EphrinA1在神经胶质瘤中的作用及食管癌的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文中对EphrinA1在神经胶质瘤中的功能作了一定的研究,同时也对食管鳞癌进行了蛋白质组分析。
     Eph受体是最大的受体酪氨酸激酶家族,与它们的配体Ephrin在神经系统发育过程中神经元的轴突导向、细胞迁移都有重要作用。最近发现这些分子与一些肿瘤的发生有关。在我们的研究中,发现在神经胶质瘤细胞株中几乎检测不到EphrinA1的表达,同时,与相邻的正常组织相比,原发的神经胶质瘤中EphrinA1的表达量明显下降。在U251细胞中过表达EphrinA1会降低细胞生长、迁移以及非依赖性生长能力;过表达EphrinA1还会促进其受体EphA2的磷酸化水平升高,从而导致后者的蛋白降解;另外,EphA2的一个已知下游分子FAK,在这些过表达EphrinA1的细胞中也有下调。这些结果表明EphrinA1在神经胶质瘤发生过程中,可能通过下调EphA2以及FAK来负调控肿瘤的发生,因此,可以作为一个肿瘤治疗的潜在靶基因。
     食管鳞癌是中国主要的食管癌亚型,有高发病率及高死亡率的特点,其临床诊断主要是依据食管组织学的变化来确定的,但是,大多数低级别的病人并没有表现出明显的组织学变化,因此,更深入了解肿瘤进程的机制以及找到一些级别特异的分子对我们诊断、治疗食管鳞癌提供帮助。在这个研究当中,我们应用蛋白质组学方法对不同级别(TNM分级法)的食管鳞癌组织进行分析,测定与食管鳞癌进程(从第一级到第三级)相关的蛋白质组特征,将在食管鳞癌与相应正常组织中表达差异非常明显的蛋白点用质谱方法进行鉴定,鉴定出来的差异蛋白主要归为三类(骨架系统相关的蛋白、代谢相关的酶类、热激蛋白)。另外,通过实时定量PCR,我们发现enolase 1,chromosome 1 open reading frame 10,elastase inhibitor,alpha B crystalline,stress induced phosphoprotein 1以及squamous cell carcinoma antigen 1六个基因在mRNA水平上与肿瘤级别有一定的相关性。总之,我们的数据为食管鳞癌的进程提供了更加丰富的信息,并且为食管鳞癌的临床治疗提供了潜在的药物靶分子。
THE FUNCTION OF EPHRINA1 IN GLIOMA
     Eph receptors, the largest receptor tyrosine kinases, and their ephrin ligands play important roles in axon guidance and cell migration during development of the nervous system. Recently, these molecules are also found involved in tumorigenesis of different kinds of cancers. In this study, we demonstrated that expression of ephrin-A1 was dramatically down-regulated in glioma cell lines as well as in primary gliomas comparing to the matched normal tissues. Forced expression of ephrin-A1 attenuated cell migration, cell proliferation, and adhesion-independent growth in human glioma U251 cells. Overexpression of ephrin-A1 stimulated activation of EphA2, a receptor for ephrin-A1 and an oncoprotein, by phosphorylation and leaded the latter to degradation. Furthermore, focal adhesion kinase (FAK), a known downstream molecule of EphA2, was also down-regulated in those ephrin-A1 transfected cells. These results suggested that ephrin-A1 served as a critical negative regulator in the tumorigenesis of gliomas by down-regulating EphA2 and FAK, which may provide potential valuable targets for therapeutic intervention.
     PROTEOMIC ANALYSIS OF ESOPHAGEAL SQUAMOUS CELL CARCINOMA
     Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancers in China, and characterized with high morbidity and mortality. So far, the diagnosis of ESCC is mainly dependent on the alterations in esophageal histology, but most cases of ESCC with low stage do not display visible histological abnormalities. Therefore deep understanding the mechanism of ESCC progression and seeking stage-specific molecules might improve the diagnosis and therapy for ESCC. In this study, we used proteomics to analyze ESCC tissues with classification by TNM stage, and determined the proteomic features correlated with ESCC progression (from stage I to III). Proteins that exhibited significantly differential expressions between ESCC and corresponding normal esophageal tissues were identified by using mass spectrometry. The identified proteins with differentiated expression mainly fell into three protein categories (i.e. cytoskeleton system associated proteins, metabolism enzymes, and heat shock proteins). In addition, real-time PCR displayed that some molecules were associated with tumor stages in mRNA level, such as enolase 1, chromosome 1 open reading frame 10, elastase inhibitor, alpha B crystalline, stress induced phosphoprotein 1, and squamous cell carcinoma antigen 1. Altogether, these data provided further information on ESCC progression and potential drug targets for ESCC clinical therapy.
引文
1. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell, 1997. 90(3): p. 403-4.
    2. Palmer, A. and R. Klein, Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev, 2003. 17(12): p. 1429-50.
    3. Wilkinson, D.G., Eph receptors and ephrins: regulators of guidance and assembly. Int Rev Cytol, 2000. 196: p. 177-244.
    4. Wilkinson, D.G., Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci, 2001. 2(3): p. 155-64.
    5. Brantley, D.M., et al., Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene, 2002. 21(46): p. 7011-26.
    6. Zelinski, D.P., et al., EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res, 2001. 61(5): p. 2301-6.
    7. Han, L., et al., The clinical significance of EphA2 and Ephrin A-1 in epithelial ovarian carcinomas. Gynecol Oncol, 2005. 99(2): p. 278-86.
    8. Thaker, P.H., et al., EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res, 2004. 10(15): p. 5145-50.
    9. Nakamura, R., et al., EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci, 2005. 96(1): p. 42-7.
    10. Duxbury, M.S., et al., Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun, 2004. 320(4): p. 1096-102.
    11. Duxbury, M.S., et al., EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene, 2004. 23(7): p. 1448-56.
    12. Zeng, G., et al., High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am J Pathol, 2003. 163(6): p. 2271-6.
    13. Walker-Daniels, J., et al., Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate, 1999. 41(4): p. 275-80.
    14. Easty, D.J., et al., Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression. Cancer Res, 1995. 55(12): p. 2528-32.
    15. Seftor, E.A., et al., Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol, 2002. 44(1): p. 17-27.
    16. Kinch, M.S. and K. Carles-Kinch, Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis, 2003. 20(1): p. 59-68.
    17. Wykosky, J., et al., EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res, 2005. 3(10): p. 541-51.
    18. Kikawa, K.D., et al., Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem, 2002. 277(42): p. 39274-9.
    19. Carles-Kinch, K., et al., Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res, 2002. 62(10): p. 2840-7.
    20. Zantek, N.D., et al., E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ, 1999. 10(9): p. 629-38.
    21. Deen, D.F., et al., Brain Tumor Working Group Report on the 9th International Conference on Brain Tumor Research and Therapy. Organ System Program, National Cancer Institute. J Neurooncol, 1993. 16(3): p. 243-72.
