DRE、W和S盒在转基因水稻中的作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在长期的进化过程中逐渐形成了诱导型防御反应机制,使以消耗物质和能量为代价的防御反应限制在特定的时间或空间,以实现物质和能量的有效利用。防御反应基因应答逆境胁迫主要由防御反应基因启动子中的顺式作用元件与其相应的反式作用因子(转录因子)的识别和结合所控制,因此,分离、分析应答特定逆境的顺式作用元件不仅有利于进一步分离其相应的转录因子阐明诱导型防御反应的信号传递通路,还有利于应用这些元件构建诱导型人工合成启动子用于植物抗逆基因工程遗传改良。本研究对前人从双子叶植物中分离、鉴定出来的DRE盒、W盒和S盒元件在水稻中应答不同逆境的作用进行了较为系统的研究,主要结果如下:
     1、采用常规的酶切连接技术与gateway克隆技术相结合,构建了一套将DRE盒、W盒和S盒等参试顺式作用元件插入到CaMV35S核心启动子(+8bp—-46bp)的上游,控制GUS报告基因表达的植物表达载体,通过测序对上述载体进行了验证;
     2、利用农杆菌介导的遗传转化方法分别将上述载体转入粳稻日本晴中,获得了上述载体相应的转基因T0代植株,对上述T0代植株在温室栽培并进行自交纯合和潮霉素浸种筛选,分别获得其足够的T1和T2代株系。
     3、利用上述转基因株系的种子、植株或其衍生的抗性愈伤组织,采用低温、高温、盐胁迫、稻纵卷叶螟取食和稻瘟病接种等方法处理结合GUS组织化学染色的分析方法,分析了DRE盒、W盒和S盒元件在转基因水稻中对参试的不同逆境胁迫的应答,并分析了不同元件对上述逆境胁迫应答与几种内源激素信号之间的可能关系:实验发现,W盒可介导水稻对真菌性病害稻瘟病的应答,参与了对稻纵卷叶螟取食的应答,还可能与JA和SA信号途径关系。DRE盒驱动的GUS基因表达对各种逆境的应答很弱甚至没有表达,说明在单子叶植物水稻中顺式作用元件与反式作用因子之间的识别和互作与其侧翼序列有关。S盒可明显介导水稻对稻瘟病和稻纵卷叶螟的应答,对各种非生物逆境的应答水平不同,而对外源激素有一定的表达。
     4、选择对病原菌或诱发因子处理高效应答的元件,选择合适的拷贝数以及适宜的组合,构建含多个顺式作用元件组合(2×DRE+2×GCC+2×JERE+2×W)的诱导型启动子的表达载体,并通过农杆菌介导的遗传转化方法获得转基因T0代植株,并对抗性植株进行PCR分子鉴定。
     本研究的初步研究结果表明,在单子叶水稻和双子叶植物之间,顺式作用元件与其反式作用因子之间的识别和互作激活植物防御反应存在着一定程度的保守性,W盒和S盒在稻瘟病和稻纵卷叶螟等生物性逆境胁迫具有较强的应答作用,同时也对低温、高盐等非生物逆境胁迫具有不同程度的应答作用,暗示在其上游存在着复杂的信号通路的crosstalk,可能与水杨酸、脱落酸等内源激素的参与有关。W盒和S盒等顺式作用元件可以不依赖于其侧翼序列在不同的遗传背景下单独发挥作用,表明这类顺式作用原件在诱导型合成启动子的构建中具有十分重要的应用价值。
Abstract: Plants in the long process of evolution has gradually formed the inducible defense reaction mechanism,which makes the defense response for the cost of materials and energy consumption limited to a specific time or space in order to achieve effective utilization of material and energy.
     Defense response genes response to adversity stress is mainly controlled by the identification and integration of the cis-acting elements and their corresponding trans-acting factors (transcription factors) in the defense response gene.So, the separation and analysis of the cis-acting element of the response to specific adversity is not only conducive to further separation of the corresponding transcription factor inducible defense response to clarify the signaling transduction pathway, is also beneficial to use these components to build inducible synthetic promoter for the genetic improvement of plant resistance Reverse genetic engineering. This paper is a more systematic study,for the response to different stress role of the isolated and identified DRE , W and s-box components on predecessors from dicotyledonous plants in the rice. The main findings are as follows:
     1. In an ordinary endonuclease connection technology and gateway cloning techniques ,it builds a DRE, W and s-boxes, and other participants cis-acting elements inserted into the CaMV35S core promoter (+ 8bp—-46bp) upstream and controls the plant expression vector of GUS reporter gene expression, and tests the carrier by sequencing.
