DgDREB1A基因分离及对切花菊的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
切花菊Cut Chrysanthemum(Dendranthema grandiflorum (Ramat.) Kitam)是世界4大切花之一,.具有色彩丰富、花型多样、瓶插寿命长等优点,是国际商品花卉总产值最高的花卉种类。在切花菊的栽培生产中,水资源的缺乏和冬季生产能耗成本高等因素严重影响着切花菊的周年生产规模与供应范围。为解决菊花冬季生产的能耗问题,采用现代分子生物学手段培育耐低温菊花新品种,完善菊花周年生产和稳定的供应技术体系意义重大。
     采用PCR的方法,从菊花中克隆到了DgDREB1A基因,利用DNAMAN进行序列比对,所获序列与已知报道序列同源性达到98%,利用酶切、连接的方法,构建了转基因表达载体pBIG-DREBIA并通过冻融的方法转入了农杆菌LBA4404和EHA105中。
     以切花菊‘神马’为试材,建立了无菌培养系,以无菌苗幼嫩叶片为外植体,优化了不定芽再生体系,叶片外植体在含有0.25mg/L2,4-D、1mg/LBA的MS培养基中诱导培养15d后,转入含有0.25mg/LNAA、1mg/LBA的分化培养基中培养3周,再生率达到100%。
     在建立了切花菊高效再生体系的基础上,优化了遗传转化体系,并获得了转基因阳性植株,菊花叶片外植体预培养2d,用摇至OD600=0.5-0.7的农杆菌稀释10倍之后侵染10min.,黑暗条件下共培养2d,在5mg/L的kan.下连续筛选8周以上,将期间产生的抗性芽切下接种在含有7.5mg/L的生根培养中进行二次筛选,提取能够正常生根的抗性苗DNA,进行PCR检测,共获得PCR阳性植株8株,转化率达到1%。
     本实验拟通过农杆菌介导的转基因育种手段,获得低温抗性良好的切花菊新品系,为切花菊冬季生产降低成本,为培育综合抗逆性良好的菊花新品种提供基础材料。
Cut chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitam) is one of the four main cut flower in the world,have the advantage of abundant colors、various flowertypes、and long vase life et.al.,and it is the highest value flower type in gross output value of international commodity flower. However,lack of water and high production cost seriously limit the scale of production and extent of supply. To solve the problem of enegy-consumable in the production of chrysanthemum in winter,It will be signaity to breed new cultivar that have low-temperature tolerance with modern molecular biology technology and perfect the system of all year production and sdeady supply technology.
     With the method of PCR, we coloe DgDREB1A gene from chrysanthemum, sequence alignment with reported sequence,the homology reach to 98%, then we built transgene expression vector pBIG-DREB1A and transform it into Agrobacterium LBA4404 and EHA105.
     Using cut chrysanthemum 'jinba' as the test material,we cultivated sterile culture system, using young leaves of the sterile plant as explant,we optimize the adventitious shoot regeneration system, the leaf explants were cultured 15 days in MS medium supplement with 0.25mg/L 2,4-D、1mg/L BA, then transferred onto development medium with 0.25mg/L NAA、1mg/L BA,after 3 weeks, the regeneration rate reach to 100%.
     Based on the highly efficient regeneration,we optimized the genetic transformation system,and have got the positive lines,we found that 2 days preculture、OD600=0.05-0.07 engineer agrobacterium、10min.affection time and 2 days co-cultivation were necessary for the thansformation of chrysaanthemum,In our study,after 8 weeks selection under pressure,the resistent shoots were transferred to root medium which contain 7.5mg/L kan.to take the second selection,extract DNA of the rooted lines,PCR result showed that DgDREB1A was detected in 8 lines,the transformation ratio was 1%.
     In this study, we use the method of genetic transformation mediated by agrobacterium tumefaciens,obtain new cut chrysanthemum lines that have good tolerance to low temperature,lower the cost for production in winter,supply the fundamental material for breeding new chrysanthemum cultivar that have good synthesized tolerance.
引文
[1]Knight H, Knight MR.Abiotic stress signalling pathways:specificity and cross-talk[J]. Trends Plant Sci,2001,6:262-267.
