大白菜DREB类转录因子cDNA的克隆及植物表达载体的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐碱、低温等非生物逆境胁迫对植物的生长发育有重要影响,是农作物减产的直接原因。提高植物的抗逆性可以减轻胁迫伤害、提高产量、节约淡水资源,对农业增产、生态环境改良、实现可持续发展具有重要意义。DREB转录因子能特异性地与DRE元件(脱水应答元件)结合,激活许多逆境诱导基因的表达,它在植物对干旱、高盐及低温胁迫的分子反应中起着重要的调控作用。逆境胁迫下DREB转录因子能够调节功能基因的表达,普遍提高植物对逆境的抵抗和忍耐能力,因而能够综合改良植物的抗逆性状,是迄今为止最理想的植物抗逆工程基因。
     本研究以逆境处理的大白菜为试验材料,运用RT-PCR技术,克隆大白菜DREB转录因子基因cDNA序列,对逆境胁迫下的基因诱导表达模式进行了研究,并成功构建了植物表达载体,结果如下:
     1.根据已发表的甘蓝型油菜DREB转录因子基因序列设计引物DR2-1和DR2-2,进行RT-PCR扩增,得到两个长645bp编码214个氨基酸的基因,分别命名为BcDREB1(GenBank登录号为:EU924266)和BcDREB2(GenBank登录号为:GQ122331)。同源性分析表明,两个基因与甘蓝型油菜DREB2-2基因、芥菜DREB1B基因的氨基酸序列同源性均在90%以上。
     2.利用SMART和Protparam分析表明,BcDREB1推断的氨基酸相对分子量为23.90KD、等电点为4.88;BcDREB2推断的氨基酸相对分子量为23.85KD,等电点5.21,它们都包含一个典型的AP2结构域。
     3.半定量RT-PCR分析表明,低温、干旱、高盐均能诱导大白菜DREB基因表达。在低温胁迫时1h开始表达,3h到达最高;在高盐胁迫时1h开始表达,12h到达最高;在干旱胁迫时3h开始表达,12h到达最高。
     4.设计含有XbaI和BamHI酶切位点的正义特异性引物DR-F和DR-R,用BamHI和XbaI分别酶切含有BcDREB1基因的质粒和pCAMBIA2301载体,用T4 DNA Ligase连接,构建成大白菜BcDREB1基因的正义植物表达载体pCAM-BcDREB1。
     5.设计含有BamHI和XbaI酶切位点的反义特异性引物DR1-F和DR1-R,用BamHI和XbaI分别酶切含有BcDREB1、BcDREB2基因的质粒和pCAMBIA2301载体,分别用T4 DNA Ligase连接,构建成大白菜BcDREB1、BcDREB2基因的反义植物表达载体anti-pCAM-BcDREB1和anti-pCAM- BcDREB2。
     6.利用冻融法将植物表达载体pCAM-BcDREB1、anti-pCAM-BcDREB1和anti-pCAM-BcDREB2转化到农杆菌EHA105中,经特异性引物对转化菌液进行PCR扩增,证实表达载体已转入农杆菌。
Drought, salinity, low-temperature and other abiotic adversity stress, impacting on plant growth development significantly, are the direct cause of reduction in crop production. Increasing the stress resistance of plants is important in agricultural production, improvement of ecological environment and sustainable development, because it can reduce the stress injury, increase crop production and save fresh water resources. The DREB transcription factor can specifically combine with the DRE (dehydration responsion element) and activate expression of many stress-induced genes , resulting in regulating and controlling the molecules response to drought, hyperhaline and low-temperature stress. The DREB transcription factor, regulating the expression of functional genes under the stress and increasing the capacity of resistance and endurance to adversity of plant, is the best adversity resistance gene in plant by far.
     In this study, Chinese cabbage dealt with the adversity was selected as experiment material. Using RT-PCR technology, we obtained the cDNA sequences of Chinese cabbage DREB transcription factor’s. Under adversity stress, stress-induced expression patterns of DREB transcription factor in Chinese cabbage was studied and plant expression vector was constructed successfully. The results are as follows:
     1. According to published gene sequence of Brassica napus DREB transcription factor, primers DR2-1 and DR2-2 were designed and two genes with 645bp in length were amplified by RT-PCR. Each gene contained a complete sequence encoding 214 amino acids, named BcDREB1 (GenBank accession number: EU924266) and BcDREB2 (GenBank accession number: GQ122331) respectively. Homological analysis showed that over 90% amino acids in the two sequences were similar to Brassica napus DREB2-2 gene and Brassica juncea Coss DREB1B gene.