    22. Kleihues, P., et al., Histopathology, classification, and grading of gliomas. Glia, 1995. 15(3): p. 211-21.
    23. Landis, S.H., et al., Cancer statistics, 1999. CA Cancer J Clin, 1999. 49(1): p. 8-31, 1.
    24. Nakamoto, M. and A.D. Bergemann, Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech, 2002. 59(1): p. 58-67.
    25. Noblitt, L.W., et al., Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviralvectors that express EphrinA1. Cancer Gene Ther, 2004. 11(11): p. 757-66.
    26. Ogawa, K., et al., The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene, 2000. 19(52): p. 6043-52.
    27. Aasheim, H.C., et al., A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood, 2000. 95(1): p. 221-30.
    28. Finne, E.F., E. Munthe, and H.C. Aasheim, A new ephrin-A1 isoform (ephrin-A1b) with altered receptor binding properties abrogates the cleavage of ephrin-A1a. Biochem J, 2004. 379(Pt 1): p. 39-46.
    29. Tong, X., et al., Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem, 2001. 276(50): p. 47709-14.
    30. Xie, D., et al., Breast cancer. Cyr61 is overexpressed, estrogen-inducible, and associated with more advanced disease. J Biol Chem, 2001. 276(17): p. 14187-94.
    31. Trainer, D.L., et al., Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int J Cancer, 1988. 41(2): p. 287-96.
    32. Miao, H., et al., Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol, 2000. 2(2): p. 62-9.
    33. Carter, N., et al., EphrinA1-induced cytoskeletal re-organization requires FAK and p130(cas). Nat Cell Biol, 2002. 4(8): p. 565-73.
    34. Carragher, N.O., et al., Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem, 2001. 276(6): p. 4270-5.
    35. Carragher, N.O., et al., v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol, 2002. 22(1): p. 257-69.
    36. Wang, D., et al., p125 focal adhesion kinase promotes malignant astrocytoma cell proliferation in vivo. J Cell Sci, 2000. 113 Pt 23: p. 4221-30.
    37. Aguirre Ghiso, J.A., Inhibition of FAK signaling activated by urokinasereceptor induces dormancy in human carcinoma cells in vivo. Oncogene, 2002. 21(16): p. 2513-24.
    38. Chan, P.C., et al., Synergistic effect of focal adhesion kinase overexpression and hepatocyte growth factor stimulation on cell transformation. J Biol Chem, 2002. 277(52): p. 50373-9.
    39. Leyton, J., et al., Bombesin and gastrin releasing peptide increase tyrosine phosphorylation of focal adhesion kinase and paxillin in non-small cell lung cancer cells. Cancer Lett, 2001. 162(1): p. 87-95.
    40. Hauck, C.R., et al., Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res, 2001. 61(19): p. 7079-90.
    41. Noblitt, L.W., et al., Immunocompetent mouse model of breast cancer for preclinical testing of EphA2-targeted therapy. Cancer Gene Ther, 2005. 12(1): p. 46-53.
    1. Lerut, T., et al., Cancer of the esophagus and gastro-esophageal junction: potentially curative therapies. Surg Oncol, 2001. 10(3): p. 113-22.
    2. Law, S. and J. Wong, Current management of esophageal cancer. J Gastrointest Surg, 2005. 9(2): p. 291-310.
    3. Lu, S.H., Alterations of oncogenes and tumor suppressor genes in esophageal cancer in China. Mutat Res, 2000. 462(2-3): p. 343-53.
    4. McCabe, M.L. and Z. Dlamini, The molecular mechanisms of oesophageal cancer. Int Immunopharmacol, 2005. 5(7-8): p. 1113-30.
    5. Elton, E., Esophageal cancer. Dis Mon, 2005. 51(12): p. 664-84.
    6. Lambert, R., Diagnosis of esophagogastric tumors. Endoscopy, 2004. 36(2): p. 110-9.
    7. Lehrbach, D.M., M.E. Nita, and I. Cecconello, Molecular aspects of esophageal squamous cell carcinoma carcinogenesis. Arq Gastroenterol, 2003.
    40(4): p. 256-61.
    8. Squier, C.A. and M.J. Kremer, Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr, 2001(29): p. 7-15.
    9. Tabernero, J., et al., Novel targeted therapies in the treatment of gastric and esophageal cancer. Ann Oncol, 2005. 16(11): p. 1740-8.
    10. Tew, W.P., D.P. Kelsen, and D.H. Ilson, Targeted therapies for esophageal cancer. Oncologist, 2005. 10(8): p. 590-601.
    11. Prasannan, L., et al., Identification of beta-tubulin isoforms as tumor antigens in neuroblastoma. Clin Cancer Res, 2000. 6(10): p. 3949-56.
    12. Liotta, L. and E. Petricoin, Molecular profiling of human cancer. Nat Rev Genet, 2000. 1(1): p. 48-56.
    13. Emmert-Buck, M.R., et al., An approach to proteomic analysis of human tumors. Mol Carcinog, 2000. 27(3): p. 158-65.
    14. Qi, Y., et al., Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics, 2005. 5(11): p. 2960-71.
    15. Zhou, G., et al., 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics, 2002. 1(2): p. 117-24.
    16. Zhou, G., et al., Proteomic analysis of global alteration of protein expression in squamous cell carcinoma of the esophagus. Proteomics, 2005. 5(14): p. 3814-21.
    17. Nishimori, T., et al., Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics, 2006. 6(3): p. 1011-8.
    18. Yan, J.X., et al., A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 2000. 21(17): p. 3666-72.
    19. Shapland, C., et al., Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein. J Cell Biol, 1993. 121(5): p. 1065-73.
    20. Raval, G.N., et al., Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene, 2003. 22(40): p. 6194-203.
    21. Bharadwaj, S. and G.L. Prasad, Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett, 2002. 183(2): p. 205-13.
    22. Button, E., C. Shapland, and D. Lawson, Actin, its associated proteins and metastasis. Cell Motil Cytoskeleton, 1995. 30(4): p. 247-51.
    23. Otey, C.A. and O. Carpen, Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton, 2004. 58(2): p. 104-11.
    24. Althaus, F.R., Poly(ADP-ribose): a co-regulator of DNA methylation? Oncogene, 2005. 24(1): p. 11-2.
    25. Bryant, H.E., et al., Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005. 434(7035): p.913-7.
    26. Fella, K., et al., Use of two-dimensional gel electrophoresis in predictive toxicology: identification of potential early protein biomarkers in chemically induced hepatocarcinogenesis. Proteomics, 2005. 5(7): p. 1914-27.