    [2]Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K,Carninci P, Hayashizaki Y, Shinozaki K.Monitoring theexpression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. PlantCell,2001,13:61-72.
    [3]Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Toa Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A,Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL,Wang X, Zhu T.Expression profile matrix of Arabidopsistranscription factor genes suggests their putative functions in response to environmental stresses[J]. Plant Cell,2002,14:559-574.
    [4]Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL,Cushman JC, Cushman MA, Deyholos M, Fisher R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee B-H, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song C-P, Tanaka Y, Wang H, Zhu JK.A genomic approach towards salt stress tolerance[J]. Plant Physiol Biochem,2001,39:295-311.
    [5]Zhu T, Budworth P, Han B, Brown D, Chang HS, Zou G, Wang X.Toward elucidating the global expression patterns of developing Arabidopsis:parallel analysis of 8300 genes by a high-density oligonucleotide probe array[J]. Plant Physiol Biochem,2001,39:221-242.
    [6]Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J,Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R,PilgrimM, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GArabidopsis transcription factor:genome wide comparative analysis among eukaryotes[J]. Science,2000,290:2105-2110.
    [7]Shinozaki K, Yamaguchi-Shinozaki K.Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Curr Opin Plant Biol,2000,3:217-223.
    [8]Thomashow MF.Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Ann Rev Plant Physiol Plant Mol Biol,1999,50:571-599.
    [9]Xiong L, Schumaker KS, Zhu J-K.Cell signaling during cold,drought, and salt stress[J]. Plant Cell,2002,14:165-183.
    [10]Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K.Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J].Plant Cell,1997,9:1859-1868.
    [11]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K..Arabidopsis basic leucine zipper transcription factors involved in abscisic-acid-dependent signal transduction pathway under drought and high salinity conditions[J]. Proc Natl Acad Sci USA,2000,97:11632-11637.
    [12]Choi DW, Rodriguez EM, Close TJ.Barley CBF3 gene identification, expression pattern, and map location[J]. Plant Physiol,2002,129:1781-1787.
    [13]Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J,Tiedemann J, Kroj T, Parcy F.bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci,2002,7:106-111.
    [14]Zhang Y, Fan W, Kinkema M, Li X, Dong X.Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene[J]. Proc Natl Acad Sci USA,1999,96:6523-6528.
    [15]Goodrich J, Carpenter R, Coen ES.A common gene regulates pigmentation pattern in diverse plant species[J]. Cell,1992,68:955-964.
    [16]Martin C, Paz-Ares J.MYB transcription factors in plants[J].Trends Genet,1997,13:67-73.
    [17]Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J].Plant Cell,2003,15:63-78.
    [18]Pradeep K. Agarwal Parinita Agarwal.M. K. Reddy. Sudhir K. Sopory..Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep,2006,25:1263-1274.
    [19]Yarnaguchi-Shinozaki K,Shinozaki K.Plant Cell,1994,6(2):251-264.
    [20]Stoctinger EJ,Cilmour SJ,Thomashow MF.Proceedings of the National Academy of Sciences,1997,94:1035-1040.
    [21]Liu Q,Kasuga M,Sakuma Y,Abe H,Miura S,Yamaguchi-Shinozaki K,Shinozaki K.Two transcription factors,DREB 1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression,respectively,in Arabidopsis.[J] Plant Cell,1998,10(8):1391-1406.
    [22]Hong J P and Kim W T.Isolation and functional characterization of the CaDREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein in hot pepper(Capsicum allnuum L. cv. Pukang)[J].Planta,2002,220:875-888.
    [23]Kume S,Kobayashi F,Ishibashi M,Ohno R,Nakamura C an d Takumi S. Diferential and coordinated expression of CBF and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance[J].Genes&Genetic Systems,2005,80:18-19.
    [24]Li X P,Tian A QLuoG Z,Gong Z Z,Zhang J S and Chen S Y. Soybean DRE-binding transcription factors that are responsive to abiotic stresses [J].Theoretical and Applied Genetics,2005,1(10):1355-1362.
    [25]Huang B,Jin L and Liu J.Molecular cloning and functional characterization of a D REB1/CBF-like gene(GhDREB1L)from cotton[J].Science/n China(Series C,Life scien ces),2007.50:7-14.