     2. SMART and Protparam analysis indicated that the deduced relative molecular weight of the amino acid was 23.90KD for BcDREB1 and 23.85KD for BcDREB2, and the isoelectric point was 4.88 BcDREB1 and 5.21 for BcDREB2. Furthermore, a typical AP2 structure domain was found in both of gene structures.
     3. Using semi-quantitative RT-PCR. analysis of expression modes showed that BcDREB gene expression induced by low temperature, drought and hyperhalin. The gene started to express after 1h and reached the highest level after 3h under the low-temperature stress, started to express after 1h and reached the highest level after 12h under the drought stress, and started to express after 3h and reached highest level after 12h under the high-salt stress.
     4. The sensed specific primer DR-F and DR-R,containing XbaI and BamHI restriction sites, were designed.Plasmid containing BcDREB1 gene and pCAMBIA2301 vector was digested with BamHI and XbaI,respectively. The T4 DNA Ligase was used to be ligated, sensed plant expression vector pCAM-BcDREB1 of BcDREB1 gene was built in Chinese cabbage.
     5. The antisensed specific primer DR-F and DR-R were designed which contained BamHI and XbaI restriction sites. Plasmid containing gene BcDREB1, BcDREB2 and pCAMBIA2301 vector were digested with BamHI and XbaI, respectively, connected using T4 DNA Ligase, antisense plant expression vector anti-pCAM-BcDREB1 and anti-pCAM-BcDREB2 of BcDREB1, BcDREB2 gene were built in Chinese cabbage.
     6. The plant expression vectors pCAM-BcDREB1, anti-pCAM-BcDREB1 and anti-pCAM-BcDREB2 were transformed into Agrobacterium EHA105 using freeze-thaw method. The PCR amplification specific primers was further carried out in transformed bacteria, expression vectors were confirmed to transfer into the Agrobacterium.
引文
[1]王建革,苏晓华,张冰玉.植物抗旱研究工作中的问题与方法初探.中国农学通报[J]. 2003, 16(5): 6-11
    [2] Yamaguchi-Shinozaki K, Kasuga M, Liu Q, et al. Biological mechanisms of drought stress response [J]. JIRCAS Working Report, 2002, 1-8
    [3] Holmberg N, BulowL. Improving stresses tolerance in plants by gene transer[J]. Trends Plant Science, 1998, (3): 61-66
    [4] Liu Q, Zhao NM, Yamaguchi-Shinozaki K, et al. Regulatory role of DREB transcription factors in plant drought salt and cold-tolerance[J]. Chinese Science Bulletin, 2000, 45(11): 970-975
    [5] Baker SS, Wihelm KS, Thomashow MF. The 5’region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold, drought and ABA regulated gene expression[J]. Plant Mol Biol, 1994, 24: 701-713
    [6] Yamaguchi S, Skinozaki K. A novel cis-element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. PlantCell, 1994, 6: 251-264
    [7] Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that stimulates transcription in response to low temperature and water deficit[J]. Proc Ncad Sci USA, 1997, 94: 1035-1040
    [8] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arbidopsis[J]. Plant Cell, 1998, 10: 1391-1406
    [9] Gilmour SJ, Zarka DG, Stockinger EJ, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activatora as an early step in cold-induced COR gene expression[J]. Plant J, 1998, 16: 433-443
    [10] Medina J, Bargues M, Terol J, et al. The Aradbidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J]. Plant Physiol, 1999, 119: 463-470
    [11] Nakashima K, Shinwari ZK, Sakuma Y, et al. Organization and expression of two Aradbidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression[J]. Plant Mol Biol, 2000, 42(4): 657-665
    [12] Riechmann J L, Heard J, Martin J, Martin G, et al. Arabidopsis tranccription factor:geneme-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105-2110
    [13] Chuck G, Meeley E B, Hake S. The control of maize spikelet mristem fate by the APETALA2-like gene indeterminate spikelet[J]. Gene Dev, 1998, 12: 1145-1154
    [14] Schultz T F, Spiker S, Quatrano R S. Histone HI enhances the DNA binding activity of the transcription factor EmBP-1[J]. J Biol Chem, 1996, 271: 25742-25745