    27. Hermeking, H., The 14-3-3 cancer connection. Nat Rev Cancer, 2003. 3(12): p. 931-43.
    28. Shen, J., et al., Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res, 2004. 64(24): p. 9018-26.
    29. Wang, Y., R. Hanley, and R.L. Klemke, Computational methods for comparison of large genomic and proteomic datasets reveal protein markers of metastatic cancer. J Proteome Res, 2006. 5(4): p. 907-15.
    30. Banks-Schlegel, S.P. and J. Quintero, Growth and differentiation of human esophageal carcinoma cell lines. Cancer Res, 1986. 46(1): p. 250-8.
    31. Weber, T. and E. Klar, Minimal residual disease in thyroid carcinoma. Semin Surg Oncol, 2001. 20(4): p. 272-7.
    32. Yuan, C.C., et al., Elevated cytokeratin-19 expression associated with apoptotic resistance and malignant progression of human cervical carcinoma. Apoptosis, 1998. 3(3): p. 161-9.
    33. Wulfkuhle, J.D., et al., Proteomics of human breast ductal carcinoma in situ. Cancer Res, 2002. 62(22): p. 6740-9.
    34. Shields, J.M., K. Rogers-Graham, and C.J. Der, Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J Biol Chem, 2002. 277(12): p. 9790-9.
    35. Chang, H.Y. and X. Yang, Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev, 2000. 64(4): p. 821-46.
    36. Kelekar, A. and C.B. Thompson, Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol, 1998. 8(8): p. 324-30.
    37. Wolter, K.G., et al., Movement of Bax from the cytosol to mitochondria duringapoptosis. J Cell Biol, 1997. 139(5): p. 1281-92.
    38. Dalhoff, K., K. Buus Jensen, and H. Enghusen Poulsen, Cancer and molecular biomarkers of phase 2. Methods Enzymol, 2005. 400: p. 618-27.
    39. Zeng, G., et al., Variations in gene expression patterns correlated with phenotype of F-11 tumor cells whose expression of GD3-synthase is suppressed. Cancer Lett, 2002. 178(1): p. 91-8.
    40. Zhang, J., et al., Cloning and functional characterization of GMPR2, a novel human guanosine monophosphate reductase, which promotes the monocytic differentiation of HL-60 leukemia cells. J Cancer Res Clin Oncol, 2003. 129(2): p. 76-83.
    41. Hirata, R.D., et al., Creatine kinase and lactate dehydrogenase isoenzymes in serum and tissues of patients with stomach adenocarcinoma. Clin Chem, 1989. 35(7): p. 1385-9.
    42. Koven, I.H., et al., Macro--creatine kinase 2: a possible marker of gastrointestinal cancer? Surgery, 1983. 94(4): p. 631-5.
    43. He, Q.Y., et al., Diverse proteomic alterations in gastric adenocarcinoma. Proteomics, 2004. 4(10): p. 3276-87.
    44. Pelicano, H., et al., Glycolysis inhibition for anticancer treatment. Oncogene, 2006. 25(34): p. 4633-46.
    45. Kim, J.W. and C.V. Dang, Multifaceted roles of glycolytic enzymes. Trends Biochem Sci, 2005. 30(3): p. 142-50.
    46. Zhao, J., et al., Comparative proteomic analysis of Barrett's metaplasia and esophageal adenocarcinomas using 2-D liquid mass mapping. Mol Cell Proteomics, 2007.
    47. Durany, N., et al., Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma. Br J Cancer, 2000. 82(1): p. 20-7.
    48. Lee, K.A., et al., Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics. Proteomics, 2004. 4(3): p. 839-48.
    49. Stierum, R., et al., Proteome analysis reveals novel proteins associated with proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochim Biophys Acta, 2003. 1650(1-2): p. 73-91.
    50. Korneeva, I., et al., IgA antibodies to the 27-kDa heat-shock protein in the genital tracts of women with gynecologic cancers. Int J Cancer, 2000. 87(6): p. 824-8.
    51. Li, J. and A.S. Lee, Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med, 2006. 6(1): p. 45-54.
    52. Hsu, W.M., et al., GRP78 expression correlates with histologic differentiation and favorable prognosis in neuroblastic tumors. Int J Cancer, 2005. 113(6): p. 920-7.
    53. Uramoto, H., et al., Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer, 2005. 49(1): p. 55-62.
    54. Przepiorka, D. and P.K. Srivastava, Heat shock protein--peptide complexes as immunotherapy for human cancer. Mol Med Today, 1998. 4(11): p. 478-84.
    55. Singhal, S., et al., Gene expression profiling of malignant mesothelioma. Clin Cancer Res, 2003. 9(8): p. 3080-97.
    56. Suriano, R., et al., Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention. Cancer Res, 2005. 65(14): p. 6466-75.
    57. O'Connell, J., et al., Resistance to Fas (APO-1/CD95)-mediated apoptosis and expression of Fas ligand in esophageal cancer: the Fas counterattack. Dis Esophagus, 1999. 12(2): p. 83-9.
    58. Kappe, G., et al., The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones, 2003. 8(1): p. 53-61.
    59. Ganea, E., Chaperone-like activity of alpha-crystallin and other small heat shock proteins. Curr Protein Pept Sci, 2001. 2(3): p. 205-25.
    60. Hu, N., et al., Comprehensive characterization of annexin I alterations inesophageal squamous cell carcinoma. Clin Cancer Res, 2004. 10(18 Pt 1): p. 6013-22.
    61. Bae, S.M., et al., Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecol Oncol, 2005. 99(1): p. 26-35.
    62. Turhani, D., et al., Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis, 2006. 27(7): p. 1417-23.
    63. Xu, Z., et al., Novel human esophagus-specific gene c1orf10: cDNA cloning, gene structure, and frequent loss of expression in esophageal cancer. Genomics, 2000. 69(3): p. 322-30.
    64. Hirata, S., et al., [Studies on antigen associated with human squamous cell carcinoma (SCC antigen) in patients with esophageal carcinoma]. Nippon Geka Gakkai Zasshi, 1989. 90(2): p. 267-72.
    65. Matsuda, H., et al., Immunohistochemical evaluation of squamous cell carcinoma antigen and S-100 protein-positive cells in human malignant esophageal tissues. Cancer, 1990. 65(10): p. 2261-5.
