粗山羊草HMW谷蛋白新亚基编码基因的分离表达及其遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦近缘种——粗山羊草(Aegilops tauschii,2n=2x=14,D~tD~t)是普通小麦D基因组供体,存在广泛的高分子量谷蛋白亚基(HMW-GS)等位变异,是小麦品质改良的重要基因资源。分离克隆这些基因不仅可以为小麦的品质育种提供具有自主知识产权的基因资源、拓展遗传基础,而且有望为研究六倍体小麦的起源和进化提供有用的信息和证据。本研究从粗山羊草中分离鉴定了3个新的HMW-GS基因,并进行了异源表达、系统进化分析、翻译后修饰鉴定以及植物双元表达载体构建和烟草转化,主要结果如下:
     1.粗山羊草HMW谷蛋白新亚基基因的分离与原核表达
     以粗山羊草TD81和TD130为材料,通过SDS-PAGE、HPCE、RP-HPLC和MALDI-TOF-MS鉴定了两对新的Glu-1D HMW谷蛋白亚基组合,分别命名为1Dx5~(*t)+1Dy10.1~t和1Dx5.1~(*t)+1Dy12.1~(*t)。采用AS-PCR方法,分离克隆了1Dx5~(*t)、1Dx5.1~(*t)和1Dy12.1~(*t)亚基的编码基因,分别为2487bp、2532bp和1947bp,编码827、842和648个氨基酸。DNA序列及推导氨基酸序列具有典型的HMW-GS的序列结构特征,而且1Dx5~(*t)亚基重复单元更接近一致序列,相对变异率较低,主要体现在每一重复单元的平均变异数和重复单元发生变异的频率上。1Dx5~(*t)和1Dx5.1~(*t)推导蛋白分子量与质谱测定分子量非常一致,而1Dy12.1~(*t)推导蛋白分子量与质谱测定分子量则相差很大,远远超过误差允许范围。
     设计2对不含信号肽编码区的引物,分别特异扩增基因1Dx5~(*t)、1Dx5.1~(*t)和1Dy12.1~(*t),然后与原核表达载体pET30a相连,三个基因在大肠杆菌BL21(DE3)plysS中均得到了高效表达。SDS-PAGE分析表明,基因1Dx5~(*t)和1Dx5.1~(*t)表达蛋白与种子中相应的谷蛋白亚基迁移率相同,确证所克隆基因确实为所鉴定新亚基的编码基因。但同时发现几个含有1Dx5~(*t)的重组质粒表达出一个迁移率超前的小蛋白,而且N-端测序表明大肠杆菌中表达蛋白与相应种子蛋白氨基酸序列相同。这几个重组质粒的测序结果显示,在大肠杆菌中1Dx5~(*t)基因内发生了180bp的缺失和一个提前终止密码子的突变,由变异了的基因序列推导的蛋白分子量与表达的小蛋白在SDS-PAGE上的迁移率也非常相符。这一结果首次提供了谷蛋白亚基编码基因重组克隆发生变异的直接证据,变异发生的分子机制可能是由于链内不合理重组(illegitimate recombination)的发生,这种机制很可能对谷蛋白亚基基因新的等位变异的产生发挥重要作用。而1Dy12.1~(*t)基因序列原核表达结果则显示表达蛋白较种子内相应亚基SDS-PAGE迁移率稍快。
     2.Glu-1D谷蛋白亚基编码基因系统进化分析
     分别采用Network分析、neighbor-joining tree和同源树构建对Glu-1D-1和Glu-1D-2位点等位变异间的系统进化关系进行分析,结果表明1Dx5~(*t),1Dx2~t,1Dx1.6~t真和1Dx2.2~*均处于源节点,代表比较原始的基因序列,这暗示六倍体小麦至少起源于4个独立的杂交事件。Network、neighbor-joining tree和同源树分析结果相互吻合,表明普通六倍体小麦D基因组是多起源的。结合多起源假说与不合理重组的分子机制,提出了Glu-1D-1位点等位变异可能的产生途径:9个已克隆的Dx亚基基因由1Dx5~(*t),1Dx2~t,1Dx1.6~t和1Dx2.2~*分化而来。特别地,1Dx2.2~*基因可能早先就存在于粗山羊草中(也可能由粗山羊草中一个更原始的基因衍生而来),在某一时期通过某种罕见的远交或异型杂交转移到普通小麦中。由于1Dx2.2~*基因内561bp的长正向重复序列可能发生不合理重组,产生了类似1Dx2基因,该基因在小麦进化过程中通过点突变、非均等交换等事件,进而产生了1Dx2.2基因。
     3.谷蛋白亚基1Dy12.1~(*t)翻译后修饰分析
     鉴于1Dy12.1~(*t)亚基质谱测定分子量与基因推导蛋白分子量的巨大差异和SDS-PAGE的反常电泳现象,采用液质联用技术对其进行了蛋白翻译后修饰的鉴定。理论上1Dy12.1~(*t)亚基含有13个精氨酸和7个赖氨酸,且精氨酸和赖氨酸均不与脯氨酸相连,经Trypsin充分酶解后,应该产生21个不同的肽段,实际鉴定唯一肽段数是12个,蛋白鉴定覆盖率最高19.8%。虽然离国际认可的蛋白覆盖率还有一定差距,但从1Dy12.1~(*t)亚基翻译后修饰位点预测结果看,很多可能性高的修饰位点所在的肽段可能还没有得到很好的鉴定,所以仍不能排除该亚基存在某种程度的翻译后修饰(如糖基化和磷酸化等)的可能。而且我们发现另一材料TD87中较1Dy12.1~(*t)亚基SDS-PAGE迁移率稍快、MALDI-TOF-MS测定分子量相差很大的1Dy亚基,其编码基因序列却与1Dy12.1~(*t)完全相同;又考虑该基因序列原核细胞表达蛋白较种子蛋白1Dy12.1~(*t)亚基迁移率稍快、烟草种子胚乳表达蛋白与1Dy12.1~(*t)亚基迁移率一致、免疫反应性相同的事实,我们认为TD130中1Dy12.1~(*t)亚基存在翻译后修饰的可能性较大,进一步的鉴定还在进行中。
     4.谷蛋白基因植物双元表达载体的构建及其烟草转化
     针对克隆基因DNA序列特点,构建了两种植物双元表达载体pBI121PVP1-Glu和pBINHP-GluT,经一系列中间载体和最终载体的酶切鉴定,证明表达载体的构建完全正确。载体pBINHP-GluT的构建,精心选择经试验验证了其驱动活性的胚乳特异性启动子,选择添加HMW谷蛋白亚基基因和大部分LMW谷蛋白亚基因内部均不含有的XbaⅠ和KpnⅠ内
    切酶位点,并将目的谷蛋白亚基编码基因的调控置于T-DNA区内,从而使这一载体在植物遗传转化中具有很大的优势。根癌农杆菌介导烟草叶盘转化结果表明,1Dy12.1~(*t)基因在烟草种子胚乳中得到成功表达,表达蛋白与TD130相应亚基具有相同的SDS-PAGE迁移率,且HMW-GS多克隆抗体Westhern blotting检测为阳性,不仅证明所克隆1Dy12.1~(*t)亚基编码基因的正确性,而且验证了所构建载体的有效性,为下一步小麦的遗传转化奠定了基础。
The wheat storage proteins, especially the compositions and content of high molecular weight glutenin subunits (HMW-GS) play important roles in the flour processing and bread-making quality. Previous investigations showed that the genetic foundation of hexaploid wheat was limited whereas there were extensive allelic variations of HMW-GS in wheat related species, such as Aegilops tauschii. Therefore, molecular cloning and phylogenetic analysis of novel HMW glutenin subunit genes from wheat related species would not only provide potential elite gene resources for wheat quality improvement, but also offer useful information and evidence for further understanding the origin and evolution of hexaploid wheat. This work included gene cloning, heterogenous expression, post-translational modifications, phologenetic analysis of novel Glu-1 allelles from Aegilops tauschii, plant binary expression vector construction and transformation of tobacco with cloned glutenin subunits genes. The main results obtained were as followings:
    1. Isolation and heterogenous expression of novel HMW glutenin subunit genes in Aegilops tauschii
    Two pairs of novel HMW glutenin subunits in Aegilops tauschii (2n=2x=14, D~tD~t) TD81 and TD130 were identified by SDS-PAGE, RP-HPLC and MALDI-TOF-MS and designated as 1Dx5~(*t) +1Dy10.1~t and 1Dx5.1~(*t) + 1Dy12.1~(*t), respectively. The coding genes of 1Dx5~(*t), 10x5.1~(*t), and 1Dy12.1~(*t) were isolated by AS-PCR and the complete ORFs were obtained. The 1Dx5~(*t) consists of 248lbp encoding a mature protein of 827 residues with the deduced M_r of 85,782Da while 1Dx5.1~(*t) comprises 2526bp encoding 842 residues with 87,663Da, and 1Dyl2.1~(*t) comprises 1947bp encoding 648 residues with 67,347.6Da. The nucleotide acid sequences and deduced amino acid sequences had typical characters of HMW glutenin subunits. The average numbers of variants per repeat unit and the mean frequency of variant units of subunit 1Dx5~(*t) were relatively lower, indicating that its repeat units was closer to the consensus.The deduced M_r~s of mature proteins encoded by 1Dx5~9(*t) and 1Dx5.1~(*t) were consistent with those determined by MALDI-TOF-MS, while the deduced M_r of 1Dy 12.1~(*t) was much lower than that determined by MALDI-TOF-MS. Three novel genes Wx5~(*t), Wx5.1~(*t) and IDy 12.1~(*t) had been submitted to GenBank with accession numbers DQ681076, DQ681077 and DQ681079. Two pairs of differential primers were designed containing no signal encoding domain to amplify Wx5(*t), Wx5.1~(*t) and 1Dy 12.1~(*') genes, the PCR products were cloned into the bacterial expression vector pET30a and the hybrid vectors were transformed into E. coli strain BL21 (DE3)
    pLysS. Expression of the two novel ORFs of 1Dx5~(*t) and 1Dx5.1~(*t) and N-terminal sequencing confirmed the authenticities of the two novel genes. Interestingly, several hybrid clones of 1Dx5~(*') gene expressed an ilk smaller protein relative to the authentic subunit present in seed proteins, which was confirmed to resulted from a long deletion of 180bp through illegitimate recombination as well as a in-frame stop codon formation. The derived molecular weight of the small protein was well consistent with the result of SDS-PAGE analysis. Our investigations provided the direct evidence for variable recombinant clones and brought out the possible mechanism of illegitimate recombination for this variation, which may provide useful information for further insights into glutenin gene variations and their evolutionary direction. It was interesting that the expressed protein of 1DyH.1~(*t) gene ORP moved slightly faster than lDy12.1~(*t) subunit from TD130 on SDS-PAGE.
    2. Phylogenetic analysis of Glu-1D allelles
    The network, neighbor-joining tree and homological free were constructed to analyse the phylogenetic evolution of Glu-1D alleles. The results demonstrated that the 1Dx5~(*t), 1Dx2~t, 1Dx1.6~t and 1Dx2.2~* represent a root within a network and correspond to the common ancestors of the other Glu-D-1-1 alleles in the associated star-like phylogeny. The results of network, neighbor-joining tree and homological tree analysis happened to have the same view, which suggested that there were more than one independent origins of hexaploid wheats. A possibly evolutionary way of Glu-D-1-1 alleles could be drawn from our analysises: the 1Dx2.2~* , deriving from a more primitive gene, was present in Ae. tauschii, and then transferred by rare outcrossing into common wheat. A mutational event, probably by illegitimate recombination, resulted in a large DNA fragment loss of 1Dx2.2~* and the generation of 1Dx2 gene. In certain recent evolutionary time of common wheat, a large fragment duplication in the repetitive domain of 1Dx2, presumably resulting from unequal crossing over as well as illegitimate recombination, was responsible for generating the 1Dx2.2 gene.
    3. Identification of post-translational modifications (PTMs) of 1Dy12.1~(*t) subunit
    Because of the evident difference between the deduced M_rs and that determined by MALDI-TOF-MS and the anomalous electrophoretic behavior on SDS-PAGE, the reversed-phase high-performance liquid chromatography following by electrospray ionization mass spectrometry (RP-HPLC/ESI-MS) were performed to explore the post-translational modifications in 1Dy12.1~(*t) subunit. In theory, 1Dy12.1~(*t) subunit contained 13 Arg and 7 Lys
    residues, and absence of Arg-Pro bonds, thus the production of 21 tryptic peptides was expected. The ESI-MS analysis of 1Dy12.1~(*t) tryptic digest resulted in the identification of 12 incomplete unique peptides, which was less than 50% of that in theory. Although the results gave the highest sequence coverage of 19.8%, less than the accepted coverage, the certain post-translational modifications such as glycosylation and phosphorylations can not be ruled out. Moreover, the 1Dy subunit of another accession TD87, which moved slightly faster on SDS-PAGE and had a largely smaller M_rs determined by MALDI-TOF-MS than 1Dy12.1~(*t) subunit, had the absolutely same encoding sequeces as 1Dy 12.1~(*t) gene. We also found that although the expressed protein of 1D12.1~(*t) gene ORF in E coli moved slightly faster than 1Dy12.1~(*t) subunit from TD130, the expressed protein of the gene in tobacco endosperm had the same mobility and immunity as 1Dy12.1~(*t) subunit from TD130. So we speculated that certain post-translational modifications were most possibly exsisted in 1Dy12.1~(*t) subunit of TD130.
    4. Construction of plant binary expression vector containing glutenin subunit genes and transformation of tobacco
    Two kinds of plant binary expression vectors pBI121PVP1-Glu and pBINHP-GluT were constructed based on analysis of nucleotide acid sequences character. A series of identification of midterm and final vectors by suitable different restriction enzymes showed that the vectors construction was absolutely successful and correct. Especially the vector pBINHP-GluT, which placed the target gene under the regulation of the verified endosperm-specific promoter, which appended the restriction sites XbaI and KpnI beside 5' and 3' of the target glutenin subunit gene, the XbaI and KpnI sites have not been found in all published HMW-GS genes and most LMW-GS genes, furthermore, which placed the all operation domains between the left and right borders of T-DNA, had great predominance in plant transformation. The results of transformation of tobacco lamina mediated by Agrobacterium tumefaciens showed that in the endosperm of tobacco gene 1Dy 12.1~(*t) expressed a protein which had similar mobility with 1Dy12.1~(*t) subunit extracted from TD130, furthermore, westhern blotting showed that the expressed protein and extracted 1Dy12.1~(*t) subunit from TD130 all strongly hybridize with the multiclonal antibodies against HMW glutenin subunits, which confirmed the authenticities of the novel gene 1Dy 12.1~(*t) and the validity of the plant binary expression vector.
引文
安学丽(2006)小麦近缘种谷蛋白新亚基鉴定与编码基因克隆及其分子进化分析.首都师范大学博士学位论文.
    陈梁鸿,王新望,张晓东(1999)小麦编码高分子量谷蛋白亚基基因的转化.作物学报 25:437-440.
    段淑娥,赵文明.(2004)小麦谷蛋白亚基的快速提取分离及SDS-PAGE分析.陕西师范大学学报(自然科学版) 32:77-79.
    郝春燕.(2005)小麦种子贮藏蛋白鉴定及醇溶蛋白编码基因的分子克隆.首都师范大学硕士学位论文.
    霍清涛,吕德彬.(1996)小麦主要品质性状的遗传模型研究.华北农学报 11:8-14.
    李永民.(2002)生物质谱:分析测试技术与仪器 8:131-135.
    李志新(2007)小麦近缘种新型高分子量麦谷蛋白亚基基因的分离鉴定及小麦转基因研究 中国科学院研究生院博士学位论文.
    梁静静,吕德彬,陈军营,许海霞,程西永,刘亚飞(2004)小麦5+10亚基基因转化研究.麦类作物学报 24:5-8.
    刘丽,何中虎,于亚雄,杨金华,程耿,胡银星(2003)小麦谷蛋白研究进展.西南农业学报 16:54-61.
    马传喜,吴兆苏(1995)小麦染色体1A和1B控制的一些谷蛋白亚基对烘烤品质的影响.南京农业大学学报 18:7-10.
    毛沛(1995)小麦遗传资源HMW麦醇溶蛋白亚基组成及其与面包烘烤品质关系的研究.中国农业科学 28(增刊):22-27.
    姜怡(2003)面包小麦及其近缘种HMW谷蛋白亚基鉴定及其编码基因的分子克隆 硕士学位论文.
    宋建民,吴祥云,刘建军,刘爱峰,赵振东,刘广田(2003)小麦品质的麦谷蛋白亚基评定标准研究.作物学报 29:829-834.
    孙霞,吴秀菊,胡尚连,李文雄(2005)氮肥形态对不同HMW-GS类型春小麦高分子量谷蛋白聚合体积累的效应.作物学报 31:463-468.
    王关林,方宏筠(1998)植物基因工种原理与技术.科学出版社 598-599.
    王京兰,前小红(2005)磷酸化蛋白质分析技术在蛋白质组研究中的应用 分析化学评述与进展 33:1029-1035.
    解瑞立,万永芳,张彦,王道文(2000)多倍体山羊草物种中高分子量麦谷蛋白的组成与其编码基因的分子克隆.科学通报 45:1867-1874.
    徐涛(2006)小麦(Triticum aestivum L.)高分量麦谷蛋白1By15和1Dx1.5t基因高效表达载体的构建及转化研究.中国农业科学院博士学位论文.
    许自成,段国新(1998)对小麦不同HMW麦谷蛋白亚基评分系统的评价.粮食储藏 1:76-82.
    杨何义,应万涛,钱小红(2002)蛋白质技术的研究进展.自然科学进展 12:13-17.
    杨文杰,舒焕麟,颜泽洪,刘登才,周永红(2005)表达7个高分量谷蛋白亚基的小麦新种质创制、鉴定及分子细胞学分析 遗传学报 32:1184-1190.
    杨学举(1996)利用高分子量麦谷蛋白电泳技术改良小麦品质.北京农业科学 14:11-14.
    余建中(2002)小麦醇溶蛋白和高分子量谷蛋白亚基高效毛细管研究.硕士论文.
    张国安,许雪娇,张素艳,樊惠芝(2003)蛋白质组的分离与分析及其应用进展.分析化学 31:611-618.
    张晓东,李冬梅,徐文英,蒋有绎,胡道芬,韩立新(1997)用基因枪将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株.华北农学报 12:133-136.
    张晓东,李冬梅,徐文英,蒋有绎,胡道芬,韩立新(1998)利用基因枪将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株.遗传(增刊) 20:18-23.
    张晓东,梁荣奇,陈绪清,杨凤萍,张立全(2003)优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性和品质性状分析.科学通报 48:474-479.
    赵善楷,钟峰,张晓红(1996)基质辅助激光解析法(MALDI-MS)在生物化学中的应用.质谱学报 17:1-5.
    Albany D, Hammond-Kosack MCU, Smith C, Conlan S, ColotV, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. The Plant Cell. 9:171-184.
    Allaby RG, Banerjee M, Brown TA (1999) Evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of wheat. Genome 42: 296-307.
    Allaby RG, Brown TA (2001) Network analysis provides insights into evolution of 5S rDNA arrays in Triticum and Aegilops. Genetics 157: 1331-1341.
    Alberghina G, Cozzolino R, Fisichella S, Garozzo D, Savarino A (2005) Proteomics of gluten: mapping of the 1Bx7 glutenin subunit in Chinese Spring cultivar by matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom 19: 2069-2074.
    Altenbach SB (1998) Quantification of individual low-molecular-weight glutenin subunit transcripts in developing wheat grains by competitive RT-PCR. Theor Appl Genet 97: 413-421.
    Altenbach SB, Kothari KM, Lieu D (2002) Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. Cereal Chem 79: 279-285.
    Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nature Biotechnol 14: 1155-1159.
    Alvarrez JB, Campos LAC, Martin A, Martin LM (1999) Influence of HMW and LMW glutenin subunits on gluten strength in hexaploid tritordeum. Plant Breeding 118: 456-458.
    Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejios RH (2000) Sliencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100: 319-327.
    Alvarez ML, Gomez M, Carrillo JM, Vallejos RH (2001) Analysis of dough functionality of flours from transgenic wheat. Mol Breed 8: 103-108.
    Altschuler Y, Galili G (1994) Role of conserved cysteines of a wheat gliadin in its transport and assembly into protein bodies in Xenopus oocytes. J Biol Chem 269: 6677-6682.
    An X, Li Q, Yan Y, Xiao Y, Hsam SL, Zeller FJ (2005) Genetic diversity of European spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.) revealed by glutenin subunit variations at the Glu-1 and Glu-3 loci. Euphytica 146: 193-201.
    An X, Zhang Q. Yan Y, Li Q, Zhang Y, Wang A, Pei Y, Tian J, Wang H, Hsam SLK, Zeller FJ (2006) Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkom (Triticum monococcum L.). Theor Appl Genet 113: 383-395.
    Anderson OD, Greene FC (1989) The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor Appl Genet 77: 689-700.
    Anderson OD, Kuhl JC, Tarn A (1996) Constrution and expression of a synthetic wheat storage protein gene. Gene 1741: 51-58.
    Anderson OD, Abraham-Pierce FA, Tarn A (1998) Conservation in wheat high-molecular-weight glutenin gene promoter sequence: comparisons among loci and among alleles of the GLU-B1-1 locus. Theor Appl Genet 96: 568-576.
    Anderson OD, Larka L, Christoffers MJ, Mccue KF, Gustafson JP (2002) Comparison of orthologous and paralogous DNA flanking the whaet high molecular weight glutanin gene: sequence conservation and divergence, transposon distribution, and matrix-attachment regions. Genome 45: 367-380.
    Anderson OD, Rausch C, Moullet O, Lagudah WS (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct Integr Genomics 3: 56-68.
    