    [26]Xiong Y and Fei S Z.Functional and phylogenefic analysis of a DREB/CBF-Iike gene in perennial ryegrass (Lolium perenneL.)[J].Planta,2006,224;878-888.
    [27]Liu N,Zhong N Q,Wang G L,LiL J,Liu X L,He Y K and Xia G X.Cloning and functional characterization of PpDBFl gene encoding a DRE-binding transcription factor from Physcomitrella patens[J].Planta.2007,226;827-838.
    [28]Huang B,Jin L and Liu J.Molecular cloning and functional characterization of a DREB1/CBF-like gene(GhDREB1L) from cotton[J].Science in China(Series C,Life sciences),2007.50;7-14.
    [29]Gamboa M C,Rasmussen-Poblete S,Valenzuela P D and Krauskopf E.Isolation and characterization of a cDNA encoding a CBF transcription factor from E.globules[J].Plant Physiology and Biochemistry,2007,45;1-5.
    [30]Chen M,Wang Q Y,Cheng X G,Xu Z S,Li L C,Ye X G,Xia L Q and Ma Y Z.Gm DREB2.a soybean DRE-binding transcription factor,conferred drought and high salt tolerance in transgenic plants [J].Biochemical and Biophysical Research Communica tions,2007,353;299-305.
    [31]Agarwal P,Agarwal P K,Nair S,Sopory S K and Reddy M K. Stress-inducible DR EB2A transcription factor from Pennisetum gJaucum is a phosphoprotein and its ph osphorylation negatively regulates its DNA-binding activity [J].Molecular Genetics a nd Genomics,2007,277;189-198.
    [32]冯锋.烟草(Nicotiana tabacum)中DREB转录因子的克隆和功能分析[D].;河南农业大学;2008.
    [33]李妍,申书兴,轩淑欣,李晓峰,王彦华.大白菜DREB类转录因子cDNA的克隆及植物表达载体的构建[J].华北农学报.2009,24(1);69-73.
    [34]张梅刘炜毕玉平王自章.花生中DREB类转录因子PNDREB1的克隆及鉴定[J].,作物学报ACTAAGRONOMICA SINICA 2009,35(11);1973-198.
    [35]Jofuku D K,Boer D W G B,Montagu V M,et al.Control of Arabidopsis flower seed development by the homeotic gene APETALA2[J].Plant Cell,1994,6;1211-1225.
    [36]Hao D,Ohme-Takagi M,Sarai A.Unique mode of GCC box recognition by the DN A-binding domain of ethylene-responsive element binding factor(ERF domain)in pla nt[J].J.Biol.Chem.,1998,273;26857-26861.
    [37]Riechmann J L,Meyerowitz E M.The AP2/EREBP family of plant transcription factors[J].Biol Chem.,1998,379;633-646.
    [38]Chang C,Shockey J A.The ethylene-response pathway:signal perception to gene regulation[J].Current Opinnion in Plant Biology,1999,2:352-358.
    [39]Sakuma Y,Liu Q,Dubouzet, J G,et al.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs,transcription factors involved in dehydration-and cold-inducible gene expression[J].Biochem.Biophys.Res.Commun.,2002,290:998-1009.
    [40]Allen M D,Yamasaki K,Ohme-Takagi M,et al.A novol mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J].EMBO J,1998,17:5484-5496.
    [41]Benedict C, Skinner JS, Meng R, Chang YJ, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant, Cell & Environment, 2006b,29:1259-1272.
    [42]Gilmour S J,Zarka D QStockinger E J,Salazar M P,Houghton J M,Thomashow M F.Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J].Plant J,1998,16(4);433-442.
    [43]Chinnusamy V,Ohta M,Kanrar S,Lee BH,Hong X,Agarwal M,Zhu JK.ICE1;a regul ator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes D ev,2003,17(8);1043-1054.
    [44]Chinnusamy V,Ohta M,Kanrar S,Lee BH,Hong X,Agarwal M,Zhu JK.ICE 1;a regu lator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes Dev,2003,17(8);1043-1054.
    [45]Lee H,Xiong L,Gong Z,Ishitani M,Stevenson B,Zhu JK.The Arabidopsis HOS1 gene negatively regulates coldsignal transduction and encodes a RING finger protein thatdisplays cold-regulated nucleo-cytoplasmic partitioning[J].Genes Dev,2001,15(7);912-924.