     2. Using Agrobacterium-mediated transformation methods to turn the carrier into japonica Nipponbare,it wins the vector corresponding transgenic T0 generation plants and makes T0 generation plants in the culture under-glass and makes them selfing、homozygous and hygromycin to be immersed for selecting,respectively requiring its inadequate T1 and T2 generation strains.
     3. Using the seeds and plants or its derivative resistance callus of these transgenic strains, at low temperature, high temperature and salinity, rice leaf roller feeding and rice blast vaccination and so on and together with the analysis methods of GUS histochemical stain,the author analyzes the response from the DRE, W and s-box components in transgenic rice on participants of different stress and analyzes the possible relationship between the response from different components to the stress and several internal endogeny hormone signals. The experiment found that W-box can be mediated the response from rice to fungus Magnaporthe grisea and, participated in a rice feeding response, and possibly with JA and SA signal pathway relationships. Gus expression driven by DRE box to the answer of the various abiotic stresses is different,,and it may be related to the upper reaches of the relationship between hormonal signals. S-box could significantly be mediated the response from rice blast and rice leaf roller ,and the level on a variety of abiotic stress response is different, while it is the external expression of a certain hormone.
     4. Selecting on pathogens bacteria or evoked inducer processing efficient answering components, and selecting the appropriate number of copies and appropriate combination to build the expression vector of inducible promoter containing more than one combination of CIS-acting elements (2×DRE + 2×GCC + 2×JERE + 2×W),and by Agrobacterium-mediated transformation method to obtain a transgenic plant T0 generation, identify confrontational plant by PCR.
     Preliminary findings indicate that between unifacial leaf rice and dicotyledonous plants, CIS-acting elements and trans-act factor between recognition and interaction activating plant defense responses exist a certain degree of conservative, W and s-box in the rice blast and rice leaf roller, and other biological adversity stress have strong response, at the same time they have different levels of response at low temperature, high salt and so abiotic stress,and this implied the existence of complex signaling pathways of crosstalk in its upper reaches ,and might have something to do with salicylic acid, Abscisic acid and other hormones involved. W and s-box, and other cis-acting elements can not rely on its flanking in different genetic backgrounds alone,and this indicates that this class of cis-acting original synthesis in inducible promoter of the construction is of great value.
引文
[1]赵发清,朱必凤,马海燕.作物的生长冗余和生命体的节约原则[J],生态学杂志,1996,15(1):32-34.
    [2]何水林.植保素代谢与植物防御反应[M],广东科技出版社,广州,2002.
    [3] Green TR, Ryan CA. Wound-induced proteinase inhibitor in plant leaves a possible defense mechanism against insects[J]. Science,1972,175:776-777.
    [4] Broadway RM, Duffey SS. The effect of dietary protein on the growth and digesty physiology of larval Heliothis zea and Spodoptera exigua[J]. J Insect Physiol, 1986,32:827-833.
    [5]何水林.种植制度中作物他感作用及其应用,中国集约型农作制度可持续发展,中国耕作制度研究会编[M],江西科学技术出版社,88-91.南昌,2000.
    [6] Gershenzon J.J F functional identification of AtTPS03 as (E)-β-ocimene synthase:a monoterpene synthase catalyzing jasmonate and wound induced volatile formation in A rabidopsis thaliana[J].Chem Ecol, 1994.18:172-176.
    [7] Ulker, B. and I.E. Somssich. WRKY transcription factors from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004. 7(5): p. 491-8.
    [8] Rushton, P.J., et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. Embo J, 1996. 15(20): p. 5690-700.
    [9] Eulgem, T., et al. Early nuclear events in plant defence signalling rapid gene activation by WRKY transcription factors[J]. Embo J, 1999. 18(17): p. 4689-99.