    [15] Jofuku K D, Den Boer B G W, Van Montagu M, et al. Control of Arabidopsis flower and seeddevelopment by the homeotic gene APETALA2[J]. Plant Cell, 1994, 6: 1211-1225
    [16] Elliott R C, Betzner A S, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. Plant Cell, 1996, 8: 155-168
    [17] Lucher K M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2[J]. Plant Cell, 1996, 8: 137-153
    [18] Moose S P, Sisco P H. Glossy 15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity[J]. Genes Dev, 1996, 10: 3018-3027
    [19] Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product[J]. Cell, 1991, 65: 991-1002
    [20] Maes T, Van De Steene N, Zethof J, et al. Petunia ap2-like genes and their role in flower and seed development[J]. Plant Cell, 2001, 13(2): 229-244
    [21]韩志萍,安利佳,侯和胜. AP2/EREBP转录因子的结构与功能[J].中国农学通报, 2006, 22: 33-38
    [22] Buttner M, Singh KB. Aradbidopsis thaliana ethylene-responsive element binding protein(AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein[J]. Proc Natl Acad USA, 1997, 94: 5961-5966
    [23] Van der Fits L, Memelink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element[J]. Plant J, 2000, 25(1): 43-48
    [24] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, ninds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Res, 1999, 27(2): 470-478
    [25] Finkelstein R R, Wang M L, Lynch T J, et al. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain[J]. Plant Cell, 1998, 10: 1043-1050
    [26]徐平,凌建群,李德葆,等.一种新的与渗透蛋白基因启动子结合的蛋白基因的分离[J].中国科学(C辑), 1999, 29(1): 68-74
    [27] Nol Sand Krizek B A. DNA binding properties of the Arabidopsis flral development protein AINTEGUMENTA[J]. Nucleic Acid Res, 2000, 28(21): 4076-4082
    [28] Kazuko Yamaguchi-Shinozakiaib and Kazuo Shinozaki. A Novel cis-Acting Element in an Arabidopsis Gene is involved in Responsiveness to Drought,Lowqemperature, or High-Salt Stress[J]. The Plant Cell, 1994, 6: 251-264
    [29] Jiang C, Lu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winer Brassica napus[J]. Plant Mol Biol, 1996, 30: 679-684
    [30] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J]. Science, 1998, 80: 104-106
    [31] Gilmour SJ, Sebolt AM, Salazar MP, et al. Overexpression of the Aradbidopsis CBF3 transcriptionactivator mimics multiple bilchemical changes associated with cold acclimation[J]. Plant Physiol, 2000, 124: 1854-1865
    [32] Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 define a large new family of DNA binding protein in Aradbidopsis[J]. Pro Natl Acad Sci USA, 1997, 94: 7076-7081
    [33] Qin F, Li J, Zhang GY, et al. Isolation and structural analysis of DRE-binding transcription factor from maize (Zea mays L)[J]. Acta Botanica Sinica, 2003, 45(3): 331-339
    [34] Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis C-repeat/ Dehydration- responsive-element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiol, 2001, 127: 910-917
    [35] Choi D W, Rodriguez E M, Close T J. Barley CBF3 gene identification, expression pattern, and map location[J]. Plant Physiol, 2002, 129: 1781-1787
    [36]沈义国,闫冬青,张万科,等.山菠菜EREBP/AP2类DNA结合蛋白基因的克隆及其耐逆性研究[J].植物学报, 2003, 45(1): 82-87
    [37] Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Aradbidopsis DREBs, transcription factors involved in dehydration-and cold-induced gene expression[J]. Biochem Biophs Res Co, 2002, 290: 998-1009
    [38] Haake V, Cook D, Riechmann JL, et al. Transcription factor CBF4 is a regulator of drought adaptation in Aradbidopsis[J]. Plant Physiology, 2002, 130: 639-648
    [39] Gao M J, Allard G, Byass L, et al. Regulation and characterization of four CBF transcription factors from Brassica napus[J]. Plant Molecular Biology, 2002, 49: 459-471
    [40] Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theoretical and Applied Genetics, 2003, 106: 923-930
    [41] Dubouzet J G, Saknma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-high-salt and cold-responsive gene expression[J]. The Plant Journal, 2003, 33: 751-763
    [42] Li X P, Tian A G, Luo G Z, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses[J]. Theoretical and Applied Genetics, 2005, 110: 1355-1362