    [46]Dong CH,Agarwal M,Zhang Y,Xie Q,Zhu JK.The negative regulator of plant cold responses,HOS l,is a RING E3 ligase that mediates the ubiqutination and degradation of ICE1[J].Proc Natl Acad Sci USA,2006,103(21);8281-8286.
    [47]Xiong L,Lee H,Ishitani M,Ishitani M,Tanaka Y,Stevenson B,Koiwa H,Bressan RA, Hasegawa PM,Zhu JK.Repression of stress-responsive genes by FIERY2,a noveltr anscriptional regulator in Arabidopsis[J].Proc Natl AcadSci USA,2002,99(16);1089 9-10904.
    [48]Gong Z,Lee H,Xiong L,Jagendorf A,Stevenson B,Zhu J K.RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance[J].Pro NatfAcad Sci USA,2002,99(17);11507-11512.
    [49]Boyce JM,Knight H, Deyholos M, Openshaw MR,Galbraith DW,W arren G,Knight M R.The 6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB 1 and DREB2 and shows sensitivity to osmotic stress[J].Plant 2003,34(4);395-406.
    [50]Novillo F,Alonso JM,Ecoker JR,Salinas J.CBF/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB 1A expression and plays a central role in stress tolerance in Arabidopsis[J].Proc Natl Acad Sci USA,2004,101(11);3985-3990.
    [51]Fowler S G,Cook D,Thomashow M F.Low temperature induction of Arabidopsis CBFl,2,and 3 is gated by the circadian clock[J].Plant Physiol,2005,137(3);961-968.
    [52]Liu Q,Zhao N M,Ishida J,et al.Yamaguchi-Shinozaki K,et al.DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(1):11-16.
    [53]Seki M,Narusaka M,Ishida J,et al.Monitoring the expression profiles of 7000 Arabidopsis genes under drought,cold and high-salinity stresses using a full-length cDNA microarray[J].Plant J,2002,31:279-292.
    [54]Vogel J T,Zarka D QVan Buskirk H A,et al.Roles of the CBF2 and ZAT12 transcriotion factors in configuring the low temperature transcriptome of Arabidopsis[J].Plant J,2005,41:195-211.
    [55]Maruyama K,Sakuma Y,Kasuga M,et al.Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarra y systems[J].Plant J,2004,38:982-993.
    [56]Jaglo-Ottosen,K R,Gilmour S J,Zarka D G,et al.Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance [J].Science,1998,280;104-106.
    [57]Gilrnour S J,Sebolt A M,Salazar M P,et al.Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J].Plant Physiol,2000,124;1854-1865.
    [58]Jaglo K R,Kleff s,Amundsen K L,et al.Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathwav are conseved in Brassica napus and other plant species[J].Plant Physiol,2001,127;910-917.
    [59]Haake V,Cook D,Riechmann J L,Pineda O,et al.Transcription factorc BF4 is a regulator of drought adaptationin Arabidopsis[J].Plant Phvsiol,2002,130;639-648
    [60]Dubouzet J QSakuma Y,Ito Y,et al.OsDREB genes in rice,Oryza sativa L.,encode transcription activators that function in drought-,hghsalt-and cold-responsive gene expression[J].Plant J,2003,33;751-763.
    [61]Shen Y Qzhang W K,Yan D Q,et al.Characterization of a DRB-binding transcription factor from a halophyte Atriplex hortensis[J].Theor Appl Genet,2003,107;155-161.
    [62]Kasuga M,Miura S,Shinozaki,et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer[J].Plant Cell Physiol,2004,45;346-350.
    [63]Qin F,Sakuma Y,Li J,et al.Cloning and Functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays[J].Plant Cell Physiol,2004,45(8);1042/1052.
    [64]Li P,Chen F,Quan C,Zhang GY.OsDREB1 gene from rice enhances cold tolerance in tobacco[J].Tsinghua science&Technology,2005,10;478/483.
    [65]SakIlma Y,Manlvama K,Osakabe Y,et al.Functional analvsis of an Arabidopsis transcription factor,DREB2A,involved in drought-responsive gene expression[J].Plant Cell,2006,18;1292-1309.