    Andrews AC (1964). The genetic origin of spelt and related wheats. Zuchter. 34:17-22.
    Andrews JL, Hay RL, Skerritt JH, Sutton KH (1994) HPLC and immuneoassay-base glutenin subunit analysis: screening for dough properties in wheats grown under different environmental conditions. J Cereal Sci 20: 203-215.
    Appels R, Francki M, Chibbar R (2003) Advances in cereal functional genomics. Functional & Integrative Genomics 3: 1-24.
    Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycoslation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473: 4-8.
    Autran JC, Laignelet B, Morel MH (1987) Characterization and quantification of low molecular weight glutenins in durum wheats. Biochimie 69: 699-711.
    Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high-molecular-weight subunit genes results in improved functional properties. Nat Biotechnol 15: 1295-1299.
    Barro F, Barcelo P, Lazzeri PA, Shewry PR, Ballesteros J, Martin A (2003) Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes. Mol Breed 12: 223-229.
    Bartels D. (1985) Synthesis of a wheat storage protein subunit in E. coli using novel expression vector. Gene 35:159-167.
    Bartels D, Thompson RD (1986) Synthesis of mRNAs coding for abundant endosperm proteins during wheat grain development. Plant Sci 46: 117-125.
    Bean SR, Lookhart GL (1997) Separation of Wheat Proteins by Two-Dimentional Reversed-Phase High-Performance Liquid Chromatography Plus Free Zone Capillary Electrophoresis. Cereal Chem 74: 758-765.
    Bean SR, Bietz JA, Lookhart GL (1998a) High-performance capillary electrophoresis of cereal proteins. J Chromatogr A 814: 25-41.
    Bean SR, Lookhart GL (1998b) Faster capillary electrophoresis separation of wheat proteins through modifications to buffer composition and sample handling. Electrophoresis 19: 3190-3198.
    Beckwith AC, Nielsen HC, Wall JS, Huebner FR (1966) Isolation and characterisation of a high-molecular-weight protein from wheat gliadin. Cereal Chem 43: 14-28.
    Bekes,F, AndersonOD, GrasPW, Gupta RB, Tarn A,Wrigley CW, Appels R (1994) The contribution to mixing properties of 1D glutenin subunits expressed in a bacterial system. In: Henry,R.,Ronalds,J.(Eds.), Improvement of Cereal Quality by Genetic Engineering. PlenumPress, NewYork, USA, pp.97-104.
    Belton PS, Gil AM, Tatham AS (1994) H NMR Relaxa-tion Times Studies of the Hydration of the Barley Protein C-hordein J. Chem. Soc. Faraday Trans 90: 1099.
    Belton PS, Colquhoun IJ, Field JM, Grant A, Shewry PR, Tatham AS, Wellner N (1995) FTIR and NMR Studies on the Hydration of a High Mr Subunit of Glutenin. Int J Biol Macromol 17: 74.
    Belton PS, Gil AM, Grant A, Alberti E, Tatham AS (1998) Proton and Carbon NMR Measurements of the Effects of Hydration on the Wheat Protein Omega Gliadin. Spec-trochim ActaA. 54: 955-966.
    