    [43]刘卫群,王永亮,赵同金,等.烟草DREB-like转录因子的克隆与鉴定[J].农业生物技术学报, 2006, 14: 376-380
    [44] Shinji M, Yosuke H, Masatoshi S. Isolation and characterization of three DREB/ERF-type transcription factors from melon (Cucumis melo) [J]. Plant Science, 2006, 170: 1156-1163
    [45] Cong L, Chai T Y, Zhang Y X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L[J]. Biochemical and Biophysical Research Communications, 2008, 371: 702-706
    [46] Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639-648
    [47] Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk andspecificity in abiotic stress signalling in plants[J]. J Exp Bot, 2004, 55(395): 225-136
    [48] Menkes A E, Schindler U, Cashmore A R. The G-box:a ubiquitous regulatory DNA element in plants bound by GBF family of bZIP proteins[J]. Trends Biochem Sci, 1995, 20: 506-510
    [49] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Curr Opin Plant Biol, 2000, 3(3): 217-223
    [50] Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscsia acid and requires protein synthesis[J]. Mol Gen Genet, 1995, 247(4): 391-398
    [51] Eduardo C Vallejos. Genetic diversity if piants for response to low temperatures and its potential use in crop plants. In Low Temperature Stress in Crop Plants-the role of the membrane[M]. Academic Press Inc New York, USA, 1979: 473-489
    [52] Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold inducible downstream genes of the Aradbidopsis DREB1A/CBF3 transcripyion factor using two microarray systems[J]. Plant J, 2004, 38: 933-982
    [53]刘录祥,赵林姝,梁欣欣,等.基因枪法获得逆境诱导转因子DREB1A转录基因小麦的研究[J].中国生物工程杂志, 2003, 23(11): 53-56
    [54] Goff S A, Cone K C, Formm M E. Identification of functional domains in the maize transcriptional Activator CI:comparison of wild-type and dominnat inhibitor porteins[J]. Genes Dev, 1991, 5: 298-309
    [55] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotech, 1999, 17: 287-291
    [56] Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, in voived in drought-responsive gene expression[J]. The Plant Cell, 2006, 18: 1292-1309
    [57] Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a nove DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea maysL[J]. Plant and Cell Physiology, 2004, 45: 1042-1052
    [58] Pellegrineschi A, Reynolds M, Pacheco M, et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J]. Genome, 2004, 47: 493-500
    [59] Chen M, Wang Q Y, Cheng X G, et al. GmDREB2, a soybean DRE binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochemical and Biophysical Research Communications, 2007, 353: 299-305
    [60] Zhao J S, Ren W, Zhi D Y, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress[J]. Plant Cell Reports, 2007, 26: 1521-1528
    [61]刘强,赵南明, Yamaguchi-Shinozaki K,等. DREB转录因子在提高植物抗逆性的作用[J].科学通报, 2000, 45(1): 11-16
    [62]王平荣,邓晓建,高晓玲,等. DREB转录因子研究进展[J].遗传, 2006, 28(3): 369-374
    [63]胡庆宏,刘明峽,栾树清,等. RT-PCR方法半定量在基因表达水平检测中的应用[J].实用临床医学, 2004, 5(6): 6
    [64]张丽娜,牛吉山,于玲.用半定量RT-PCR方法分析小麦TaM lo-A1c基因的表达[J].西北植物学报, 2005, 25(7): 1368-1371
    [65]胡迎利,徐春,汪以真.半定量RT-PCR法分析猪肝脏中铜锌超氧化物歧化酶mRNA表达水平[J].中国兽药杂志, 2006, 40(4): 20-24
    [66]李亚青,葛荣朝,赵保存,等. RT-PCR法半定量检测不同逆境胁迫下TaGSK1基因的表达[J].华北农学报, 2007, 22 (1): 83-85
    [67]张华,许叔祥.定量聚合酶链式反应的研究进展与临床应用[J].中华检验医学杂志, 2000, 23(2): 120-121
    [68]田秀红.水稻DREB转录因子基因克隆及相关研究[D].中国农业大学博士论文, 2004
    [69]任清.早熟禾中DREB基因的克隆及特性分析[D].中国农科院博士学位论文, 2005
    [70] Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought responsive element in an ABA-dependent pathway[J]. Plant J, 2002, 30: 679-689
    [71] Cong L, Chai T Y, Zhang Y X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochemical and Biophysical Communications, 2008, (371): 702-706
    [72]任雪艳,陈创夫,孔庆军,等.大肠杆菌毛抗原K88与热稳定肠毒素ST融合基因植物表达载体的构建及其在烟草中的初步表达.石河子大学学报(自然科学版), 2005, 23(1): 64-67
    [73]张锋,金杰,解成骏,等.纳豆激酶植物高效表达载体的构建.西北农业学报, 2005, 14(3): 159-162
    [74]尹明安,崔鸿文,樊代明,等.植物afp表达载体的构建及其对农杆菌的直接转化.西北农林科技大学学报(自然科学版), 2001, 29(2): 1-4
    [75]李莹,刘宝辉,张中男,等.玉米蔗糖磷酸合成酶(SPS)基因的克隆及表达载体的构建[J].生物信息学, 2005(2): 66-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700