    [66]Ito Y,Katsura K,Mamyama K.Functional Analysis of rice DREB1/CBF-type Transcription factors involved in cold-responsive gene expression in transgenic rice[J].Plant Cell Physiol 2006,47(1); 141-153.
    [67]Xiong Y W,Fei S Z.Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass(Lolium perenne L.) [J].Planta,2006,224(4);878-888.
    [68]Chen M,wang Q Y,cheng X Qet al.GmDREB2,a soybean DRE_binding transcription factor,conferred drought and high salt tolerance in transgenic plants[J].Biochem Biophys Res Commun,2007,353;299/305.
    [69]Chen J Q, Meng X P, Zhang Y,X ia M,Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice[J]. Biotechnol Lett,2008,30:2191-2198.
    [70]Chang-Tao,Wang,Yin-Mao Dong. Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants[J]. Biologia,2009,64:1108-1114.
    [71]Kasuga M,Liu Q,Miura S,et al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcfiption factor[J].Nat Biotechnol,19 99,17;287-291.
    [72]洪波,仝征,马男,等AtDREB1A基因在菊花中的异源表达提高了植株对干旱和盐渍胁迫的耐性[J].中国科学,2006,36(3);223-231.
    [73]Mol J, Grotewold E, Koes RE. How genes paint flowers and seeds[J]. Trends Plant Sci, 1998,3:212-217.
    [74]van Wordragen MF, de Jong J, et al. Genetic transformation of chrysanthemum using wild type Agrobacterium strains; strain and cultivar specificity[J]. Plant Cell Reports,1991,9: 505-508.
    [75]Hutchinson JF. Genetic improvement of floricultural crops using biotechnology[J]. Australian Journal of Botany.1992,40:765-787.
    [76]Dolgov SV, Mityshkina TU, Rukavtsova EB, et al. Production of transgenic plants of Chrysanthemum morifolium Ramat with the gene of Bacthuringiensis-endotoxin[J]. Acta Hort,1995,420:46-47.
    [77]Robinson KEP, Firoozabady E. Transformation of floriculture crops[J].Scientia Horticulturae,1993,55:83-99.
    [78]Ledger SE, Deroles SC, Given NK.Regeneration and Agrobacterium-mediated transformation of chrysanthemum[J]. Plant Cell Reports,1991,10:195-199.
    [79]Renou JP, Brochard P, Jalouzot R. Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev)after hygromycin resistance selection[J]. Plant Science Limerick. 1993,89:185-197.
    [80]Miller HN.Leaf, stem, crown, and root galls induced in chrysanthemum by Agrobacteriumfumefaciens[J]. Phytopathology,1975,65:805-811.
    [81]Bush AL, Pueppke SG. Characterization of an unusual new Agrobacterium tumefac iens strain from Chrysanthemum morifolium Ram[J]. Appl Environ Microbiol,1991 a,57:2468-72.
    [82]Teixeira da Silva JA, Fukai S. Increasing transient and subsequent stable transgene expression in chrysanthemum(Dendranthema grandiflora (Ramat.)Kitamura)following optimization of particle bombardment and Agroinfection parameters[J]. Plant Biotechnol,2002a,19:229-40.
    [83]Jong JD, et al. Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA[J]. Plant Cell Reports,1994,14:59-64.
    [84]Takatsu Y. Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema grandiflorum(Ramat.) Kitamura) cultivars and the improved protocol for Agrobacterium-mediated genetic transformation[J]. J Jap Soc Hort Sci,1998,67:958-964.
    [85]van Wordragen MF, et al. Rapid screening for host-bacterium interactions in Agrob acterium mediated gene transfer to chrysanthemum, by using the GUS-intron gene [J]. Plant Science Limerick,1992,81:207-214.
    [86]Karle R. Transient expression of a foreign gene in chrysanthemum protoplasts[J]. Latvijas Zinatnu Akademijas.1993,10:62-64.
    [87]Yepes LM, Mittak V, SlightomJ L. Agrobacterium tumefaciens versus biolistic-mediated transformation of the chrysanthemum cvs. polaris and gloden polaris with nucleocapsid protein genes of three tospovirus species[J]. Acta Hort,1999,482:209-218.