    1. Hirai, H., et al., A novel putative tyrosine kinase receptor encoded by the eph gene. Science, 1987. 238(4834): p. 1717-20.
    2. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell, 1997. 90(3): p. 403-4.
    3. Sasaki, E., et al., ephA9, a novel avian receptor tyrosine kinase gene. Gene, 2003. 316: p. 103-10.
    4. Menzel, P., et al., Ephrin-A6, a new ligand for EphA receptors in the developing visual system. Dev Biol, 2001. 230(1): p. 74-88.
    5. Bruckner, K., E.B. Pasquale, and R. Klein, Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science, 1997. 275(5306): p. 1640-3.
    6. Holland, S.J., et al., Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature, 1996. 383(6602): p. 722-5.
    7. Lu, Q., et al., Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell, 2001. 105(1): p. 69-79.
    8. Holder, N. and R. Klein, Eph receptors and ephrins: effectors of morphogenesis. Development, 1999. 126(10): p. 2033-44.
    9. Foo, S.S., et al., Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell, 2006. 124(1): p. 161-73.
    10. Marquardt, T., et al., Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell, 2005. 121(1): p. 127-39.
    11. Cutforth, T., et al., Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map. Cell, 2003. 114(3): p. 311-22.
    12. Wang, H.U., Z.F. Chen, and D.J. Anderson, Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 1998. 93(5): p. 741-53.
    13. Cooke, J.E. and C.B. Moens, Boundary formation in the hindbrain: Eph only itwere simple. Trends Neurosci, 2002. 25(5): p. 260-7.
    14. Karam, S.D., et al., Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J Neurosci, 2000. 20(17): p. 6488-500.
    15. Rogers, J.H., et al., Eph receptors and ephrins demarcate cerebellar lobules before and during their formation. Mech Dev, 1999. 87(1-2): p. 119-28.
    16. Boyle, M., A. Nighorn, and J.B. Thomas, Drosophila Eph receptor guides specific axon branches of mushroom body neurons. Development, 2006. 133(9): p. 1845-54.
    17. Ciossek, T., et al., Eph receptor-ligand interactions are necessary for guidance of retinal ganglion cell axons in vitro. Eur J Neurosci, 1998. 10(5): p. 1574-80.
    18. Zisch, A.H. and E.B. Pasquale, The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res, 1997. 290(2): p. 217-26.
    19. Orioli, D. and R. Klein, The Eph receptor family: axonal guidance by contact repulsion. Trends Genet, 1997. 13(9): p. 354-9.
    20. Brennan, C., et al., Two Eph receptor tyrosine kinase ligands control axon growth and may be involved in the creation of the retinotectal map in the zebrafish. Development, 1997. 124(3): p. 655-64.
    21. Kasemeier-Kulesa, J.C., et al., Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development, 2006. 133(24): p. 4839-47.
    22. Merrill, A.E., et al., Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet, 2006. 15(8): p. 1319-28.
    23. Cooke, J., et al., Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development, 2001. 128(4): p. 571-80.
    24. Drescher, U., The Eph family in the patterning of neural development. Curr Biol, 1997. 7(12): p. R799-807.
    25. Robinson, V., et al., Roles of Eph receptors and ephrins in neural crestpathfinding. Cell Tissue Res, 1997. 290(2): p. 265-74.
    26. Krull, C.E., et al., Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol, 1997. 7(8): p. 571-80.
    27. Winning, R.S. and T.D. Sargent, Pagliaccio, a member of the Eph family of receptor tyrosine kinase genes, has localized expression in a subset of neural crest and neural tissues in Xenopus laevis embryos. Mech Dev, 1994. 46(3): p. 219-29.
    28. Lazarova, P., et al., Growth factor receptors in hematopoietic stem cells: EPH family expression in CD34+ and CD133+ cell populations from mobilized peripheral blood. Int J Immunopathol Pharmacol, 2006. 19(1): p. 49-56.
    29. Siddiqui, S.A. and K.S. Cramer, Differential expression of Eph receptors and ephrins in the cochlear ganglion and eighth cranial nerve of the chick embryo. J Comp Neurol, 2005. 482(4): p. 309-19.
    30. Lickliter, J.D., et al., Embryonic stem cells express multiple Eph-subfamily receptor tyrosine kinases. Proc Natl Acad Sci U S A, 1996. 93(1): p. 145-50.
    31. Wohlfahrt, J.G., et al., Ephrin-A1 suppresses Th2 cell activation and provides a regulatory link to lung epithelial cells. J Immunol, 2004. 172(2): p. 843-50.
    32. Maekawa, H., et al., Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature. Arterioscler Thromb Vasc Biol, 2003. 23(11): p. 2008-14.
    33. Yu, G., et al., Ephrin B2 induces T cell costimulation. J Immunol, 2003. 171(1): p. 106-14.
    34. Murai, K.K. and E.B. Pasquale, 'Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci, 2003. 116(Pt 14): p. 2823-32.
    35. Pasquale, E.B., Eph-ephrin promiscuity is now crystal clear. Nat Neurosci, 2004. 7(5): p. 417-8.
    36. Aasheim, H.C., et al., Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis. Biochim Biophys Acta, 2005. 1723(1-3): p. 1-7.
    37. Cooke, J.E., H.A. Kemp, and C.B. Moens, EphA4 is required for cell adhesionand rhombomere-boundary formation in the zebrafish. Curr Biol, 2005. 15(6): p. 536-42.
    38. Cramer, K.S., et al., Expression of EphB receptors and EphrinB ligands in the developing chick auditory brainstem. J Comp Neurol, 2002. 452(1): p. 51-64.
    39. Gale, N.W., et al., Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron, 1996. 17(1): p. 9-19.
    40. Himanen, J.P., et al., Crystal structure of an Eph receptor-ephrin complex. Nature, 2001. 414(6866): p. 933-8.
    41. Wimmer-Kleikamp, S.H., et al., Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J Cell Biol, 2004. 164(5): p. 661-6.
    42. Kullander, K., et al., Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science, 2003. 299(5614): p. 1889-92.
    43. Takemoto, M., et al., Ephrin-B3-EphA4 interactions regulate the growth of specific thalamocortical axon populations in vitro. Eur J Neurosci, 2002. 16(6): p. 1168-72.
    44. Holland, S.J., et al., Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. Embo J, 1997. 16(13): p. 3877-88.
    45. Zisch, A.H., et al., Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene, 1998. 16(20): p. 2657-70.
    46. Stein, E., et al., Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase. J Biol Chem, 1998. 273(3): p. 1303-8.
    47. Yu, H.H., et al., Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene, 2001. 20(30): p. 3995-4006.
    48. Stein, E., et al., Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev, 1998. 12(5): p. 667-78.
    49. Shamah, S.M., et al., EphA receptors regulate growth cone dynamics throughthe novel guanine nucleotide exchange factor ephexin. Cell, 2001. 105(2): p. 233-44.
