiquitination [J]. Annu.Rev.Biochem., 2001, 70(503-533.
    [117] Joazeiro, C. A. and Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity [J]. Cell, 9-1-2000,102(5): 549-552.
    [118] Sheflin, L., Keegan, B., Zhang, W, and Spaulding, S. W. Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels [J]. Biochem.Biophys.Res.Commun., 9-16-2000, 276(1): 144-150.
    [119] Syms, A. J., Norris, J. S., Panko, W. B., and Smith, R. G Mechanism of androgen-receptor augmentation. Analysis of receptor synthesis and degradation by the density-shift technique [J]. J.Biol.Chem., 1-10-1985, 260(1): 455-461.
    [120] Fujimoto, J., Nishigaki, M., Hori, M., Ichigo, S., Morishita, S., and Tamaya, T. Effects of Estradiol and Testosterone on the Synthesis, Expression and Degradation of Androgen Receptor in Human Uterine Endometrial Fibroblasts [J]. J.Biomed.Sci., 1995,2(2): 160-165.
    [121] Woodham, C., Birch, L., and Prins, G. S. Neonatal estrogen down-regulates prostatic androgen receptor through a proteosome-mediated protein degradation pathway [J]. Endocrinology, 2003,144(11): 4841-4850.
    [122] Veldscholte, J., Berrevoets, C. A., Zegers, N. D., van der Kwast, T. H., Grootegoed, J. A., and Mulder, E. Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors [J]. Biochemistry, 8-18-1992, 31(32): 7422-7430.
    [123] Marivoet, S., Van, Dijck P., Verhoeven, G, and Heyns, W. Interaction of the 90-kDa heat shock protein with native and in vitro translated androgen receptor and receptor fragments [J]. Mol.Cell Endocrinol., 1992, 88(1-3): 165-174.
    [124] Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., Kusakabe, M, Yoshiki, A., Kobayashi, Y., Doyu, M., and Sobue, G. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein [J]. J.Neurosci., 3-15-2003, 23(6): 2203-2211.
    [125] Cha, T. L., Qiu, L., Chen, C. T., Wen, Y, and Hung, M. C. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth [J]. Cancer Res., 3-15-2005, 65(6): 2287-2295.
    [126] Walcott, J. L. and Merry, D. E. Trinucleotide repeat disease. The androgen receptor in spinal and bulbar muscular atrophy [J]. Vitam.Horm., 2002, 65(127-147.
    [127] Cullen, D. A., Leigh, P. N., and Gallo, J. M. Degradation properties of polyglutamine-expanded human androgen receptor in transfected cells [J]. Neurosci.Lett, 3-11-2004, 357(3): 175-178.
    [128] Mandrusiak, L. M., Beitel, L. K., Wang, X., Scanlon, T. C, Chevalier-Larsen, E., Merry, D. E., and Trifiro, M. A. Transglutaminase potentiates ligand-dependent proteasome dysfunction induced by polyglutamine-expanded androgen receptor [J]. Hum.Mol.Genet., 7-1-2003, 12(13): 1497-1506.
    [129] Brooks, C. L. and Gu, W. p53 ubiquitination: Mdm2 and beyond [J]. Mol.Cell, 2-3-2006, 21(3): 307-315.
    [130] Mayo, L. D. and Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus [J]. Proc.Natl.Acad.Sci.U.S.A, 9-25-2001, 98(20): 11598-11603.
    [131] Zhou, B. P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M. C. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation [J]. Nat.Cell Biol., 2001, 3(11): 973-982.
    [132] Lin, H. K., Wang, L., Hu, Y. C, Altuwaijri, S., and Chang, C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase [J]. EMBO J., 8-1-2002,21(15): 4037-4048.
    [133] Yang, X., Chen, M. W., Terry, S., Vacherot, F., Bemis, D. L., Capodice, J., Kitajewski, J., de la, Taille A., Benson, M. C, Guo, Y, and Buttyan, R. Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells [J]. Oncogene, 2-13-2006,
    [134] Gaughan, L., Logan, I. R., Neal, D. E., and Robson, C. N. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation [J]. Nucleic Acids Res., 2005, 33(1): 13-26.
    [135] Murata, S., Chiba, T., and Tanaka, K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones [J]. Int.J.Biochem.Cell Biol., 2003, 35(5): 572-578.
    [136] Murata, S., Chiba, T., and Tanaka, K. CHIP: a quality-control E3 ligase collaborating with molecular chaperones [J]. Int.J.Biochem.Cell Biol., 2003, 35(5): 572-578.
    [137] Baer, R. and Ludwig, T. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity [J]. Curr.Opin.Genet.Dev., 2002, 12(1): 86-91.
