水稻TFⅢA型锌指蛋白基因ZFP252的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、高盐和低温等环境胁迫严重影响着植物的生长发育和作物产量。迄今为止,人们已经从各种植物中分离和鉴定了许多胁迫应答相关的基因,这些基因编码的产物直接保护植物细胞免受非生物胁迫的伤害,或者调控其它基因的表达提高植物耐非生物逆境胁迫的能力。
     水稻是世界上最重要的粮食作物之一,也是单子叶植物分子生物学研究的模式植物。已有研究表明水稻TFⅢA型锌指蛋白基因ZFP252在水稻幼苗中受到高盐和干旱的诱导,本论文通过农杆菌介导法得到了由35S(CaMV)启动子驱动的转正义和反义ZFP252基因水稻植株。半定量RT-PCR和real-time PCR检测发现ZFP252基因在转正义ZFP252基因水稻植株中表达较未转基因植株明显增强,而在转反义ZFP252基因水稻植株中表达受到抑制。并且转基因植株和未转基因植株在表型和农艺性状上没有显著差异。非生物胁迫分析表明,ZFP252的过量表达显著增强了转基因水稻植株的耐盐性和耐旱性。在高盐和干旱处理10天后,转反义ZFP252基因植株和未转基因植株叶片的相对电解质渗透率极显著高于转正义ZFP252基因植株叶片的电解质渗透率。在高盐和干旱胁迫下,转正义ZFP252基因植株幼苗的脯氨酸和可溶性糖含量极显著高于转反义ZFP252基因植株和未转基因植株。Real-time PCR检测发现,在干旱和高盐处理下,OsDREB1A、Oslea3、OsP5CS和OsProT等胁迫相关基因在转正义ZFP252基因水稻植株中的表达水平明显较转反义ZFP252基因植株和未转基因植株中增强。
     据此推测,在非生物胁迫条件下,水稻TFⅢA型锌指蛋白ZFP252可能通过调控一些胁迫相关基因表达,在水稻幼苗中积累脯氨酸、可溶性糖和LEA蛋白等渗透性物质,保护植物细胞免受胁迫的伤害,提高植物耐非生物逆境胁迫的能力。
Plant growth and crop productivity are largely affected by environmental stresses such as drought, high salinity and low temperature. To date, many stress-related genes have been isolated and characterized from various plant species. These genes may encode products either directly protecting plant cells from abotic stresses or regulating expression of other genes to enhance plant tolerance to abiotic stresses.
     Rice (Oryza sativa L.) is not only one of the most important food crops in the world, but also a model plant for research on molecular biology in monocots. It was previously found that a TFⅢA-type zinc-finger protein gene ZFP252 from rice could be significantly up-regulated in rice seedlings under salt or drought stress.It was generated several sense or antisense ZFP252 transgenic rice plants driven by the cauliflower mosaic virus (CaMV) 35S promoter. The expression level of ZFP252 was significantly higher in sense ZFP252 transgenic plants than that in non-transgenic plants and was hardly detected in antisense ZFP252 transgenic plants by both semi-quantitative RT-PCR and quantitative real-time PCR.There were no significant changes in morphological or agronomic traits among ZFP252 transgenic plants and non-transgenic plants. The stress assays showed that overexpression of ZFP252 in rice significantly enhanced the tolerance of transgenic plants to salt and drought stress. After 10 d of salt or drought treatment, their relative electrolyte leakage from antisense ZFP252 transgenic plants and non-transgenic plants were higher than that from sense ZFP252 transgenic plants.The contents of proline and soluble sugars in sense ZFP252 transgenic lines were much more increased than those in antisense ZFP252 transgenic plants and non-transgenic plants under salt and drought stress. Furthermore, it was found that the transcripts of several stress-related genes including OsDREB1A, Oslea3, OsP5CS and OsProT were accumulated more in sense ZFP252 transgenic plants under stress treatments by quantitative real-time PCR.
     It was concluded that overexpression of ZFP252 may contribute to accumulate compatible osmolytes, such as free proline, soluble sugars and LEA proteins that function as osmoprotectants, by regulating expression of stress-related genes in rice under salt and drought stress conditions.
引文
1.郭书巧.水稻锌指蛋白RZF5和RZF71的克隆与功能分析.南京:南京农业大学博士学位论文,2006
    2.郭书巧,黄骥,江燕,张红生.水稻C2H2型锌指蛋白基因RZF71的克隆与表达分析.遗传,2007,28(5):607-613
    3.黄骥,王建飞,张红生.植物C2H2型锌指蛋白的结构与功能.遗传,2004,26(3):414-418
    4,黄骥,张红生.7FⅢA型锌指蛋白及在植物提高耐逆性中的作用.遗传,2007,29(8):915-922
    5.卢从明,张其德,匡廷云.水分胁迫对光合作用影响的研究进展.植物学通报,1994,11:9-14
    6.李合生主编.现代植物生理学.北京:高等教育出版社,2002
    7.李跃强,宣维健,盛承发.植物的低溫蛋白.生态学报,2004,249(5):1034-1039
    8.庞士铨 主编.植物逆境生理学基础.哈尔滨:东北林业大学出版社,1990
    9.潘瑞帜主编.植物生理学(第四版).北京:高等教育出版社,2004
    10.仇玉萍,荆邵娟,付坚,李璐,余迪求.13个水稻WRKY基因的克隆及其表达谱分析.科学通报,2004,49(18):1860-1869
    11.孙建昌,王兴盛,杨生龙.植物耐盐性研究进展.干旱地区农业研究,2008,1:226-230
    12.王洪春.植物抗性生理.植物生理学通讯,1981,17(6):72-81
    13.王洪春.植物抗逆性与生物膜功能研究进展.植物生理学通讯,1985,1:60-66
    14.王齐红,黄骥,张红生.一种植物叶片微量DNA的提取方法.生物技术通讯,2004,15(5):479-480
    15.王玉军,郝宇钧,戴继勖,杜保兴,张劲松,陈受宜.OsbHLH1基因在拟南芥中表达及耐低温能力的研究.高技术通讯,2004,4:35-39
    16.王忠主编.植物生理学.北京:中国农业出版社,2000
    17.杨晓慧,蒋卫杰,魏珉,余宏军.植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学学报,2006,37:302-305
    18.余叔文、汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社.1999
    19.张继澍主编.植物生理学.西安:世界图书出版公司.1999
    20.曾乃燕,何军贤,赵文,梁厚果.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000.20:8-14
    21.郑江平,王春乙.低温、干旱并发对玉米苗期生理过程的影响.应用气象学报,2006,17:119-123
    22.Abe H,Urao T,Ito T,Seki M,Shinozatd K,Yamaguchi-Shinozaki K.Arabidopsis AtMYC2(bHLH)and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling.Plant Cell 2003,15(1):63-78
    23.Abe H,Yamaguchi-Shinozaki K,Urao T,Iwasaki T,Hosokawa D,Shinozaki K.Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression.Plant Cell 1997,9(10):1859-1868
    24. Agarwal M, HaoYJ, Kapoor A, Dong CH, Fujii H, Zheng XW, Zhu JK. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol. Chem. 2006,281:37636-37645
    