    [10] Eulgem, T,et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000. 5(5): p. 199-206.
    [11] Du, L. Z. Chen. Identification of genes encoding receptor like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis[J]. Plant J, 2000. 24(6): p. 837-47.
    [12] Qu, L.J, Y.X. Zhu. Transcription factor families in Arabidopsis major progress and outstanding issues for future research[J]. Curr Opin Plant Biol, 2006. 9(5): p. 544-9.
    [13] Robatzek, S, I.E. Somssich, A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes[J]. Plant J, 2001. 28(2): p. 123-33.
    [14] Deslandes, L, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes[J]. Proc Natl Acad Sci U S A, 2002. 99(4): p. 2404-9.
    [15] Yoda, H., et al. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants[J]. Mol Genet Genomics, 2002. 267(2): p. 154-61.
    [16] Hinderhofer, K,U. Zentgraf. Identification of a transcription factor specifically expressed at the onset of leaf senescence[J]. Planta, 2001. 213(3): p. 469-73.
    [17] Miao, Y, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis[J]. Plant Mol Biol, 2004. 55(6): p. 853-67.
    [18] Rizhsky, L., H. Liang, R. Mittler. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiol, 2002. 130(3): p. 1143-51.
    [19] Li, S., et al. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress[J]. Plant Cell Rep, 2009. 28(4): p. 683-93.
    [20] Izaguirre, M.M., et al. Convergent responses to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora[J]. Plant Physiol, 2003. 132(4): p. 1755-67.
    [21] Xu, Y.H., et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A[J]. Plant Physiol, 2004. 135(1): p. 507-15.
    [22] Wei, W., et al. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Rep, 2008. 27(4): p. 795-803.
    [23] Ryu, H.S., et al. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response[J]. Plant Cell Rep, 2006. 25(8): p. 836-47.
    [24] Eulgem, T. I.E. Somssich, Networks of WRKY transcription factors in defense signaling[J]. Curr Opin Plant Biol, 2007. 10(4): p. 366-71.
    [25] Allen M D, Yamasaki K, Oheme-Takagi M, et al. A novel mode of DNA recognition by a sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J]. EMBO J, 1998, 17(18): 5484~5496.
    [26] Sakuma Y,Liu Q,Dubouzet JG, et al. DNA-binding specificity of the ERF/Ap2 domain of Arbidopsis DREBs,transctiption factors involved in dehydration and cold-induced gene expression[J].Biochem Biophs Res Co,2002,290:998.
    [27] Nakano T, Suzuki K, Fujimura T, Shin S H. Genome wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140: 411-432.
    [28] Wurschum T, Gross-Hardt R, Laux T. APETALA2 regulates the stem cell niche in the Arabidopsis shootmeristem[J]. The Plant Cell, 2006, 18: 295-307.
    [29] Yamaguchi S,Skinozaki K.A novel cis-element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress[J].Plant Cell,1994,6:251.
    [30] Liu Q,Kasuga M,Sakuma Y,et al. Two transcription factors,DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arbidopsis[J].Plant Cell,1998,10:1391.
    [31] Haake V,Cook D,Riechmann JL,et al. Transcription factor CBF4 is a regulator of drought adaptation in Arbidopsis [J].Plant Physiology,2002,130:639.
    [32] Dubouzet J G,Sakuma Y,Ito Y,Kasuga M,Dubouzet E G,Miura S,Seki M,Shinozaki K and Yamaguchi-shinozaki K. OsDREB genes in rice,Oryza sativa L,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression[J].The Plant Journal,2003,33:751-763.
    [33] EUL GEM T ,RUSHTON P J ,ROBATZEK S ,SOMSSICH I E. The WRKY superfamily of plant t ranscription factors [J ] . T rends PlantSci . ,2000 ,5 (5) :199 - 206.
    [34] RUSHTON P J ,MACDONALD H ,HU TTL Y A K,LAZARUS C M , HOOL EY R. Members of a new family of DNA2binding proteins bind to a conserved cis-element in t he promoters of alpha2A my2 genes[J ] . Plant Mol . Biol. ,1995 ,29 (4) :691 - 702.