    50. Pandey, A., H. Duan, and V.M. Dixit, Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase. J Biol Chem, 1995. 270(33): p. 19201-4.
    51. Stein, E., D.P. Cerretti, and T.O. Daniel, Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. J Biol Chem, 1996. 271(38): p. 23588-93.
    52. Kalo, M.S. and E.B. Pasquale, Multiple in vivo tyrosine phosphorylation sites in EphB receptors. Biochemistry, 1999. 38(43): p. 14396-408.
    53. Matsuoka, H., et al., Biphasic functions of the kinase-defective Ephb6 receptor in cell adhesion and migration. J Biol Chem, 2005. 280(32): p. 29355-63.
    54. Luo, H., et al., EphB6-null mutation results in compromised T cell function. J Clin Invest, 2004. 114(12): p. 1762-73.
    55. Freywald, A., N. Sharfe, and C.M. Roifman, The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J Biol Chem, 2002. 277(6): p. 3823-8.
    56. Luo, H., et al., Cross-linking of EphB6 resulting in signal transduction and apoptosis in Jurkat cells. J Immunol, 2001. 167(3): p. 1362-70.
    57. Shimoyama, M., et al., T-cell-specific expression of kinase-defective Eph-family receptor protein, EphB6 in normal as well as transformed hematopoietic cells. Growth Factors, 2000. 18(1): p. 63-78.
    58. Torres, R., et al., PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron, 1998. 21(6): p. 1453-63.
    59. Hock, B., et al., PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci U S A, 1998. 95(17): p. 9779-84.
    60. Buchert, M., et al., The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell-cell contact in the brain. J Cell Biol, 1999. 144(2): p. 361-71.
    61. Noren, N.K., et al., Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci U S A, 2004. 101(15): p. 5583-8.
    62. Vogt, T., et al., Overexpression of Lerk-5/Eplg5 messenger RNA: a novel marker for increased tumorigenicity and metastatic potential in human malignant melanomas. Clin Cancer Res, 1998. 4(3): p. 791-7.
    63. Davalos, V., et al., High EPHB2 mutation rate in gastric but not endometrial tumors with microsatellite instability. Oncogene, 2006.
    64. Batlle, E., et al., EphB receptor activity suppresses colorectal cancer progression. Nature, 2005. 435(7045): p. 1126-30.
    65. Holland, S.J., et al., Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol, 1998. 8(1): p. 117-27.
    66. Prevost, N., et al., Eph kinases and ephrins support thrombus growth and stability by regulating integrin outside-in signaling in platelets. Proc Natl Acad Sci U S A, 2005. 102(28): p. 9820-5.
    67. Jaworski, S., et al., [Extracellular matrix of the umbilical cord vein in EPH gestosis and fibroblast growth factor]. Ginekol Pol, 2003. 74(10): p. 1100-6.
    68. Iiizumi, M., et al., EphA4 receptor, overexpressed in pancreatic ductal adenocarcinoma, promotes cancer cell growth. Cancer Sci, 2006. 97(11): p. 1211-6.
    69. Becker, E., et al., Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol Cell Biol, 2000. 20(5): p. 1537-45.
    70. Huynh-Do, U., et al., Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. Embo J, 1999. 18(8): p. 2165-73.
    71. Zou, J.X., et al., An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci U S A, 1999. 96(24): p. 13813-8.
    72. Miao, H., et al., Activation of EphA2 kinase suppresses integrin function andcauses focal-adhesion-kinase dephosphorylation. Nat Cell Biol, 2000. 2(2): p. 62-9.
    73. Van Etten, R.A., Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol, 1999. 9(5): p. 179-86.
    74. Wahl, S., et al., Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol, 2000. 149(2): p. 263-70.
    75. Steinle, J.J., et al., Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J Biol Chem, 2002. 277(46): p. 43830-5.
    76. Nakada, M., et al., The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res, 2004. 64(9): p. 3179-85.
    77. Armstrong, J.N., et al., B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J Neurosci, 2006. 26(13): p. 3474-81.
    78. Holmberg, J., et al., Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev, 2005. 19(4): p. 462-71.
    79. Hafner, C., et al., Ephrin-B reverse signaling induces expression of wound healing associated genes in IEC-6 intestinal epithelial cells. World J Gastroenterol, 2005. 11(29): p. 4511-8.
    80. Lu, Q., E.E. Sun, and J.G. Flanagan, Analysis of PDZ-RGS3 function in ephrin-B reverse signaling. Methods Enzymol, 2004. 390: p. 120-8.
    81. Davy, A., J. Aubin, and P. Soriano, Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev, 2004. 18(5): p. 572-83.
    82. Cowan, C.A., et al., Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development. Dev Biol, 2004. 271(2): p. 263-71.
    83. Xu, Z., et al., Ephrin-B1 reverse signaling activates JNK through a novel mechanism that is independent of tyrosine phosphorylation. J Biol Chem, 2003. 278(27): p. 24767-75.
    84. Cowan, C.A. and M. Henkemeyer, The SH2/SH3 adaptor Grb4 transducesB-ephrin reverse signals. Nature, 2001. 413(6852): p. 174-9.
    85. Henkemeyer, M., et al., Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell, 1996. 86(1): p. 35-46.
    86. Bruckner, K., et al., EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron, 1999. 22(3): p. 511-24.
    87. Palmer, A., et al., EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell, 2002. 9(4): p. 725-37.
    88. Otal, R., et al., Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus. Neuroscience, 2006. 141(1): p. 109-21.
    89. Aoki, M., T. Yamashita, and M. Tohyama, EphA receptors direct the differentiation of mammalian neural precursor cells through a mitogen-activated protein kinase-dependent pathway. J Biol Chem, 2004. 279(31): p. 32643-50.
    90. Colas, J.F. and G.C. Schoenwolf, Differential expression of two cell adhesion molecules, Ephrin-A5 and Integrin alpha6, during cranial neurulation in the chick embryo. Dev Neurosci, 2003. 25(5): p. 357-65.
    91. Davy, A. and S.M. Robbins, Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. Embo J, 2000. 19(20): p. 5396-405.
    92. Davy, A., et al., Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev, 1999. 13(23): p. 3125-35.
    93. Huai, J. and U. Drescher, An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J Biol Chem, 2001. 276(9): p. 6689-94.