    25. Atici O, Nalbantoglu B.Antifreeze proteins in higher plants.Phytochemistry. 2003 ,64(7):1187-1196
    
    26. Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savoure A .Transcriptional regul -ation of proline biosynthesis in Medicago truncatula reveals developmental and environme -ntal specific features. Physiol. Plant 2004,120:442-450
    
    27. Bastola DR, Pethe W, Winicov I.Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol. Biol. 1998, 38(6): 1123-35
    
    28. Bohnert HJ, Nelson DE, Jensen RG. Adaptation to environmental stresses. Plant Cell 1995, 7:1099-1111
    
    29. Bohnert HJ, Sheveleva E. Plant stress adaptations making metabolism move. Curr. Opin. Plant Biol.1998,1:267-274
    
    30. Bressan RA.In:Monti L,Porceddu E(eds).EEC Symposium on drought resistance in plants:Genetic and Physiology Aspects 1987
    
    31. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. GmDREB2, a soybean DRE-binding transcription factor,conferred drought and high-salt tolerance in transgenic plants.Biochemical and Biophysical Research Communications 2007, 353: 299-305
    
    32. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003,17:1043-1054
    
    33. Choi DW, Rodriguez EM, Close TJ.Barley CBF3 gene identification, expression pattern, and map location. Plant Physiol. 2002,129(4): 1781-1787
    
    34. Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors. J Biol.Chem. 2000,275(3): 1723-1730
    
    35. Ciftci-Yilmaz S, Mittler R.The zinc finger network of plants. Cell Mol. Life Sci. 2008, 65(7-8): 1150-1160
    
    36. Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J,Connolly EL, Mittler R.The ear-motif of the C2H2 zinc-finger protein ZAT7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol. Chem. 2007,282:9260-9268
    