    Belton PS (1999) On the Elasticity of Wheat Gluten. J Cereal Sci 29: 103-107.
    
    Bietz JA, Wall JS (1972) Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chem 49: 416-430.
    Bietz JA, Wall JS (1973) Isolation and characterization of gliadin-like subunits from glutenins. Cereal Chem 50: 537-547.
    Bietz JA, Shepherd KW, Wall JS (1975) Single-kernel analysis of glutenin: Use in wheat genetics and breeding. Cereal Chem 52:513-532.
    Bietz JA, Wall JS (1980) Identity of high molecular weight gliadin and ethanol-soluble glutenin subunits of wheat: Relation to gluten structure. Cereal Chem 57: 415-421.
    Bietz JA (1983) Separation of cereal proteins by reversed-phase high-performance liquid chromatography. J Chromatogr 255: 219-238.
    Bietz JA (1993) Fractionation of wheat gluten proteins by capillary electrophoresis. Gluten Proteins: 404-413.
    Bietz JA, Schmalzried E (1992) Capillary electrophoresis of wheat proteins: optimization and use for varietal identification. Cereal Foods World 37: 555-560.
    Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends in Biotechnol 17: 121-127.
    Blake NK, Lehfeldt BR, Laven M, Talbert LE (1999) Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: The B genome of wheat. Genome 42:351-360.
    Blatter RHE, Jacomet S, Schlumbaum A (2004) About the origin of European spelt (Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes. Theor Appl Genet 108:360-367.
    Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875-879.
    Boggni G, Pogna NE (1989) The breadmaking quality and storage protein composition of Italian durum wheat. J Cereal Sci 9: 131-138.
    Branlard G, Dardevet M (1985) Diversity of grain protein andbread wheat quality. II. Correlation between high molecular subunits of glutenin and flour quality characteristics. J Cereal Sci 3: 345-354.
    Branlard G, Autran JC, and Monneveux P (1989) High molecular weight glutenin subunits in durum wheat (Triticum durum). Theor Appl Genet 78: 353-358.
    Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J (2001) Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 119: 59-67.
    Brett GM, Mills ENS, Tatham AS, Fido RJ, Shewry PR (1993) Immunchemical identification of LMW subunits of glutenin associated with bread-making quality of wheat flours. Theor Appl Genet 84: 442-448.
    Brites C, Carrillo MJ (2001) Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chem 78: 59-63.
    Brown JWS, Law CN, Worland AJ, Flavell RB (1981) Genetic variation in wheat endosperm proteins: an analysis by two-dimensional electrophoresis using intervarietal chromosomal substitution lines. Theor Appl Genet 59: 361-371.
    Brown JWS, Flavell RB (1981) Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis. Theor Appl Genet 59: 349-359.
    Buonocore F, Bertini L, Ronchi C, Bekes F, Caporale C, Lafiandra D, Gras P, Tatham AS, Greenfield J, Halford NG, Shewry PR (1998). Expression and functional analysis of Mr 58,000 peptides derived from the repetitive domain of HMW subunit 1Dx5. J Cereal Sci 27: 209-215.
    Bustos AD, Rubio P, Jouve N (2000) Molecular characterisation of the inactive allele of the gene Glu-A1 and the developement of a set of AS-PCR markers for HMW glutenins of wheat. Theor Appl Genet 100: 1085-1094.
    Butow BJ, Ma W, Gale KR, Cornish GB, Rampling L, Larroque O, Morell MK Bekes F (2003) Molecular Discrimination of Bx7 alleles demonstrates that a highly erpressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theor Appl Genet 107: 1524-1532.
    Butow BJ, Gale KR, Ikea J, Juhasz A, Bedo Z, Tarns L, Gianibelli MC (2004) Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1 al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet 109: 1525-1535.
    Caballero L, Martin LM, Alvarez JB (2004) Genetic Variability of the low-molecular- weight glutenin subunits in spelt wheat (Triticum aestivum ssp. spelta L. em Thell.). Theor Appl Genet 108: 914-919.
    Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploidy wheat and their D-genome ancestor. Genetics 167: 941-947.
    Carceller JL, Aussenac T (1999) Accumulation and changes in molecular size distribution of polymeric proteins in developing grains of hexaploid wheats: role of the desiccation phase 1. Aust J Plant Physiol 26: 301-310.
    Cassidy BG, Dvorak J (1991) Molecular characterization of a low-molecular-weight glutenin cDNA clone from Triticum durum. Theor Appl Genet 81: 653-660.
    Cassidy BG, Dvorak J, Anderson OD (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet 96: 743-750.
    Cheng M, Joyce E, Fry (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115: 971-980.
    Ciaffi M, Benedettelli S, Giorgi B, Porceddu E, Lafiandra D (1991) Seed storage proteins of Triticum turgidum ssp. dicoccoides and their effect on the technological quality of durum wheat. Plant Breed 107: 309-319.
    Ciaffi M, Lafiandra D, Porceddu E, Benedettelli S (1993) Storage protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theor Appl Genet 86: 474-480.
    Ciaffi M, Margiotta B, Colaprico G, De Stefanis E, Sgrulletta D, Lafiandra D (1995) Effect of high temperatures during grain filling on the amount of insoluble proteins in durum wheat. J Genet Breed 49: 285-296.
    Ciaffi M, Lee YK, Tamas L, Gupta R, Skerritt J, Appels R (1999) The low-molecular- weight glutenin subunit proteins of primitive wheats. III. The genes from D-genome species. Theor Appl Genet 98: 135-148.
    Clarke BC, Hobbs M, Skylas D, Appels R (2000) Genes active in developing wheat endosperm. CSIRO Plant Industry, Canberra, Australia. Functional and Integrative Genomics 1: 44-55.
    Cloutier S, Rampitsch C, Penner GA, Lukow OM (2001) Cloning and expression of a LMW-i glutenin gene. J Cereal Sci 33: 143-154.
    