    [138] Rebbeck, T. R., Kantoff, P. W., Krithivas, K., Neuhausen, S., Blackwood, M. A., Godwin, A. K., Daly, M. B., Narod, S. A., Garber, J. E., Lynch, H. T., Weber, B. L., and Brown, M. Modification of BRCA1 -associated breast cancer risk by the polymorphic androgen-receptor CAG repeat [J]. Am.J.Hum.Genet., 1999, 64(5): 1371-1377.
    [139] Kadouri, L., Easton, D. F., Edwards, S., Hubert, A., Kote-Jarai, Z., Glaser, B., Durocher, R, Abeliovich, D., Peretz, T., and Eeles, R. A. CAG and GGC repeat polymorphisms in the androgen receptor gene and breast cancer susceptibility in BRCA1/2 carriers and non-carriers [J]. Br.J.Cancer, 7-6-2001, 85(1): 36-40.
    [140] Spurdle, A. B., Antoniou, A. C, Duffy, D. L., Pandeya, N., Kelemen, L., Chen, X., Peock, S., Cook, M. R., Smith, P. L., Purdie, D. M., Newman, B., Dite, G. S., Apicella, C, Southey, M. C, Giles, G. G, Hopper, J. L., Chenevix-Trench, G, and Easton, D. F. The androgen receptor CAG repeat polymorphism and modification of breast cancer risk in BRCA1 and BRCA2 mutation carriers [J]. Breast Cancer Res., 2005, 7(2): R176-R183.
    [141] Dagan, E., Friedman, E., Paperna, T., Carmi, N., and Gershoni-Baruch, R. Androgen receptor CAG repeat length in Jewish Israeli women who are BRCA1/2 mutation carriers: association with breast/ovarian cancer phenotype [J]. Eur.J.Hum.Genet., 2002, 10(11): 724-728.
    [142] Zhang, H., Somasundaram, K., Peng, Y., Tian, H., Zhang, H., Bi, D., Weber, B. L., and El-Deiry, W. S. BRCA1 physically associates with p53 and stimulates its transcriptional activity [J]. Oncogene, 4-2-1998, 16(13): 1713-1721.
    [143] Yeh, S., Hu, Y. C, Rahman, M., Lin, H. K., Hsu, C. L., Ting, H. J., Kang, H. Y, and Chang, C. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells [J]. Proc.Natl.Acad.Sci.U.S.A, 10-10-2000,97(21): 11256-11261.
    [144] Hakli, M., Lorick, K. L., Weissman, A. M., Janne, O. A., and Palvimo, J. J. Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity [J]. FEBS Lett., 2-27-2004, 560(1-3): 56-62.
    [145] Moilanen, A. M., Poukka, H., Karvonen, U., Hakli, M., Janne, O. A., and Palvimo, J. J. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription [J]. Mol.Cell Biol., 1998, 18(9): 5128-5139.
    [146] Poukka, H., Aarnisalo, P., Santti, H., Janne, O. A., and Palvimo, J. J. Coregulator small nuclear RING finger protein (SNURF) enhances Sp1- and steroid receptor-mediated transcription by different mechanisms [J]. J.Biol.Chem., 1-7-2000, 275(1): 571-579.
    [147] Poukka, H., Karvonen, U., Yoshikawa, N., Tanaka, H., Palvimo, J. J., and Janne, O. A. The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor [J]. J.Cell Sci., 2000, 113 (Pt 17)(2991-3001.
    [148] Beitel, L. K., Elhaji, Y. A., Lumbroso, R., Wing, S. S., Panet-Raymond, V., Gottlieb, B., Pinsky, L., and Trifiro, M. A. Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity [J]. J.Mol.Endocrinol., 2002, 29(1): 41-60.
    [149] Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? [J]. Genes Dev., 9-1-2004, 18(17): 2046-2059.
    [150] Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., and Owerbach, D. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus [J]. J.Biol.Chem., 6-25-2004, 279(26): 27233-27238.
    [151] Owerbach, D., McKay, E. M., Yeh, E. T., Gabbay, K. H., and Bohren, K. M. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation [J]. Biochem.Biophys.Res Commun., 11-18-2005, 337(2): 517-520.
    [152] Poukka, H., Karvonen, U., Janne, O. A., and Palvimo, J. J. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1) [J]. Proc.Natl.Acad.Sci.U.S.A, 12-19-2000,97(26): 14145-14150.
    [153] Zheng, Z., Cai, C, Omwancha, J., Chen, S. Y, Baslan, T., and Shemshedini, L. SUMO-3 Enhances Androgen Receptor Transcriptional Activity through a Sumoylation-independent Mechanism in Prostate Cancer Cells [J]. J.Biol.Chem., 2-17-2006, 281(7): 4002-4012.
    [154] Yang, S. H. and Sharrocks, A. D. SUMO promotes HDAC-mediated transcriptional repression [J]. Mol.Cell, 2-27-2004, 13(4): 611-617.