    37. Dai XY, Xu YY, Ma QB, Xu WY, Wang T, Xue YB, Chong K. Overexpression of a R1R2R3MYB gene, OsMYB3R2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis.Plant Physiol. 2007,143:1739-1751
    
    38. Davletova S, Schlauch K, Coutu J, Mittler R. The zinc-finger protein Zatl2 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 2005,139: 847-856
    39. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K,Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa. L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003,33:751-763
    
    40. Fowler S, Thomashow F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 2002,14:1675-1690
    
    41. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS,Yamaguchi-Shinozaki K, Shinozaki K.A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway.Plant J. 2004,39(6):863-876
    
    42. Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M , Matsui M,Yamaguchi-Shinozaki K, Shinozaki K. Identification of stress-tolerance- related transcription-factor gene via mini-scale Full-length cDNA Over-expressor (FOX) gene hunting system. Biochemical and Biophysical Research Communications 2007, 364:250-257
    
    43. Ge C, Cui X, Wang Y. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res. 2006,16(5): 446-456
    
    44. Gibson SI. Plant sugar- response pathway-part of a complex regulatory web.Plant Physiol. 2000,124:1532-1539
    
    45. Gilmour SJ, Audrey MS, Maite PS. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant physicol.2000,124:1854-1865
    
    46. Guo Y, Xiong L, Ishitani M, Zhu JK. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc. Natl. Acad. Sci. USA 2002,99:7786-7791
    
    47. Gupta AK, Kaur N .Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci. 2005, 30: 761-776
    
    48. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. Tanscription factor CBF4 is a regulation of drought adaptation in Arabidopsis. Plant Physiol.2002,130: 639-648
    
    49. Hare P D, Cress WA, van Staden J. The effects of exogenous proline and proline analogues on in vitro shoot organogenesis in Arabidopsis. Plant Growth Regulation 2001, 34 (2): 203 - 207
    
    50. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY.AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development.Plant J. 2005 ,44(6):903-916
    
    51. Hu HH, Dai MQ, Yao JL , Xiao B, Li XH, Zhang QF , Xiong LZ.Overexpressing a NAM, ATAF,and CUC (NAC)transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 2006,103(35): 12987-12992
    
    52. Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol. 2008,67(l-2):169-81
    
    53. Huang J, Wang JF, Wang QH, Zhang HS. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Seq.2005,16:130-136
    
    54. Huang J, Yang X, Wang MM, Tang HJ, Ding LY, ShenY, Zhang HS. A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim. Biophy. Acta.2007, 1769:220-227
    
    55. Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K. Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa. L. Plant Mol. Biol. 1997,33: 857-865
    
    56. Igarashi Y, Yoshiba Y, Takeshita T, Nomura S, Otorao J, Yamaguchi-Shinozaki K, Shinozaki K.Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol.2000,41:750-756
    
    57. Iuchi S. Three classes of C_2H_2 zinc finger proteins. Cell Mol. Life Sci. 2001,58:625-635
    
    58. Jaglo-Ottosen K, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 1998,280:104-106
    
    59. Jung C, Seo JS, Han SW, Koo Y J, Kim CH, Song SI,Nahm BH, Choi YD, Cheong JJ. Over-expression of AtMYB44 Enhances Stomatal Closure to Confer Abiotic Stress Tolerance inTransgenic Arabidopsis.Plant Physiol. 2008.146:623-635
    
    60. Kalde M, Barth M, Somssich IE, Lippok B. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol. Plant Microbe.Interact. 2003,16(4):295-305
    
    61. Kang JY, Choi HI, Im M Y, Kim SY. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 2002,14(2): 343-357
    
    62. Kim JC, Lee SH, Cheong YH ,Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J. 2001, 25:247-259
    
    63. Kim S, Kang JY, Cho DI, Park JH, Kim SY. ABF2, an ABRE-binding bZip factor, is an essential componentt of glucose signaling and its overexpression affects multiple stress tolerance. Plant J.2004, 40(1): 75-87
    
    64. Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KS. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. 2005, 88:424-438
    
    65. Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S.Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat.J Exp. Bot.2008a,59(4):891-905
    
    66. Kobayashi F, Maeta E, Terashima A, Takumi S. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol. Plant. 2008b,online
    
    67. Li HM, Sun JQ, Xu YX, Jiang HL, Wu XY, Li CY. The bHLH-type transcription factor AtAIB positively regulatesABA response in Arabidopsis. Plant Mol. Biol. 2007, 5:655-665
    