    Coloma MJ, Trinh RK, Martinez AR (1999) Position effects of vatiable region carbohydrate on the affinity and in vivo behavior of an anti-(1-6) dextran antibody. J Immunol 162:2 162-2170.
    Colot V, Bartels D, Thompson R, Flavell R (1989) Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. Mol Gen Genet 216: 81-90.
    Cole RB (1997) Electrospray ionizatiom mass spectrometry:fundamentals, intrumentation and application. New York: Wiley Press.
    Corbellini M, Empilli S, Vaccino P, Brandolini A, Borghi B, Heun M, Salamini F (1999) Einkorn characterization for bread and cookie production in relation to protein subunit composition. Cereal Chem 76: 727-733.
    Cornish GB, Bekes F, Allen HM, Martin DJ (2001) Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust J Agric Res 52: 1339-1348.
    Cozzolino R, Giorgi SD, Fisichella S, Garozzo D, Lafiandra D, Palermo A (2001a) Matrix-assisted laser desorption/ionization mass spectrometry peptide mapping of high molecular weight glutenin subunits 1Bx7 and 1Dy10 in Cheyenne cultivar. Rapid Communi in Mass Spectrom 15: 778-787.
    Cozzolino R, Giorgi SD, Fisichella S, Garozzo D, Lafiandra D, Palermo A (2001b) Proteomic of glutenin: mapping of subunit 1Ax2* in Cheyenne cultivar by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communi in Mass Spectrom 15: 1129-1135.
    Cunsolo V, Foti S, Saletti R, Gilbert S, Tatham S, Shewry PR (2004) Structural studies of the allelic wheat glutenin subunits 1Bx7 and 1Bx20 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/ electrospray ionization mass spectrometry. J Mass Spectrom 39: 66-78.
    Dachkevitch T, Redaelli R, Biancardi AM, Metakovsky EV, Pogna NE (1993) Genetics of gliadins coded by the group-1 chromosomes in the high-quality bread wheat cultivar Neepawa. Theor Appl Genet 86: 389-399.
    Darlington H, Fido R, Tatham AS, Jones H, Salmon SE, Shewry PR (2003) Milling and baking properties of field grown wheat expressing HMW subunit transgenes. J Cereal Sci 38:301-306.
    
    Davis BG (2004) Mimicking posttranslational modifications of proteins. Science. 303: 480-482.
    Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075-1079.
    Dong H, Sear R G, Cox T S, Hoseney R C, Lookhart G L and Shogren M D (1992) Relationships between protein composition and mixograph and Loaf characteristics in wheat. Cereal Chem 69:132-136.
    D'Ovidio R, Tranzarella OA, Porceddu E (1992) Molecular analysis of gliadin and glutenin genes in T. durum cv. Lira. A model system to analyse the molecular bases of quality differences in durum wheat cultivars. J Cereal Sci. 16:165-172.
    D'Ovidio R, Porceddu E, Lafiandra D (1994) PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theor Appl Genet 88: 175-180.
    D'OvidioR, LafiandraD, PorcedduE (1996) Identification and molecular characterization of a large insertion within therepetitive domain of a high-molecular-weight glutenin subunit gene from hexaploid wheat.Theor Appl Genet 93:1048-1053.
    
    D'Ovidio R, Masci S, Porceddu E, Kasarda DD (1997a) Duplication of the Bx7 high- molecular-weight glutenin subunit gene in bread wheat {Triticum aestivum L.) cultivar Red River 68. Plant Breed 116: 525-531.
    D'Ovidio R, Anderson OD, Masci S, Skerritt J, Porceddu E (1997b) Construction of novel wheat high-M_r glutenin subunit gene variability: modification of the repetitive domain of expression in E.coli. J Cereal Sci 25: 1-8.
    D'Ovidio R, Marchitelli C, Ercoli CL, Porceddu E (1999) Sequence similarity between allelic Glu-B3 genes related to quality properties of durum wheat. Theor Appl Genet 98: 455-461.
    D'Ovidio R, Masci S (2004) The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39: 321-339.
    Dowd C, Bekes F (2002) Large-scale expression and purification of HMW glutenin subunits. Protein Expression and Purification 25: 97-104.
    Draper SR (1987) ISTA Variety Committee Report of the working group for Biochemical Tests for Cultivar Identification 1983-1986. Seed Sci & Technol 15:431-434.
    Dubcovsky J, Echaide M, Giancola S, Rousset M, Luo MC, Joppa LR, Dvorak J (1997) Characterization of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat seed storage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat. Theor Appl Genet 95: 1169-1180.
    Dvorak J, Di Terlizzi P, Zhang HB (1993) The evolution of polyploidy wheat: Identification of the A genome donor species. Genome 36:21-31.
    Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97: 657-670.
    Dworschak RG, Ens W, Standing KG, Preston KR, Marchylo BA, Nightingale MJ, Stevenson SG, Hatcher DW (1998) Analysis of wheat gluten proteins by matris-assisted laser desorption/ ionization mass spectrometry. J Mass Spectrom 33: 429-435.
    
    Ewart JAD (1990) Comments on recent hypothesis of glutenin. Food Chem 38: 159-169.
    Feeney KA, Tatham AS, Gilbert SM, Fido RJ, Halford NG, Shewry PR (2001) Synthesis, expression and characterization of peptides comprised of perfect repeat motifs based on a wheat seed storage protein. Biochim Biophy Acta 1546: 346-353.
    Field JM, Shewry PR, Miflin BJ (1983) Solubilization and characterization of wheat gluten proteins: correlations between the amount of aggregated proteins and baking quality. J Sci Food Agric 34: 370-377.
    Field JM, Tatham AS, Shewry PR (1987) The structure of a high Mr subunit of durum wheat (T. durum) gluten. Biochem J 247: 215-221.
    Flaete NES, Hollung K, Ruud L, Sogn T, Faergestad EM, Skarpeid HJ, Magnus EM, Uhlen AK (2006) Combined nitrogen and sulphur fertilization and its effect on wheat quality and protein composition measured by SE-FPLC and proteomics. J Cereal Sci 41: 357-369.
    Flavell RB, Goldsborough AP, Robert LS, Schnick D, Thompson RD (1989) Genetic variation in wheat HMW glutenin subunits and the molecular basis of bread-making quality. Biotechnol 7: 1281-1285.
    Forde J, Malpica J-M, Halford NG, Shewry PR, Anderson OD, Greene FC, Miflin BJ (1985) The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat {Triticum aestivum L.). Nucleic Acids Res 13: 6817-6832.
    Foti S, Maccarrone G, Saletti R, Roepstorff P, Gilbert S, Tatham AS, Shewry PR (2000) Verification of the cDNA deduced sequence of glutenin subunit 1Dx5 and M_r 58000 repetitive peptide by matrix-assisted laser desorptin/lonisation mass spectrometry (MALDI-MS). J Cereal Sci 31:173-183.
    Fribe B, Badaeva ED, Gill BS (1996) Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst Evol 202:199-210.
    Galili G (1989) Heterologous expression of a wheat high molecular weight glutenin gene in E. coli Proc Natl Acad Sci USA 20: 7756-7760.
    Galterio G, Cardarilli D, Codianni P, Acquistucci R (2001) Evaluation of chemical and technological characteristics of new lines of Triticum turgidum ssp dicoccum. Na hrung 45: 263-266.
    Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW (2001) Biochemical, Genetic, and molecular characterization of wheat endosperm proteins. American Association of Cereal Chemists. Inc. Publication no. C-2001-0926-010. (ONLINE REVIEW).
    Gianibelli MC, Lagudah ES, Wrigley CW, MacRichie F (2002a) Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor Appl Genet 104: 497-504.
    Gianibelli MC, Wrigley CW, MacRitchie F (2002b) Polymorphism of low Mr Glutenin subunits in Triticum tauschii. Cereal Chem 35: 277-286.
    Gianibelli MC, Echaide M, Larroque OR, Carillo JM, Dubcovsky J (2002c) Biochemical and molecular characterisation of Glu-1 loci in Argentinian wheat cultivars. Euphytica 128: 61-73.
    Gianibelli MC, Solomon RG (2003) A novel y-type high M_r glutenin subunit (12.4~t) present in Triticum tauschii. J Cereal Sci 37: 253-256.
    Gilbert SM, Wellner N, Belton PS, Greenfiled JA, Siligardi G, Shewry PR, Tatham AS (2000) Expression and characterization of a highly repetitive peptide derived from a wheat seed storage protein. Biochim Biophys Acta 1479: 135-146.
    Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauchii and Triticum aestivum: implications for the origins of hexaploid wheat. Theor Appl Genet 112: 1563-1572
    Goldsbrough AP, Bulleid NJ, Freedman RB, Flavell RB (1989) Conformational differences between two wheat (Triticum aestivum) 'high-molecular-weight' glutenin subunits are due to short region containing six amino acid differences. Biochem J 263: 837-842.
    Grimwade B, Tatham AS, Freedman RB, Shewry PR, Napier JA (1996) Comparison of the expression patterns of genes coding for wheat gluten proteins and proteins involved in the secretory pathway in developing caryopses of wheat. Plant Mol Biol 30: 1067-1073.
    Gu YQ, Devin CD, Kong XY, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticase genomes. Plant Physiol 135: 459-470.
    Gupta RB, Singh NK, Shepherd KW (1989) The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet 77: 57-64.
    Gupta RB, Shephard KW (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. I. Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet 80: 183-187.
    Gupta RB, Macritchie FA (1994) Allelic variation at glutenin subunits and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheat. II. Biochemical basis of the allelic effects on dough dough properties. J Cerwal Sci 19: 19-29.
    Gupta RM, Masci S, Lafiandra D, Bariana HS, MacRitchie F (1996) Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J Exp Bot 47: 1377-1385.
    Halford NG, Forde J, Anderson OD, Greene FC, Shewry PR (1987) The nucleotide and deduced amino acid sequences of a HMW glutenin subunit gene from chromosome 1B of bread wheat {Triticum aestivum L.) and comparison with those of genes from chromosome 1A and 1D. Theor Appl Genet 75: 117-126.
    Halford NG, Forde J, Shewry PR, Kreis M (1989) Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci 62: 207-216.
    Hassani ME, Gianibelli MC, Solomon RG, Tamas L, Shariflou MR, Sharp PJ (2004) Bacterial expression, purification and functional studies of a y-type high molecular weight glutenin subunitin T. tauschii. In Lafiandra D, Masci S, D'Ovidio R (Eds.) The Gluten Proteins. The Royal Society of Chemistry. 58-61.
    