    94. Knoll, B., et al., A role for the EphA family in the topographic targeting of vomeronasal axons. Development, 2001. 128(6): p. 895-906.
    95. Oh, P. and J.E. Schnitzer, Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereasG(i) and G(s) target lipid rafts by default. Mol Biol Cell, 2001. 12(3): p. 685-98.
    96. Ropert, C. and R.T. Gazzinelli, Signaling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa. Curr Opin Microbiol, 2000. 3(4): p. 395-403.
    97. Flenniken, A.M., et al., Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev Biol, 1996. 179(2): p. 382-401.
    98. Mellitzer, G., Q. Xu, and D.G. Wilkinson, Eph receptors and ephrins restrict cell intermingling and communication. Nature, 1999. 400(6739): p. 77-81.
    99. Cheng, H.J. and J.G. Flanagan, Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell, 1994. 79(1): p. 157-68.
    100. Drescher, U., et al., In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell, 1995. 82(3): p. 359-70.
    101. Monschau, B., et al., Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. Embo J, 1997. 16(6): p. 1258-67.
    102. Maru, Y., et al., Evolution, expression, and chromosomal location of a novel receptor tyrosine kinase gene, eph. Mol Cell Biol, 1988. 8(9): p. 3770-6.
    103. Maru, Y., H. Hirai, and F. Takaku, Overexpression confers an oncogenic potential upon the eph gene. Oncogene, 1990. 5(3): p. 445-7.
    104. Hafner, C., et al., Expression profile of Eph receptors and ephrin ligands in human skin and downregulation of EphA1 in nonmelanoma skin cancer. Mod Pathol, 2006. 19(10): p. 1369-77.
    105. Easty, D.J., et al., Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression. Cancer Res, 1995. 55(12): p. 2528-32.
    106. Lin, Y.G., et al., EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer, 2006.
    107. Guo, H., et al., Disruption of EphA2 receptor tyrosine kinase leads to increasedsusceptibility to carcinogenesis in mouse skin. Cancer Res, 2006. 66(14): p. 7050-8.
    108. Landen, C.N., M.S. Kinch, and A.K. Sood, EphA2 as a target for ovarian cancer therapy. Expert Opin Ther Targets, 2005. 9(6): p. 1179-87.
    109. Kataoka, H., et al., Correlation of EPHA2 overexpression with high microvessel count in human primary colorectal cancer. Cancer Sci, 2004. 95(2): p. 136-41.
    110. Lu, M., et al., EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res, 2003. 63(12): p. 3425-9.
    111. Kinch, M.S. and K. Carles-Kinch, Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis, 2003. 20(1): p. 59-68.
    112. Miyazaki, T., et al., EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer, 2003. 103(5): p. 657-63.
    113. Zelinski, D.P., et al., EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res, 2001. 61(5): p. 2301-6.
    114. Walker-Daniels, J., et al., Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate, 1999. 41(4): p. 275-80.
    115. Wicks, I.P., et al., Molecular cloning of HEK, the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines. Proc Natl Acad Sci U S A, 1992. 89(5): p. 1611-5.
    116. Wang, J., et al., Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene, 2005. 24(36): p. 5637-47.
    117. Kiyokawa, E., et al., Overexpression of ERK, an EPH family receptor protein tyrosine kinase, in various human tumors. Cancer Res, 1994. 54(14): p. 3645-50.
    118. Kataoka, H., et al., Expression profile of EFNB1, EFNB2, two ligands of EPHB2 in human gastric cancer. J Cancer Res Clin Oncol, 2002. 128(7): p. 343-8.
    119. Guo, D.L., et al., Reduced expression of EphB2 that parallels invasion and metastasis in colorectal tumours. Carcinogenesis, 2006. 27(3): p. 454-64.
    120. Jubb, A.M., et al., EphB2 is a prognostic factor in colorectal cancer. Clin Cancer Res, 2005. 11(14): p. 5181-7.
    121. Berclaz, G., et al., Expression of the receptor protein tyrosine kinase myk-1/htk in normal and malignant mammary epithelium. Biochem Biophys Res Commun, 1996. 226(3): p. 869-75.
    122. Kumar, S.R., et al., Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am J Pathol, 2006. 169(1): p. 279-93.
    123. Yang, N.Y., et al., The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells through Rho-mediated actin cytoskeleton reorganization. J Biol Chem, 2006. 281(43): p. 32574-86.
    124. Xia, G., et al., EphB4 expression and biological significance in prostate cancer. Cancer Res, 2005. 65(11): p. 4623-32.
    125. Tang, X.X., et al., Implications of EPHB6, EFNB2, and EFNB3 expressions in human neuroblastoma. Proc Natl Acad Sci U S A, 2000. 97(20): p. 10936-41.
    126. Tang, X.X., et al., High-level expression of EPHB6, EFNB2, and EFNB3 is associated with low tumor stage and high TrkA expression in human neuroblastomas. Clin Cancer Res, 1999. 5(6): p. 1491-6.
    127. Hafner, C., et al., Loss of EphB6 expression in metastatic melanoma. Int J Oncol, 2003. 23(6): p. 1553-9.
    128. Easty, D.J., et al., Up-regulation of ephrin-A1 during melanoma progression. Int J Cancer, 1999. 84(5): p. 494-501.
    129. Meyer, S., et al., Ephrin-B2 overexpression enhances integrin-mediated ECM-attachment and migration of B16 melanoma cells. Int J Oncol, 2005. 27(5): p. 1197-206.
    130. Iida, H., et al., Ephrin-A1 expression contributes to the malignant characteristics of {alpha}-fetoprotein producing hepatocellular carcinoma. Gut, 2005. 54(6): p. 843-51.
    131. Castellvi, J., et al., Ephrin B expression in epithelial ovarian neoplasms correlates with tumor differentiation and angiogenesis. Hum Pathol, 2006. 37(7): p. 883-9.
    132. Liu, W., et al., Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer, 2002. 94(4): p. 934-9.
    133. Nakada, M., et al., Ephrin-B3 Ligand Promotes Glioma Invasion through Activation of Rac1. Cancer Res, 2006. 66(17): p. 8492-500.
    134. Miao, H., et al., Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol, 2001. 3(5): p. 527-30.
    135. Tuzi, N.L. and W.J. Gullick, eph, the largest known family of putative growth factor receptors. Br J Cancer, 1994. 69(3): p. 417-21.
    136. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25.
    137. Gu, C. and S. Park, The EphA8 receptor regulates integrin activity through p110gamma phosphatidylinositol-3 kinase in a tyrosine kinase activity-independent manner. Mol Cell Biol, 2001. 21(14): p. 4579-97.