    [88]Hosokawa K, Matsuki R, Oikawa Y, Yamamura S. Genetic transformation of gentian usingwild-type Agrobacterium rhizogenes[J]. Plant Cell Tissue Organ Culture,1997,51: 137-140.
    [89]Ledger SE, Deroles SC, Given NK. Regeneration and Agrobacterium-mediated transformation of chrysanthemum[J]. Plant Cell Reports,1991,10:195-199.
    [90]Boase MR. Genetic transformation mediated by Agrobacterium tumefaciens of florists' Chrysanthemum(Dendranthema Xgrandiflorum)cultivar'Peach Margaret'[J].In Vitro Cellularand Developmental Biology Plant,1998,34:46-51.
    [91]van Wordragen MF. The use of endotoxin genes from Bacillus thuringiensis to introduce insect resistance in chrysanthemum callus. Integration of in vitro techniques in ornamental plant breeding[D]. Proceedings, symposium,10-14 November,1990.146-149.
    [92]Teixeira da Silva JA, Fukai S. Increasing transient and subsequent stable transgene expression in chrysanthemum(Dendranthema_grandiflora (Ramat) Kitamura) following optimization of particle bombardment and Agroinfection parameters[J]. Plant Biotechnol,2002a,19:229-40.
    [93]Mitiouchkina TY, Dolgov SV, Cadic A. Modification of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction[J].Acta Horticulturae,2000a,508:163-169.
    [94]Mitiouchkina TY, Ivanova EP, Taran SA, Dolgov SV. Chalcone synthase gene from Antirrhinum majus in antisense orientation successfully suppressed the petals pigmentation of chrysanthemum[J].Acta Hort,2000b,508:215-217.
    [95]Courtney GN. Production of genetically engineered color-modified chrysanthemum plantscarrying a homologous chalcone synthase gene and their field performance[J].Acta Horticulturae,1993,336:57-62.
    [96]Courtney GN. Modification of flower color in florist's chrysanthemum:production of awhite-flowering variety through molecular genetics[J]. Bio-Technology,1994,12:268-271.
    [97]邵寒霜,李继红,郑学琴,等.拟南芥LFYcDNA的克隆及转化菊花的研究[J].植物学报,1999,41(3):268-271.
    [98]Teixeira da Silva JA. Chrysanthemum:advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology[J]. Biotechnology Advances,2003,21:715-766.
    [99]Petty LM, Harberd NP, Carre IA, et al. Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response[J]. Plant Science,2003,164:175-182.
    [100]Petty LM, Harberd NP, Carre IA, Thomas B, Jackson SD. Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response[J]. Plant Science,2003,164:175-182.
    [101]Zheng ZL, Yang ZB, Jang JC, Metzger JD. Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 Gene[J]. J Amer Soc Sci,2001,126(1):19-26.
    [102]van Wordragen MF. The use of endotoxin genes from Bacillus thuringiensis to introduce insect resistance in chrysanthemum callus. Integration of in vitro techniques in ornamental plant breeding[J]. Proceedings, symposium,10-14 November 1990.146-149.
    [103]van Wordragen MF, et al. Insect-resistant chrysanthemum calluses by introduction of a Bacillus thuringiensis crystal protein gene[J]. Transgenic-Research,1993,2:170-180.
    [104]Takatsu Y, Nischizawa Y, Hibi T, et al. Transgenic chrysanthemum (Dendranthem a grandiflorum)expressing a rice chitinase gene shows enhanced resistance to gray mold(Botrytis cinerea)[J]. Scientia Hort,1999,82:113-123.
    [105]Pavingerova D, Dostal J, Biscova R, Benetka V. Somatic empryogenesis and Agrobacterium-mediated transformation of chrysamthemum[J]. Plant Science,1994,97: 95-101.
    [106]李邱华 洪波 仝征 杨英杰 马超 于静娟 高俊平.新铁炮百合遗传转化体系的建立及Zm401基因的导入[J].农业生物技术学报2008,16(1):96-102.
    [107]Zheng Tong, Bo Hong,Yingjie Yang,Qiuhua Li, Nan Ma, Chao Ma, Junping Gao. Overexpression of two chrysanthemum DgDREBl group genes causing delayed flowering or dwarfism in Arabidopsis[J]. Plant Mol Biol,2009,71:115-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700