    Hassani ME, Gianibelli MC, Shariflou MR, Sharp PJ (2005) Molecular structure of a novel y-type HMW glutenin subunit gene present in Triticum tauschii. Euphytica 141:191-198.
    He GY, D'Ovidio R, Anderson OD, Fido R, Tatham AS, Jones HD, Lazzeri P, Shewry PR (2000) Modification of storage protein composition in transgenic bread wheat, in: Shewry PR, Tatham AS (Eds.) Wheat Gluten. Royal Society of Chemistry, Cambridge.
    He ZH (1992) High molecular weight glutenin subunit composition of Chinese bread wheats. Euphytica 64: 11-20.
    Hickman DR, Roepstorff P, Shewry PR, Tatham AS (1995) Molecular weights of high molecular weight subunits of determined by mass spectrometry. J Cereal Sci 22: 99-103.
    Hiei Y, Ohta S, Komari T (1994) Efficient transfornation of rice {Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282.
    Holdsworth MJ, Munoz-Blanco J, Hammond-Kosack M, Colot V, Schuch W, Bevan MW (1995) The maize transcription factor Opaque-2 activates a wheat glutenin promoter in plant and yeast cells. Plant Mol Biol 29: 711-720.
    Holt LM, Astin R, Payne PI (1981) Structure and genetical studies on the high-molecular subunits of wheat glutenin. Part 2: Relative isoelectric points determined by two-dimensional fractionation in polyacrylamide gels. Theor Appl Genet 60: 237-243.
    Hsia CC, Anderson OD (2001) Isolation and characterization of wheat omega gliadin genes. Theor Appl Genet 103: 37-44.
    Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010-1019.
    Huang S, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoaA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99: 8133-8138.
    Ikeda TM, Nagamine T, Fukuoka H, Yano H (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet 104: 680-687.
    Ikeda TM, Araki E, Fujita Y, Yano H (2006) Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats. Theor Appl Genet 112: 327-334.
    Ishida Y, Saito H, Ohta S (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol 14: 745-750.
    Jackson EA, Holt LM, Payne PI (1983) Characterisation of high- molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localisation of their controlling genes. Theor Appl Genet 66: 29-37.
    Jackson EA, Holt LM, Payne PI (1985) Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat (Triticum aestivum). Genet Res 46: 11-17.
    Jaaska V (1980) Electrophoretic survey of seedling esterases in wheat in relation to their phylogeny. Theor Appl Genet 56: 273-284.
    Jiang QT, Wei YM, Wang JR, Yan ZH, Zheng YL (2005) A high-molecular-weight glutenin subunit gene 1Dx2.1 from Xinjiang rice wheat. Cereal Res Communi 33: 793-800.
    Jiang QT, Wei YM, Yan ZH, Zheng YL (2006) Isolation and Sequence Analysis of HMW Glutenin Subunit 1Dy10.1 ecoding gene from Xinjiang Wheat (Triticum petropavlovskyi Udacz. et Migusch). J Agric Sci China 5: 101-105.
    Johal J, Gianibelli MC, Rahman S, Morell MK (2004) Characterization of low-molecular-weight glutenin genes in Aegilops tauschii. Theor Appl Genet 109: 1028-1040.
    Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41: 137-147.
    Kanazawa H, Yonezawa D (1973) Studies on polypeptide composition of low molecular weight glutenin. J Agric Chem Soc Japan 47: 17-22.
    Kasarda DD, King G, Kumosinski TF (1994) Comparison of spiral structures in wheat high molecular weight glutenin subunits and elastin by molecular modeling, in: Molecular Modeling: From Visual Tools to Reality. Kumosinski TF and Liebman MN eds. ACS Symp. Ser. No. 576. Am. Chem. Soc: Washington DC. 209-220.
    Kasarda DD (1999) Glugenin Polymers: The in vitro to in vivo transition. Cereal Food World 44: 566-571.
    Kerber ER and Rowland GG (1974) Origin of the free-threshing character in hexaploid wheat. Can J Gen Cytol 16: 145-154.
    Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polymine-supplemented regeneration medium. Plant cell Rep 21: 429-436.
    Kolster P, Krechting CF Glder WMJ (1991) Quantitative variation of total and individual high molecular weight glutenin subunits of wheat in relation to variation in environmental conditions. J Sci Food Agric 57: 405-415.
    Kolster P, Vereiken JM (1993) Evaluating HMW glutenin subunits to improve breadmaking quality of Wheat. Cereal Food Worlds 38: 76-82.
    Kreis M, Shewry PR, Forde BG, Miflin BJ (1985) Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. Oxford Surv. Plant Mol Cell Biol 2: 253-317.
    Kreis M, Shewry PR (1989) Unusual features of cereal seed protein structure and evolution. BioEssays 10: 201-207.
    Kwon KS and Yu MH (1997) Effect of glycosylation on the stability of alphal-antitrypsin toward urea denaturation and thermal deactivation. Biochim Biophys Acta 1335: 265-272.
    Lafiandra D, D'Ovidio R, Porceddu E, Margiotta B, Colaprico G (1993) New data supporting high M_r glutenin subunit 5 as the determinant of quality differences among the Pairs 5+10 vs. 2+12. J Cereal Sci 18: 197-205.
    Lagudah ES, Halloran GM (1988) Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat. 1. Variation in HMW subunits of glutenin and gliadin. Theor Appl Genet 75: 592-598.
    Lamacchia C, Shewry PR, Fonzo ND, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52: 243-50.
    Lauriere M, Bouchez I, Doyen C, Eynard L (1996) Identification of glycosylated forms of wheat storage proteins using two-dimensional electrophoresis and blotting. Electrophoresis 17: 497-501.
    Lawrence GJ, Shepherd KW (1980) Variation in glutenin protein subunits of wheat. Aust J Biol Sci 33: 221-233.
    Lawrence GJ, Macritchie F, Wrigley CW (1998) Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-Bl and Glu-D1 loci. J Cereal Sci 7: 109-112.
    Lee YK, Bekes F, Gupta R, Appels R, Morel MK (1999a) The low-molecular-weight glutenin subunit proteins of primitive wheats. I. Variation in A-genome species. Theor Appl Genet 98: 119-125.
    Lee YK, Bekes F, Gras P, Ciaffi M, Morell MK, Appels R (1999b) The low-molecular-weight glutenin subunit proteins of primitive wheats. IV. Functional properties of products from individual genes. Theor Appl Genet 8:149-155.
    Lee YK, Ciaffi M, Appels R, Morell MK (1999c) The low-molecular-weight glutenin subunit proteins of primitive wheats. II. The genes from A-genome species. Theor Appl Genet 98: 126-134.
    Leeuwen Wvan., Ruttink T, Borst-Vrenssen AWM, Plas LHW van der, Krol AR van der (2001) The effect of MAR elements on variation in spatial and temporal regulation of transgene expression. Plant Mol Biol 47: 543-554.
    Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Ae. tauschii and the D genome of wheat utilizing microsatellite. Genome 43: 661-668.
    Lew EJL, Kuzmicky DD, Kasarda DD (1992) Characterization of low-molecular-weight glutenin subunits by reversed-phase high performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem 69: 508-515.
    Li W, Wan Y, Liu Z, Liu K, Liu X, Li B, Li Z, Zhang X, Dong Y, Wang D (2004) Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species. Theor Appl Genet 109:1093-1104.
    Lindsay MP, Skerritt JH (1999) The glutenin macro-polymer of wheat flour doughs: structure-function perspec-tives. Trends in Food Sci & Technol 10: 247-253.
    Liu CY (1995) Identification of a new low-Mr glutenin subunit locus on chromosome 1B of durum wheat. J Cereal Sci 21: 209-213.
    Liu CY, Shepherd KW (1995) Inheritance of B subunits of glutenin ω- and γ-gliadins in tetraploid wheats. Theor Appl Genet 90: 1149-1157.
    Liu CY, Shepherd KW (1996) Variation of B subunits of glutenin in durum, wild and less-widely cultivated tetraploid wheats. Plant Breed 115: 172-178.
    Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, and Wang D (2003) Analysis of HMW glutenin subunits and there coding sequences in two diploid Aegilops species. Theor Appl Genet 106: 1368-1378.
    Lookhart GL, Bean SR (2000) Ultrafast CE analysis of cereal storage proteins and its applications to protein characterization and cultivar differentiation. J Agric Food Chem 48: 344-353.
    Lu C, Lu B (2005) Molecular characterization of the HMW glutenin genes D~tx1.5+D~ty10 from Aegilops tauschii and their PCR-mediated recombinants. Mol Breed 15: 247-255.
    