    138. Miao, H., et al., Inhibition of integrin-mediated cell adhesion but not directional cell migration requires catalytic activity of EphB3 receptor tyrosine kinase. Role of Rho family small GTPases. J Biol Chem, 2005. 280(2): p. 923-32.
    139. Huynh-Do, U., et al., Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J Cell Sci, 2002. 115(Pt 15): p. 3073-81.
    140. Zisch, A.H., et al., Tyrosine phosphorylation of L1 family adhesion molecules: implication of the Eph kinase Cek5. J Neurosci Res, 1997. 47(6): p. 655-65.
    141. Carles-Kinch, K., et al., Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res, 2002. 62(10): p. 2840-7.
    142. Lawrenson, I.D., et al., Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci, 2002. 115(Pt 5): p. 1059-72.
    143. Marston, D.J., S. Dickinson, and C.D. Nobes, Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat Cell Biol, 2003. 5(10): p. 879-88.
    144. Klein, R., Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol, 2004. 16(5): p. 580-9.
    145. McKinnell, I.W., et al., EphA4, RhoB and the molecular development of featherbuds are maintained by the integrity of the actin cytoskeleton. Dev Biol, 2004. 270(1): p. 94-105.
    146. Noren, N.K. and E.B. Pasquale, Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal, 2004. 16(6): p. 655-66.
    147. El-Hashash, A.H. and S.J. Kimber, PTHrP induces changes in cell cytoskeleton and E-cadherin and regulates Eph/Ephrin kinases and RhoGTPases in murine secondary trophoblast cells. Dev Biol, 2006. 290(1): p. 13-31.
    148. Fu, W.Y., et al., Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci, 2006.
    149. Ogawa, K., et al., EphB2 and ephrin-B1 expressed in the adult kidney regulate the cytoarchitecture of medullary tubule cells through Rho family GTPases. J Cell Sci, 2006. 119(Pt 3): p. 559-70.
    150. Mackay, D.J. and A. Hall, Rho GTPases. J Biol Chem, 1998. 273(33): p. 20685-8.
    151. Zohn, I.M., et al., Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene, 1998. 17(11 Reviews): p. 1415-38.
    152. Banyard, J., et al., Motility and invasion are differentially modulated by Rho family GTPases. Oncogene, 2000. 19(4): p. 580-91.
    153. Ogawa, K., et al., The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene, 2000. 19(52): p. 6043-52.
    154. Brantley, D.M., et al., Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene, 2002. 21(46): p. 7011-26.
    155. Dobrzanski, P., et al., Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res, 2004. 64(3): p. 910-9.
    156. Martiny-Baron, G., et al., Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia, 2004. 6(3): p. 248-57.
    157. Erber, R., et al., EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. Embo J, 2006. 25(3): p. 628-41.
    158. Brantley-Sieders, D.M., et al., Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor andvascular endothelial growth factor in mice. Cancer Res, 2006. 66(21): p. 10315-24.
    159. Brantley-Sieders, D.M., et al., Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. Faseb J, 2005. 19(13): p. 1884-6.
    1. Napoli, C., C. Lemieux, and R. Jorgensen, Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell, 1990. 2(4): p. 279-289.
    2. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11.
    3. Kolfschoten, I.G., et al., A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell, 2005. 121(6): p. 849-58.
    4. Friedman, A. and N. Perrimon, A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature, 2006. 444(7116): p. 230-4.
    5. Gwack, Y., et al., A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature, 2006. 441(7093): p. 646-50.
    6. Hannon, G.J. and J.J. Rossi, Unlocking the potential of the human genome with RNA interference. Nature, 2004. 431(7006): p. 371-8.
    7. Elbashir, S.M., et al., Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J, 2001. 20(23): p. 6877-88.
    8. Tuschl, T., et al., Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev, 1999. 13(24): p. 3191-7.
    9. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
    10. Elbashir, S.M., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001. 411(6836): p. 494-8.
    11. Kidner, C.A. and R.A. Martienssen, The developmental role of microRNA in plants. Curr Opin Plant Biol, 2005. 8(1): p. 38-44.
    12. Tang, G., siRNA and miRNA: an insight into RISCs. Trends Biochem Sci, 2005. 30(2): p. 106-14.
    13. Cullen, B.R., Transcription and processing of human microRNA precursors. Mol Cell, 2004. 16(6): p. 861-5.
    14. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
    15. Gilmore, I.R., et al., Delivery strategies for siRNA-mediated gene silencing. Curr Drug Deliv, 2006. 3(2): p. 147-5.
    16. Sijen, T., et al., On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001. 107(4): p. 465-76.
    17. Song, E., et al., Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol, 2003. 77(13): p. 7174-81.
    18. Song, E., et al., RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003. 9(3): p. 347-51.
    19. Brummelkamp, T.R., R. Bernards, and R. Agami, Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2002. 2(3): p. 243-7.
    20. Lois, C., et al., Retroviruses as tools to study the immune system. Curr Opin Immunol, 2001. 13(4): p. 496-504.
    21. Lu, S. and B.R. Cullen, Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol, 2004. 78(23): p. 12868-76.
    22. Uchida, H., et al., Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther, 2004. 10(1): p. 162-71.
    23. Arts, G.J., et al., Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res, 2003. 13(10): p. 2325-32.
    24. Amalfitano, A., Utilization of adenovirus vectors for multiple gene transfer applications. Methods, 2004. 33(2): p. 173-8.
    25. Amalfitano, A., Use of multiply deleted adenovirus vectors to probe adenovirus vector performance and toxicities. Curr Opin Mol Ther, 2003. 5(4): p. 362-6.
    26. Shen, C., et al., Gene silencing by adenovirus-delivered siRNA. FEBS Lett, 2003. 539(1-3): p. 111-4.
    27. Zhao, L.J., H. Jian, and H. Zhu, Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene, 2003. 316: p. 137-41.
    28. Thomas, C.E., A. Ehrhardt, and M.A. Kay, Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet, 2003. 4(5): p. 346-58.
    29. McCaffrey, A.P., et al., RNA interference in adult mice. Nature, 2002. 418(6893): p. 38-9.
    30. Lewis, D.L., et al., Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet, 2002. 32(1): p. 107-8.
    31. Yano, J., et al., Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res, 2004. 10(22): p. 7721-6.
    32. Nogawa, M., et al., Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer. J Clin Invest, 2005. 115(4): p. 978-85.
    33. Verma, U.N., et al., Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res, 2003. 9(4): p. 1291-300.
    34. Carrere, N., et al., Characterization of the bystander effect of somatostatin receptor sst2 after in vivo gene transfer into human pancreatic cancer cells. Hum Gene Ther, 2005. 16(10): p. 1175-93.