    [155] Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D., and Hay, R. T. P300 transcriptional repression is mediated by SUMO modification [J]. Mol.Cell, 2003, 11(4): 1043-1054.
    [156] Shiio, Y. and Eisenman, R. N. Histone sumoylation is associated with transcriptional repression [J]. Proc.NatLAcad.Sci.U.S.A, 11-11-2003, 100(23): 13225-13230.
    [157] Dohmen, R. J. SUMO protein modification [J]. Biochim.Biophys.Acta, 11 -29-2004, 1695(1-3): 113-131.
    [158] Poukka, H., Aarnisalo, P., Karvonen, U., Palvimo, J. J., and Janne, O. A. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription [J]. J.Biol.Chem., 7-2-1999, 274(27): 19441-19446.
    
    [159] Callewaert, L., Verrijdt, G., Haelens, A., and Claessens, F. Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements [J]. Mol.Endocrinol., 2004, 18(6): 1438-1449.
    [160] Wormald, S. and Hilton, D. J. Inhibitors of cytokine signal transduction [J]. J.Biol.Chem., 1-9-2004, 279(2): 821-824.
    [161] Ungureanu, D., Vanhatupa, S., Kotaja, N., Yang, J., Aittomaki, S., Janne, O. A., Palvimo, J. J., and Silvennoinen, O. PIAS proteins promote SUMO-1 conjugation to STAT1 [J]. Blood, 11-1-2003, 102(9): 3311-3313.
    [162] Rogers, R. S., Horvath, C. M., and Matunis, M. J. SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation [J]. J.Biol.Chem., 8-8-2003, 278(32): 30091-30097.
    [163] Imoto, S., Sugiyama, K., Muromoto, R., Sato, N., Yamamoto, T., and Matsuda, T. Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3 [J]. J.Biol.Chem., 9-5-2003, 278(36): 34253-34258.
    [164] Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., and Grosschedl, R. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies [J]. Genes Dev., 12-1-2001, 15(23): 3088-3103.
    [165] Nishida, T. and Yasuda, H. PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription [J]. J.Biol.Chem., 11-1-2002, 277(44): 41311-41317.
    [166] Gross, M., Yang, R., Top, I., Gasper, C, and Shuai, K. PIASy-mediated repression of the androgen receptor is independent of sumoylation [J]. Oncogene, 4-15-2004, 23(17): 3059-3066.
    [167] Lin, D. Y, Fang, H. I., Ma, A. H., Huang, Y. S., Pu, Y. S., Jenster, G, Kung, H. J., and Shih, H. M. Negative modulation of androgen receptor transcriptional activity by Daxx [J]. Mol.Cell Biol., 2004, 24(24): 10529-10541.
    [168] Sharma, M., Li, X., Wang, Y, Zarnegar, M., Huang, C. Y, Palvimo, J. J., Lim, B., and Sun, Z. hZimp 10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci [J]. EMBO J., 11-17-2003, 22(22): 6101-6114.
    [169] Haltiwanger, R. S. and Stanley, P. Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase [J]. Biochim.Biophys.Acta, 12-19-2002, 1573(3): 328-335.
    [170] McCann, J. P., Mayes, J. S., Hendricks, G. R., Harjo, J. B., and Watson, G. H. Subcellular distribution and glycosylation pattern of androgen receptor from sheep omental adipose tissue [J]. J.Endocrinol., 2001, 169(3): 587-593.
    [171] Tammela, T. Endocrine treatment of prostate cancer [J]. J.Steroid Biochem.Mol.Biol., 2004, 92(4): 287-295.
    [172] Takahashi, H., Furusato, M., Allsbrook, W. C, Jr., Nishii, H., Wakui, S., Barrett, J. C, and Boyd, J. Prevalence of androgen receptor gene mutations in latent prostatic carcinomas from Japanese men [J]. Cancer Res., 4-15-1995, 55(8): 1621-1624.
    
    [173] Thompson, J., Hyytinen, E. R., Haapala, K., Rantala, I., Helin, H. J., Janne, O. A., Palvimo, J. J., and Koivisto, P. A. Androgen receptor mutations in high-grade prostate cancer before hormonal therapy [J]. Lab Invest, 2003, 83(12): 1709-1713.
    
    [174] Taplin, M. E., Rajeshkumar, B., Halabi, S., Werner, C. P., Woda, B. A., Picus, J., Stadler, W., Hayes, D. F., Kantoff, P. W., Vogelzang, N. J., and Small, E. J. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663 [J]. J.Clin.Oncol., 7-15-2003, 21(14): 2673-2678.
    
    [175] Heinlein, C. A. and Chang, C. Androgen receptor in prostate cancer [J]. Endocr.Rev., 2004, 25(2): 276-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700