    Lukow OM, Forsyth SA, Payne PL (1992) Over-production of HMW glutenin subunits coded on chromosome 1B in common wheat, Triticum aestivum L. J Genet Breed 46: 187-192.
    
    Luo C, Branlard G, Griffin WB, McNeil DL (2000) The effect of nitrogen and sulphur fertilisation and their interaction with genotype on wheat glutenins and quality parameters. J Cereal Sci 31: 185-194.
    
    Luo C, Griffin WB, Branlard G, Mcneil DL (2001) Comparison of low- and high molecular-weight wheat glutenin allele effects on flour quality. Theor Appl Genet 102: 1088-1098.
    Luo Z, Chen FG, Feng DS, Xia GM. (2005) LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. Theor Appl Genet 111: 272-280.
    Mackie AM, Sharp PJ, Lagudah ES (1996) The Nucleotide and Derived Amino Acid Sequence of a HMW Glutenin Gene from Triticum tauschii and Comparison with those from the D Genome of Bread Wheat. J Cereal Sci 24: 73-78.
    MacRitchie F (1992) Physicochemical properties of wheat proteins in relation to functionality. Adv Food Nutr Res 36: 1-87.
    Manifesto M M, Eeingold S, Hopp H E, Schlatter A R and Dubcovsky J (1998) Molecular markers associated with differences in bread-making quality in a cross between bread wheat cultivars with the same hight Mr glutenins. J Cereal Sci 27: 217-227.
    Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21: 255-261.
    Margiotta B, Urbano M, Colaprico G, Johansson E, Buonocore F, D'Ovidio R, Lafiandra D (1996) Detection of y-type subunit at Glu-A1 locus in some Swedish bread wheat lines. J Cereal Sci 23: 203-211.
    Maruyama N, Ichise K, Katsube T, Kishimoto T, Kawase S, Matsumura Y, Takeuchi Y, Sawada T, Utsumi S (1998) Identification of major wheat allergens by means of the Escherichia coli expression system. European J Biochem 255: 739-745.
    
    Masci SM, Porceddu E, Colaprico G, Lafiandra D (1991) Comparison of the B and D subunits of glutenin encoded at the Glu-D3 locus in two biotypes of the common wheat cultivar Newton with different technological characteristics. J Cereal Sci 14: 35-46.
    
    Masci S, Lafiandra D, Porceddu E, Lew EJL, Tao HP, Kasarda DD (1993) D-glutenin subunits: N-terminal sequences and evidence for the presence of cystein. Cereal Chem 70: 581-585.
    
    Masci S, Lew EJ-L, Lafiandra D, Porceddu E, Kasarda DD (1995) Characterization of low- molecular-weight glutenin subunits in durum wheat by RP-HPLC and N-terminal sequencing. Cereal Chem 72: 100-104.
    
    Masci S, D'Ovidio R, Lafiandra D, Kasarda DD (1998) Characterization of a low-molecular- weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol 118: 1147-1158.
    
    Masci S, Rovelli L, Monari AM, Pogna NE, Boggini G, Lafiandra D (2000a) Characterization of a LMW-2 type durum wheat cultivar with poor technological properties. In: Shewry PR, Thatam AS (Eds.). Wheat Gluten. The Royal Society of Chemistry, UK 16-19.
    
    Masci S, D'Ovidio R, Lafiandra D, Kasarda DD (2000b) A IB-coded low-molecular- weight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars. Theor Appl Genet 100: 396-400.
    
    Masci S, Rovelli L, Kasarda DD, Vensel WH, Lafiandra D (2002) Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor Appl Genet 104: 422-428.
    
    Masci S, D'Ovidio R, Scossa F, Patacchini C, Lafiandra D, Anderson OD, Blechl AE (2003) Production and characterization of a transgenic bread wheat line over-expressing a low-molecular-weight glutenin subunit gene. Mol Breed 12: 209-222.
    
    Matheis G (1999) Phosphorylation of food proteins with phosphorus oxychloride improvement of functional and nutritional properties: A review. Food Chem 39: 13-26.
    
    McDonald MB, Elliot LJ, Sweeney PM (1994) DNA extraction from dry seeds for RAPD analyses in varietal identification studies. Seed Sci & Technol 22: 171-176.
    
    McFadden ES, Sears ER (1946a) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37: 81-89.
    
    McFadden ES, Sears ER (1946b) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37: 107-116.
    
    Mecham DK, Kasarda DD, Qualset CO (1978) Genetic aspects of wheat gliadin proteins. Biochem Genet 16: 831-853.
    Metakovskii EV, Wrigley CW, Bekes F, Gupta RB (1990) Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust J Agric Res 41: 289-306.
    McIntosh RA, Hart GE, Gale MD (1994) Catalogue of gene symbols for wheat (supplement). Ann Wheat Genet News 40: 362-375.
    Miles MJ, Carr HJ, MacMaster TC, I'Anson KJ, Belton PS, Morris VJ, Field JM, Shewry PR, Tatham AS (1991) Scanning tunneling microscopy of a wheat seed storage protein reveals details of an unusual supersecondary structure. Proc Natl Acad Sci USA 88: 68-71.
    Morel MH (1994) Acid-polyacrylamide gel electrophoresis of wheat glutenins: a new tool for the separation of high and low molecular weight subunits. Cereal Chem 71: 238-242.
    Morgunow AI, Rogers WJ, Sayers EJ & Metakovsky EV (1990) The high-molecular- weight glutenin subunit composition of Soviet wheat varieties. Euphytica 51: 41-52.
    Muller M, Knudsen S (1993) The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. Plant J 4: 343-355.
    Muccili V, Cunsolo V, Saletti R, Foti S, Masci S, Lafiandra (2005) Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 5: 719-728.
    Neill JD (1987) Expression of α-gliadin gene in Saccharomyces cerevisae. Gene 55: 303-317. Ng PKW, Pogna F, Mellini, Bushuk W (1998) Glu-1 allele compositions of the wheat cultivars registered in Canada. J Genet & Breed 43: 53-59.
    Ng PKW, Slominski E, Johnson WJ, Bushuk W (1991) Changes in wheat endosperm proteins during grain maturation. In: Bushuk W, Tkachuk R (Eds.), Gluten Proteins. American Association of Cereal Chemistry. St. Paul MN 740-754.
    Nielsen HC, Beckwith AC, Wall JS (1968) Effect of disulphide bond cleavage on wheat gliadins fractions obtained by gel filtration. Cereal Chem 45: 37-47.
    Nieto-Taladriz MT, Ruiz M, Martinez MC, Vazquez JF, Carrillo JM (1997) Variation and classification of B-low-molecular-weight glutenin subunit alleles in durum wheat. Theor Appl Genet 95: 1155-1160.
    Nieto-Taladriz MT, Rodriguez-Quijano M, Carrillo JM (1998) Biochemical and genetic characterization of a D glutenin subunit encoded at the Glu-B3 locus. Genome 41: 215-220.
    Norre F, Peyrot C, Garcia C, Rance L, Drevet J, Theism M, Grubeer V (2002) Powerful effect of an atypical bifactorial endosperm box from wheat HMWG-Dx5 promoter in maize endosperm. Plant Mol Biol 50: 699-712.
    Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the α/β-type and γ-type gliadin DNA sequences. J Biol Chem 260: 8203-8213.
    Pagnotta MA, Nevo E, Beiles A, Porceddu E (1995) Wheat storage proteins: glutenin diversity in wild emmer Triticum dicoccoides. in Israel and Turkey. 2. DNA diversity detected by PCR. Theor Appl Genet 91: 409-414.
    Panozzo J, Eagles HA, Wootton M (2001) Changes in protein composition during grain development in wheat. Aust J Agric Res 52: 485-493.
    Patacchini C, Masci S, D'Ovidio R, Lafiandra D (2003) Heterologous expression and purification of native and mutated LMW-GS from durum wheat. J Chromatogr B 786: 215-220.
    Payne PI, Corfield KG (1979) Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta 145: 83-88.
    Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet 58: 113-120.
    Payne PI, Corfield KG, Blackman JC (1981) Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread making quality in progenies of six crosses of bread wheat. J Sci Food Agric 32: 51-60.
    Payne PI, Holt Lm, Lawrence GJ, Law CN (1982) The genetics of gliadin and glutenin, the major storage proteins of wheat endosperm. Qual Plant Plant Foods Hum Nutr 31: 229-241.
    Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Res Communi 11: 29-35.
    Payne PI, Lawrence GJ (1983) Catalogue of alleles for the com-plex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for the high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Communi 11: 29-35.
    Payne PI, Holt LM, Jackson EA, Law CN (1984a) Wheat storage proteins: Their genetics and their potential for manipulation by plant breeding. Philos Trans R Soc Lond B 304: 359-371.
    Payne PI, Jackson EA, Holt LM (1984b) The association between γ-gliadin 45 and gluten strength in durum wheat varieties. A direct causal effect on the result of genetic linkage. J Cereal Sci 2: 73-81.
    Payne PI, Holt LM, Jarvis MG, Jackson EA (1985) Two-dimensional fractionation of the endosperm proteins of bread wheat (Triticum aestivum): biochemical and genetic studies. Cereal Chem 62: 319-326
    Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread making quality. Plant Physiol 38: 141-153.
    Pechanek U, Karger A, Groger S, Charvat B, Schoggl G, Lelley T (1997) Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and bread making quality of wheat. Cereal Chem 74: 800-805.
    Pei Yu-He, Wang Ai-Li, An Xue-Li, Li Xiao-Hui, Zhang Yan-Zhen, Huang Xiu-Qiang, Yan Yue-Ming (2007) Characterization and comparative analysis of three low molecular weight glutenin C-subunit genes isolated from Aegilops tauschii. Can J Plant Sci 87: 273-280.
    Perrotta C, Treglia AS, Mita G, Giangrande E, Rampino P, Ronga G, Spano G, Marmiroli N (1998) Analysis of mRNAs fromripening wheat seeds: the effect of high temperature. J Cereal Sci 27: 127-132.
    Pestsova EG, Goncharov NP, Salina EA (1998) Elimination of a tandem repeat of telomeric heterochromatin during the evolution of wheat. Theor Appl Genet 97: 1380-1386.
    Pfluger LA, D'Ovidio R, Margiotta B, Pena R, Mujeeb-Kazi A, Lafiandra D (2001) Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet 103: 1293-1301.
    Piergiovani RA, Blanco A (1999) Variation of HMW glutenin and γ-gliadin subunits in selected accessions of Tritium dicoccon (Schrank) and T. spelta (L.) Cereal Res Communi 27: 205-211.
    Pitts EG, Rafalski JA, Hedgcoth C (1988) Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucleic Acids Res 16: 11376.
    