    35. Song, E., et al., Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 2005. 23(6): p. 709-17.
    36. Minakuchi, Y., et al., Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res, 2004. 32(13): p. e109.
    37. Ochiya, T., et al., New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med, 1999. 5(6): p. 707-10.
    38. Honma, K., T. Miyata, and T. Ochiya, The role of atelocollagen-based cell transfection array in high-throughput screening of gene functions and in drug discovery. Curr Drug Discov Technol, 2004. 1(4): p. 287-94.
    39. Vogelstein, B. and K.W. Kinzler, Cancer genes and the pathways they control. Nat Med, 2004. 10(8): p. 789-99.
    40. Futreal, P.A., et al., A census of human cancer genes. Nat Rev Cancer, 2004. 4(3): p. 177-83.
    41. Zhang, M., et al., Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol Sin, 2004. 25(1): p. 61-7.
    42. Kang, C.S., et al., Suppression of EGFR expression by antisense or small interference RNA inhibits U251 glioma cell growth in vitro and in vivo. Cancer Gene Ther, 2006. 13(5): p. 530-8.
    43. Choudhury, A., et al., Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer, 2004. 108(1): p. 71-7.
    44. Yang, G., et al., Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem, 2004. 279(6): p. 4339-45.
    45. Wohlbold, L., et al., Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood, 2003. 102(6): p. 2236-9.
    46. Chen, J., et al., Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest, 2004. 113(12): p. 1784-91.
    47. Duxbury, M.S., et al., EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene, 2004. 23(7): p. 1448-56.
    48. Duxbury, M.S., et al., siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity. J Am Coll Surg, 2004.198(6): p. 953-9.
    49. van de Wetering, M., et al., Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep, 2003. 4(6): p. 609-15.
    50. Wang, Y.H., et al., Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res, 2005. 7(2): p. R220-8.
    51. Zhang, L., et al., RNA interference: a potential strategy for isoform-specific phosphatidylinositol 3-kinase targeted therapy in ovarian cancer. Cancer Biol Ther, 2004. 3(12): p. 1283-9.
    52. Noske, A., et al., Specific inhibition of AKT2 by RNA interference results in reduction of ovarian cancer cell proliferation: Increased expression of AKT in advanced ovarian cancer. Cancer Lett, 2007. 246(1-2): p. 190-200.
    53. Reagan-Shaw, S. and N. Ahmad, RNA interference-mediated depletion of phosphoinositide 3-kinase activates forkhead box class O transcription factors and induces cell cycle arrest and apoptosis in breast carcinoma cells. Cancer Res, 2006. 66(2): p. 1062-9.
    54. Gagnon, V., et al., AKT involvement in cisplatin chemoresistance of human uterine cancer cells. Gynecol Oncol, 2004. 94(3): p. 785-95.
    55. zur Hausen, H., Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer, 2002. 2(5): p. 342-50.
    56. Jiang, M. and J. Milner, Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 2002. 21(39): p. 6041-8.
    57. DuPree, E.L., S. Mazumder, and A. Almasan, Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res, 2004. 64(13): p. 4390-3.
    58. Danovi, D., et al., Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol, 2004. 24(13): p. 5835-43.
    59. Yu, Y., et al., Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin. Biochem Biophys Res Commun, 2006. 339(1): p. 71-8.
    60. Purow, B.W., et al., Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res, 2005. 65(6): p. 2353-63.
    61. Yuan, J., et al., Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene, 2004. 23(34): p. 5843-52.
    62. Roberson, R.S., et al., Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res, 2005. 65(7): p. 2795-803.
    63. Zen, Y., et al., Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-beta1 by overexpression of cyclin D1. Lab Invest, 2005. 85(4): p. 572-81.
    64. Xiao, Z., et al., A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene, 2005. 24(8): p. 1403-11.
    65. Abedini, M.R., et al., Possible role of FLICE-like inhibitory protein (FLIP) in chemoresistant ovarian cancer cells in vitro. Oncogene, 2004. 23(42): p. 6997-7004.
    66. Zangemeister-Wittke, U., Antisense to apoptosis inhibitors facilitates chemotherapy and TRAIL-induced death signaling. Ann N Y Acad Sci, 2003. 1002: p. 90-4.
    67. Lima, R.T., et al., Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther, 2004. 11(5): p. 309-16.
    68. Tran, N.L., et al., The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFkappaB pathway activation and BCL-XL/BCL-W expression. J Biol Chem, 2005. 280(5): p. 3483-92.
    69. Ning, S., et al., siRNA-mediated down-regulation of survivin inhibits bladder cancer cell growth. Int J Oncol, 2004. 25(4): p. 1065-71.
    70. Cheng, S.Q., et al., Knockdown of survivin gene expression by RNAi induces apoptosis in human hepatocellular carcinoma cell line SMMC-7721. World J Gastroenterol, 2005. 11(5): p. 756-9.
    71. Kitajima, S., et al., Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am J Pathol, 2004. 165(6): p. 2147-55.
    72. Sumimoto, H., et al., Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther, 2005. 12(1): p. 95-100.
    73. Kudo, Y., et al., Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation. Mol Cancer Ther, 2005. 4(3): p. 471-6.
    74. Lipscomb, E.A., et al., Use of RNA interference to inhibit integrin (alpha6beta4)-mediated invasion and migration of breast carcinoma cells. Clin Exp Metastasis, 2003. 20(6): p. 569-76.
    75. Chen, Y., G. Stamatoyannopoulos, and C.Z. Song, Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res, 2003. 63(16): p. 4801-4.
    76. Liang, Z., et al., Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res, 2005. 65(3): p. 967-71.
    77. Giacinti, C. and A. Giordano, RB and cell cycle progression. Oncogene, 2006. 25(38): p. 5220-7.
    78. Scanlon, K.J., Anti-genes: siRNA, ribozymes and antisense. Curr Pharm Biotechnol, 2004. 5(5): p. 415-20.
    79. Citti, L. and G. Rainaldi, Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther, 2005. 5(1): p. 11-24.
    80. Helene, C. and J.J. Toulme, Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta, 1990. 1049(2): p.99-125.
    81. Dias, N. and C.A. Stein, Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther, 2002. 1(5): p. 347-55.
    82. Paterson, B.M., B.E. Roberts, and E.L. Kuff, Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci U S A, 1977. 74(10): p. 4370-4.
    83. Whitesell, L., A. Rosolen, and L.M. Neckers, In vivo modulation of N-myc expression by continuous perfusion with an antisense oligonucleotide. Antisense Res Dev, 1991. 1(4): p. 343-50.
    84. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700