    68. Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS ,Chen SY . Soybean DRE-binding transcription factors that are responsive to abiotic stresses.Theor. Appl. Genet. 2005,110:1355-1362
    
    69. Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY.Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 2008,228(2):225-240
    
    70. Lippuner V, Cyert MS, Gasser CS.Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol. Chem. 1996,271:12859-12866
    
    71. Liu KM, Wang L, Xu YY, Chen N, Ma QB, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 2007,226:1007-1016
    
    72. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Shinozaki KY, Shinozaki K, et al. Two transcripttion factors, DREBland DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression,respectively, in Arabidopsis. Plant Cell 1998,10:1391-1406
    
    73. Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC.A novel drought-inducible gene,ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis.Plant Mol. Biol. 2007,3:289-305
    
    74. Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca AM, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol. Biol.2004,55(3):399-416
    
    75. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K,Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004, 38: 982-993
    
    76. Michaela H, Dirk KH. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana.BMC Genomics 2008, 9:118
    77. Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985,4:1609-1614
    
    78. Mishra NS, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys. 2006, 452(1):55-68
    
    79. Mittler R, Kim YS, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK. Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters 2006, 580 :6537-6542
    
    80. Moons A, de Keyser A, van Montagu M. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 1997,191:197-204
    
    81. Morris DL. Quantitative determination of carbohydrates with Drywood's anthrone reagent. Science 1948, 107: 254-255
    
    82. Morsy MR, Almutairi AM, Gibbons J, Yun SJ, de Los Reyes BG. The OsLti6 genes encod- ing low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 2005,344:171-180
    
    83. Mukhopadhyay A, Vij S, Tyagi AK. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Pro. Natl. Acid. Res. USA 2004,101:6309-6314
    
    84. Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp. Bot. 2003,54(391):2231-2237
    
    85. Nakashima K , Tran LS, Nguyen DV, Fujita M , Maruyama K, Todaka D, Ito Y, Hayashi N,Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J.2007, 51:617-630
    
    86. Neumann PM. The role of cell wall adjustment in plant resistance to water deficit. Crop Science 1995,35 :1258-1266
    
    87. Novillo F, Alonso JM, Ecker JR, Salinas J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2004,101(11):3985-3990
    
    88. Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc. Natl. Acad. Sci. USA 2007,104(52):21002-21007
    
    89. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 2005,138(1):341-351
    
    90. Olsen AN, Ernst HA, LeggioLL, Skriver Karen. NAC transcription factors: structurally distinct,functionally diverse. Trends Plant Sci. 2005,10(2):79-87
    
    91. Pan LJ, Huang J, Wang ZF, Zhang HS. Molecular Cloning and Expression of OsCMO, Encoding a Putative Choline Monooxygenase in Rice (Oryza sativa L.). Mol. Plant Breeding 2007, 5:8-14
    
    92. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K.Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays I. Plant Cell Physiol. 2004, 45(8):1042-1052
    
    93. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Phan LSon, Shinozaki K , Yamaguchi-Shinozaki K. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007,50(l):54-69
    
    94. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Monitoring expression profiles of rice genes under cold,drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003,133:1755-1767
    
    95. Reece KS, McElroy D, Wu R. Genomic nucleotide sequence of four rice (Oryza sativa.L) actin genes. Plant Mol. Biol.1990,14(4): 621-624
    
    96. Rizhsky L, Davletova S, Liang H, Mittler R.The zinc-finger protein Zatl2 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress inArabidopsis. J Biol. Chem. 2004, 279:11736-11743
    
    97. Rontein D, Basset G, Hanson AD.Metabolic engineering of osmoprotectant accumulation in plants.Metab. Eng. 2002,4(1):49-56
    
    98. Sakamoto H, Araki T, Meshi T, Iwabuchi M. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 2000,248:23-32
    
    99. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiol. 2004,136: 2734-2746
    
    100. Sakuma Y, Liu Q, Dubouzet J G DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290(3): 998-1009
    
    101. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y,Shinozaki K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31(3):279-292
    102. Scandalios JG. Oxygen stress and superoxide dismutases. Plant Physiol. 1993,101: 7-12
    
    103. Sharma SS, Dietz KJ. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp. Bot.2006,57:711-726
    
    104. Shen YG, Du BX, Zhang WK, Zhang JS, Chen S Y.AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor. Appl. Genet. 2002,105(6-7):815-821
    