    Pogna NE, Lafiandra D, Feillet P, Autran JC (1988) Evidence for a direct causal effect of low molecular weight glutenin subunits on gluten viscoelasticity in drum wheats. J Cereal Sci 7: 211-214
    Pogna NE, Mellini F, Beretta A, Peruffo ADB (1989) The high-molecular-weight glutenin subunits of common wheat cultivars grown in Italy. J Genet Breed 43: 17-24.
    Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P (1990) Chromosome 1B-encoded gliadins and glutenin subunits durum wheat: Genetics and relationship to gluten strength. J Cereal Sci 11: 15-34.
    Rampitsch C, Jordan MC, Cloutier S (2000) A matrix attachment region is located upstream from the high molecular glutenin gene Bx7 in wheat (Triticum aestivum L.). Genome 43: 462-486.
    Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210: 604-610.
    Robert LS, Thompson RD, Flavell RB (1989) Tissue-specific experession of a wheat high molecular weight glutenin gene in transgenic tobacco. The Plant Cell 1: 569-578.
    Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Over expression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115-120.
    Rubin R, Levanony H, Galili G (1992) Evidence for the presence of two different types of protein bodies in wheat endosperm. Plant Physiol 99: 718-724.
    Ruizm M, Carrillo JM (1993) Linkage relationships between prolamin genes on chromosomes 1A and 1B of durum wheat. Theor Appl Genet 87: 353-360.
    Sasanuma T, Miyashita NT, Tsunewaki K (1996) Weat phylogeny determined by RFLP analysis of nuclear DNA. Intra and interspecific variationa in five Aegilops sitopsis species. Theor Appl Genet 92: 928-934.
    Shapiro AL, Vinuela E, Maizel JV Jr (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28: 815-820
    Shani N, Rosenberg N, Kasarda DD, Galili G (1994) Mechanism of assembly of wheat high molecular weight glutenins inferred from expression of wild-type and mutant subunits in transgenic tobacco. J Biol chem 269: 8924-8930.
    Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: A reassessment. J Cereal Sci 4: 97-106.
    Shewry PR, Halford NG, Tatham AS (1992) The high molecular weight subunits of wheat glutenin. J Cereal Sci 15: 105-120.
    Shewery PR, Tatham AS, Barro P, Lazzeri P (1995) Biotechnology of bread-making: unraveling and manipulating the multiprotein gluten complex. Bio/technol 13: 1185-1190.
    Shewry PR, Tatham AS (1997) Disulphide bonds in wheat gluten proteins. J Cereal Sci 25: 207-227.
    Shewry PR (1999) The synthesis, processing, and deposition of gluten proteins in the developing wheat grain. Cereal Foods World 44: 587-589.
    Shewry PR, Popineau Y, Lafiandrax D, Belton P (2001a) Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project. Trends Food Sci Tech 11: 433-441.
    Shewry PR, Tatham AS, Halford NG (2001b) Nutritional control of storage protein synthesis in developing grain of wheat and barley. Plant Growth Regulators 34:105-111.
    
    Shewry PR, Halford NG (2002a) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53: 947-958.
    Shewry PR, Arthur ST, Halford NG (2002b) Nutritional control of storage protein synthesis in developing grain of wheat and barley. Plant Growth Regulation 34: 105-111.
    Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandr D, Belton P (2003a) The high molecular weght subunits of wheat glutenin and their role in determing wheat processing properties. Adv Food Nutr Res 45: 221-302.
    Shewry PR, Gilbert SMA, Savage WJ, Tatham AS, Wan YF, Belton PS, Wellner N, D'ovidio R, Bekes F, Halford NG (2003b) Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theor Appl Genet 106:744-750.
    Shewry PR, Powers S, Field JM, Fido RJ, Jones HD, Arnold GM, West J, Lazzeri PA, Barcelo P, Barro F, Tatham AS, Bekes F, Butow B, Darlington H (2006) Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theor Appl Genet 113: 128-136
    Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Keller B (1994) Genetic diversity in Euopean wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88: 994-1003.
    Singh NK, Shepherd KW (1988) Linkage mapping of the genes controlling endosperm proteins in wheat. 1.Genes on the short arms of group 1 chromosomes. Theor Appl Genet 75: 628-641.
    Singh NK, Shepherd KW (1991) Rapid communication a simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J Cereal Sci 14: 203-208.
    Sissons MJ, Bekes F, Skerritt JH (1998) Isolation and Functionality testing of low molecular weight glutenin subunits. Cereal Chem 75: 30-36.
    Skylas DJ, Mackintosh JA, Cordwell SJ, Basseal DJ, Walsh BJ, Harry J, Blumenthal C, Copeland L, Wrigley CW, Rathmell W (2000) Proteome approach to the characterisation of rotein composition in the developing and mature wheat-grain endosperm. J Cereal Sci 32: 169-188.
    Sreeramulu G, Singh NK (1997) Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.). Genome 40: 41-48.
    Song J, Wu X, Liu J, Liu A, Zhao Z, Liu G (2003) Study on quality scoring system assessed by wheat high-molecular-weight glutenin subunits. Acta Agronomica Sinica 29: 829-834.
    Sontag-Strohm T, Payne P I and Salovaara H (1996) Effect of allelic variation of glutenin subunits and gliadins on baking quality in the progeny of two biotypes of breed wheat cv Ulla.J Cereal Sci 24: 115-124.
    Sugiyama T, Rafalski A, Peterson D, Sol D (1985) A wheat HMW glutenin subunit gene reveals a highly repeated structure. Nucleic Acid Res 13: 8729-8737.
    Sun X, Hu S, Liu X, Qian W, Hao S, Zhang A, Wand D (2006) Characterization of the HMW glutenin subnits from Aegilops searsii and identification of a novel variant HMW glutenin subunit. Theor Appl Genet 113: 631-641.
    Sutton KH, Bietz JA (1997) Variation among high molecular weight subunits of glutenin detected by capillary electrophoresis. J Cereal Sci 25: 9-16.
    Talbert LE, Smith LY, Blake NK (1998) More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41: 402-407.
    Tamas L, Shewry PR (2006) Heterologous expression and protein engineering of wheat gluten proteins. J Cereal Sci 43: 259-274.
    Tarns JW, Vind J, Welinder KG (1999) Adapting protein solubility by glycosylation, N- glycosylation matants of Coprinus cinereus perocidase in salt and irganic solutions. Biochim Biophys Acta 1432: 214-221.
    Tatham AS, Shewry PR (1985) The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of alpha-, beta-, gamma- and omega-gliadins. J Cereal Sci 3: 103-113.
    Tatham AS, Field JM, Smith SJ, Shewry PR (1987) The conformations of wheat gluten proteins. II. Aggregated gliadins and low molecular weight subunits of glutenin. J Cereal Sci 51: 203-214.
    Tao HP, Kasarda DD (1989) Two-dimensional gel mapping and Nterminal sequencing of LMW-glutenin subunits. J Exp Bot 40: 1015-1020.
    Tilley KA, Lookhart GL, Hosneney RC, Mawhinney TP (1993) Evidence for glycosylation of the high molecular weight glutenin subunits 2, 7, 8, 12 from Chinese spring and TAM105 wheat. Cereal Chem 70: 602-606.
    Tilley KA, Schofieldt JD (1995) Detection of phosphotyrosine in the high M_r subunits of wheat glutenin. J Cereal Sci 22: 17-19.
    Thompson RD, Bartels D, Harberd NP (1985) Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMW-glutenin subunit. Nucleic Acids Res 13: 6833-6846.
    Thompson S, Tatham AS, Shewry PR (1993) Exploring disulphide bond formation in a LMW subunit of glutenin using a baculovirus expression system. Gluten Proteins. Association of Cereal Research, Detmold, Germany 345-355.
    Thompson S, Bishop DHL, Tatham AS, Shewry PR (1994a) Exploring disulphide bond formation in a low molecular weight sub-unit of glutenin using a baculovius expression system, in: Gluten Proteins 1993. Association of Cereal Research: Detmold, Germany 345-355
    Thompson S, Bishop DHL, Madgwick P, Tatham AS, Shewry PR (1994b) High-level expression of a wheat LMW glutenin subunit using a baculovirus system. J Agric Food Chem 42: 426-431.
    Tosi P, Napier JA, Dovidio R, Jones HD, Shewry PR (2000) Modification of the LMW glutenin subunit composition of durum wheat by microprojectile-mediated transformation, in: Shewry, P. R.,Tatham, A.S. (Eds.), Wheat Gluten. Royal Society of Chemistry, Cambridge 93-96.
    Tosi P, D'Ovidio R, Napier JA, Bekes F, Shewry PR (2004) Expression of epitope tagging LMW glutenin subunits in the starchy endosperm of wheat and their incorporation into the glutenin polymers. Theor Appl Genet 108: 468-476.
    Toufeili I, Iamail B, Shadarevian S, Baalbakib R, Khatkarc BS, Bellc AE and Schofieldc JD. (1999) The role of gluten protein in the baking of Ababic Bread. J Cereal Sci 30: 255-265.
    Tranquilli G, Cuniberti M, Gianibelli MC, Bullrich L, Larroque OR, MacRitchie F, Dubcovsky J (2002) Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. J Cereal Sci 36: 9-18.
    Triboi E, Abad A, Lloveras J, Oilier JL, Daniel C (2000) Environmental effects on the quality of two wheat genotypes: 1. Quantitative and qualitative variation of storage proteins. Eur J Agron 13: 47-64.
    Vaccino P, Redaelli R, Metakovsky EV, Borghi B, Corbellini M, Pogna NE (2002) Identification of novel low Mr glutenin subunits in the high quality bread wheat cv Salmone and their effects on gluten quality. Theor Appl Genet 105: 43-49.
    Vensel WH, Adalsteins A E, Kasarda DD (1997) Purification and characterization of the glutenin subunits of Triticum tauschii, progenitor of the D genome in hexaploid bread wheat. Cereal Chem 74: 108-114.
    Waines JG, Payne PI (1987) Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu and the A genome of bread wheat. Theor Appl Genet 74: 71-76.
    WanY, Wang D, Sherry PR (2000) High molecular weight glutenin subunits in the Cylindropyrum and Vertebrata section of Aegilops and identification of Aegilops subunits related to those encoded by the Dx alleles of common wheat. Theor Appl Genet 101: 879-884.
    
    Wan Y, Wang D, Shewry PR, Halford NG (2002) Isolation and characterization of five novel high molecular weight subunit genes from Triticum timopheevi and Aegilops cylindrica. Theor Appl Genet 104: 828-839.
    Wan Y, Yan Z, Liu K, Zheng Y, D'Ovidio R, Shewry PR, Halford NG, Wang D (2005) Comparative analysis of D genome-encoded high-molecular weight subunits of glutenin. Theor Appl Genet 111:1183-1190.
    Wang HQ, Zhang XY, Wang HM, Pang BS (2005) Production of a monoclonal antibody specific for high molecular weight glutenin subunits (HMW-GS) in wheat and its antigenic determinant. Science in China Ser C Life Sciences 48: 89-96.
    Wang HQ, Zhang XY (2006) An approach for isolating high-molecular-weight glutenin subunit genes using monoclonal antibodies. Genome 49: 181-189.
    Wang JR, Yan ZH, Wei YM, Zheng YL (2004) A novel high-molecular-weight glutenin subunit gene Eel.5 from Elytrigia elongate (Host) Nevski. J Cereal Sci 40: 289-294.
    Wang XY, Liu KF, Guo WZ (2006) Cloning and expression of low molecular weight glutenin genes from the Chinese elite wheat cultivar"Xiaoyan 54". J Integra Plant Biol 48: 212-218.
    
    
    Watson, MEE (1984) Compilation of published signal sequences. Nucleic Acids Res 12: 5145-5164.
    Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244: 4406.
    Weegels PL, Hamer RJ, Schofield JD (1995) RP-HPLC and capillary electrophoresis of subunits from glutenin isolated by SDS and Osborne fractionation. J Cereal Sci 22: 211-224.
    Wellner N, Belton PS, Tatham AS (1996) Fourier transform IR spectroscopic study of hydration induced structure changes in the solid state of omega gliadins. Biochem J 319: 741-747.
    Wellner N, Marsh J, Savage A, Halford NG, Shewry PR, Mills ENC, Belton PS (2007) Structure-function relationships in an elastomeric protein of wheat: synthesis, expression and characterization of repetitive peptides based on sequence variants present in the HMWsubunits. Biomacromolecules (in press).
    Werner WE, Wiktorowicz JE, Kasarda DD (1994) Wheat varietal identification by capillary electrophoresis of gliadins and high molecular weight glutenin subunits. Cereal Chem 71: 394-402.
    Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of A and A~m genomes of wheat. The Plant Cell 15: 1186-1197.
    Wrigley CW (1970) Protein mapping by combined gel electrofocusing and electrophoresis: application to the study of genotypic variations in wheat gliadins. Biochem Genet 4: 509-516
    Wrigley CW (1996) Giant proteins with flour power. Nature 381: 738-739.
    
    Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium- mediated genetic transformation of wheat. Plant Cell Rep 21: 659-668.
    Xia GM, Li ZY, He CX, Chen HM, Brettell R (1999) Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens. Acta Phytoghysiol Sinica 25: 22-28.
    Xu H, Wang RJ, Shen X, Zhao Y L, Sun GL, Zhao HX, Guo AG (2006) Functional properties of a new low-molecular-weight glutenin subunit gene from a bread wheat cultivar. Theor Appl Genet 113: 1295-1303.
    Yan Y, Prodanovic S, Mladenov N, Milovanovic M (1999a) Genetic control of low molecular weight glutenin subunits in wheat by A-PAGE analysis. Cereal Res Communi 27: 251-257.
    Yan Y, Surlan-Momirovic G, Prodanovic S, Zoric D, Liu G (1999b) Capillary zone electrophoresis analysis of gliadin proteins from Chinese and Yugoslav winter wheat cultivars. Euphytica 105: 197-204.
    Yan Y, Hsam SLK, Yu J, Jiang Y, Ohtsuka I, Zeller FJ (2003a) HMW and LMW glutenin alleles among putative tetraploid and hexaploid T. spelta progenitors. Theor Appl Genet 107: 1321-1330.
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003b) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by Sodium Dodecyl Sulphate (SDS-PAGE), Acid Polyacrylamide Gel (A-PAGE) and Capillary Electrophoresis. Euphytica 130: 377-385.
    Yan Y, Yu J Z, Jiang Y, Hu Y, Cai M, Hsam S L K, Zeller F J (2003c) Capillary electrophoresis separation of high molecular weight glutenin subunits in bread wheat {Triticum aestivum L.) and related species with phoephate-based buffers. Electrophoresis 24: 1429-1436.
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003d) Genetic polymorphisms at Gli-D~t gliadin loci in Aegilops tauschii as revealed by acid polyacrylamide gel and capillary electrophoresis. Plant Breed 122: 120-124.
    Yan Y, Jiang Y, Yu J, Cai M, Hu Y, Perovic D (2003e) Characterization of seed hordeins and varietal identification in three barley species by high-performance capillary electrophoresis. Cereal Res Communi 31: 3-4.
    Yan Y, Zheng J, Xiao Y, Yu J, Hu Y, Cai M, Li Y, Hsam SLK, Zeller FJ (2004) Identification and molecular characterization of a novel y-type Glu-D~t1 glutenin gene of Aegilops tauschii. Theor Appl Genet 108: 1349-1358.
    Yates JR, Link AJ, Schieltz D (2000) Mass spectrometry from genomics to proteomics. Trends in Genetics 16: 5-8.
    Ye XG, Shirley S, Xu HJ, Du LP, Clemente T (2002) Regular production of transgenic wheat mediated by Agrobacterium tumefaciens. Agricultural Sciences in China 3: 239-244.
    
    Ye XG, Wang YL, Kang L, Du LP, Xu HJ (2005) Screening of wheat genotypes sensitive to Agrobacterium tumefaciens infection and transformation. Acta Agronomica Sinica 31: 1552-1556.
    Zhang Q, Dong YM, An XL, Wang AL, Zhang YZ, Li XH, Xia XC, He ZH, Yan YM (2007) Characterization of HMW glutenin subunits in common heat and related species by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI- TOF-MS). J Cereal Sci (in press).
    Zhang XY, Pang BS, You GX, Wang LF, Jia JZ, Dong YC (2002a) Allelic variation and genetic diversity at Glu-1 loci in Chinese wheat (Triticum aestivum L.) germplasms. Scientia Agricultural Sinica 35: 1302-1310.
    Zhang XY, Dong YC, You GX, Wang LF, Li P, Jia JZ (2002b) Allelic variation of Glu-A1, Glu-B1, Glu-D1 in Chinese released wheat varieties in the last 50 years. Agricultural Sciences in China 1: 36-44.
    Zhang YZ, Li QY, Yan YM, Zheng JG, An XL, Xiao YH, Wang AL, Pei YH, Wang HB, Hsam SLK, Zeller FJ (2006) Molecular characterization and phylogenetic analysis a novel glutenin gene (Dy10.1~t) from Aegilops tauschii. Genome 49: 735-745.
    
    Zhu J, Khan K (1999) Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chem 76: 261-269.
    Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, Oxford, UK.
    Zolnierowicz S, Bollen M (2000) Protein phosphorylation and protein phosphatases. EMBO J 19: 483-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700