    105. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY.An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress.Theor. Appl. Genet. 2003a, 106(5):923-930
    
    106. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor. Appl. Genet.2003b,107(1):155-161
    
    107. Shinozaki K, Yamaguchi-Shinozaki K.Molecular response to dehydration and low tempe -rature:Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 2000,3(3):217-223
    
    108. Shinozaki K, Yamaguchi-Shinozakiy K, Sekiz M. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 2003,6(5): 410-417
    
    109. Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp. Bot. 2007,58(2):221-227
    
    110. Singh NK, Bracker CA, Hasegawa PM, Handa AK. Characterization of osmotin: A thaumatin - like protein associated with osmotic adaptation in plant cells. Plant Physiol. 1987, 85 : 529 -536
    
    111. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 1997,94:1035-1040
    
    112. Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H.Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 2003,36:830-841
    
    113. Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C. The CCCH-type zinc finger proteins AtSZFl and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol. 2007 48(8):1148-1158
    
    114. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M,Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell 2004,16(9):2481-2498
    115. Troll W, Lindsley J. A photometric method for the determination of proline. J Biol. Chem.1955,215:655-660
    
    116. Uemura M, Joseph RA, Steponkus PL. Cold acclimation of Arabidopsis thaliana.Effect on plasma membrane lipid composition and freeze-induced lesions.Plant Physiol.1995,109:15-30
    
    117. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 1993, 5(11):1529-1539
    
    118. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E,Coraggio. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J. 2004,37:115-127
    
    119. Venketesh S, Dayananda C.Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol. 2008,28(1):57-82
    
    120. Verslues PE, Bray EA.Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation.J Exp. Bot. 2006,57(1):201-212
    
    121. Voetberg GS, Sharp RE.Growth of the maize primary root in low water potentials. III. Roles of increased praline depositions in osmotic adjustment. Plant Physiol .1991,96:125-130
    
    122. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 2005,41:195-211
    
    123. Volker H, Daniel C, Jose' Luis R, Omaira P, Michael FT, Zhang JZ. Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis. Plant Physiol. 2002,130:639-648
    
    124. von Koskull-Doring P, Scharf KD, Nover L. The diversity of plant heat stress transcription factors.Trends Plant Sci. 2007,12(10):452-457
    
    125. Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, Zhang JS, Chen SY. A rice transcription factor OsbHLH1 is involved in cold stress response. Theor. Appl. Genet. 2003,107(8):1402-1409
    
    126. Winicov I, Bastola DR.Transgenic overexpression of the transcription factor alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants Plant Physiol. 1999,120(2):473-480
    
    127. Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 2007,144:1416-1428
    
    128. Xiao BZ, Huang YM, Tang N, Xiong LZ. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor. Appl. Genet. 2007,115:35-46
    
    129. Xu S, Wang X, Chen J. Zinc finger protein 1 (ThZFl) from salt cress (Thellungiella halophila) is a Cys-2/His-2-type transcription factor involved in drought and salt stress. Plant Cell Rep. 2007, 26: 497-506
    
    130. Xue GP. An AP2 domain transcription factor HvCBFl activates expression of cold-res -ponsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochimica Biophysica Acta.2002,1577:63-72
    
    131. Yamaguchi-Shinozaki K, Shinozaki K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006,57:781-803
    
    132. Yoshida S, Forno DA, Cock JH. Laboratory manual forphysiological studies of rice. Los Banos,The Philippines, The International Rice Research Institute. 1976,~(3rd)ed
    
    133. Zhang HX, Hodson JN, Williams JP, Blumwald E. Engineer in salt-tolerant Brassica plants:characterization of yield and seed oiquality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA 2001, 98:12832-12836
    
    134. Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 2004,39(6):905-919
    
    135. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY.Soybean WRKY-type transcription factor genes, GmWRKYl3, GmWRKY21, and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J.2008,6(5):486-503
    
    136. Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002,53:247-273
    
    137. Zhu JH, Verslues PE, Zheng XW, Lee B, Zhan XQ, Manabe Y, Sokolchik I, Zhu Y, Dong CH, Zhu JK , Hasegawa PM, Ray A. Bressan HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc. Natl. Acad. Sci.USA 2005,102:9966- 9971
    
    138. Zou MJ, Guan YC, Ren HB, Zhang F, Chen F.A bZIP transcription factor, OsABI5, is involv -ed in rice fertility and stress tolerance. Plant Mol. Biol. 2008,66(6):675-683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700