    [35] ROBATZEK S ,SOMSSICH I E. Target s of AtWRKY6 regulation during plant senescence and pat hogen defense[J ] . Gene Dev . ,2002 ,16(9) :1 139 - 1 149.
    [36] Ohme-Takagi, M. and Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell,1995,7, 173–182.
    [37] Rushton, P.J. and Somssich, I.E. Transcriptional control of plant genes responsive to pathogens[J]. Curr. Opin. Plant Biol.1998, 1, 311–315.
    [38] Menke, F.L.H., Champion, A., Kijne, J.W. and Memelink, J. A novel jasmonate- and elicitor-responsive element in the periwunkel secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2[J]. EMBO J.1999,18, 4455–4463.
    [39] Chang, C. and Shockey, J.A. The ethylene-response pathway:signal perception to gene regulation[J]. Curr. Opin. Plant Biol. 1999,2, 352–358.
    [40] Yasuda, M., et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsi[J]s. Plant Cell, 2008. 20(6): p. 1678-92.
    [41] Fujita, M., et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks[J]. Curr Opin Plant Biol, 2006. 9(4): p. 436-42.
    [42] Ma, S. and H.J. Bohnert. Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression[J]. Genome Biol, 2007. 8(4): p. R49.
    [43] Kim, C.Y. and S. Zhang. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J]. Plant J, 2004. 38(1): p. 142-51.
    [44] Gonzalez-Lamothe, R., et al. The transcriptional activator Pti4 is required for the recruitment of a repressosome nucleated by repressor SEBF at the potato PR-10a gene[J]. Plant Cell, 2008. 20(11): p. 3136-47.
    [45] Maleck, K., et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance[J]. Nat Genet, 2000. 26(4): p. 403-10.
    [46] AbuQamar, S., et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection[J]. Plant J, 2006. 48(1): p. 28-44.
    [47] Du, H., et al. Biochemical and molecular characterization of plant MYB transcription factor family[J]. Biochemistry (Mosc), 2009. 74(1): p. 1-11.
    [48] Iida, K., et al. RARTF: database and tools for complete sets of Arabidopsis transcription factors[J]. DNA Res, 2005. 12(4): p. 247-56.
    [49] Maeo, K., et al. Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins[J]. Biosci Biotechnol Biochem, 2001. 65(11): p. 2428-36.
    [50] Rocher, A., C. Dumas, and J.M. Cock. A W-box is required for full expression of the SA-responsive gene SFR2[J]. Gene, 2005. 344: p. 181-92.
    [51]Eulgem, T., et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000.5(5): p. 199-206.
    [52] Du, L. and Z. Chen. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis[J]. Plant J, 2000. 24(6): p. 837-47.
    [53] Robatzek, S. and I.E. Somssich. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes[J]. Plant J, 2001. 28(2): p. 123-33.
    [54] Wang, Z., et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter[J]. Planta, 2009.
    [55] Koo, S.C., et al. OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33[J]. Biochem Biophys Res Commun, 2009. 387(2): p. 365-70.
    [56] Jiang, Y. and M.K. Deyholos, Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Mol Biol, 2009. 69(1-2): p. 91-105.
    [57] Lippok, B., et al. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements[J]. Mol Plant Microbe Interact, 2007. 20(4): p. 420-9.
    [58] Ciolkowski, I., et al. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function[J]. Plant Mol Biol, 2008. 68(1-2): p. 81-92.
    [59] van Verk, M.C., et al. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors[J]. Plant Physiol, 2008. 146(4): p. 1983-95.
    [60] Nemoto, T., et al. Promoter analysis of the rice stemar-13-ene synthase gene OsDTC2, which is involved in the biosynthesis of the phytoalexin oryzalexin S[J]. Biochim Biophys Acta, 2007. 1769(11-12): p. 678-83.
    [61] Laquitaine, L., et al. Molecular basis of ergosterol-induced protection of grape against botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression[J]. Mol Plant Microbe Interact, 2006. 19(10): p. 1103-12.
    [62] Chujo, T., et al. Promoter analysis of the elicitor-induced WRKY gene OsWRKY53, which is involved in defense responses in rice[J]. Biosci Biotechnol Biochem, 2009. 73(8): p. 1901-4.
    [63] Turck, F., A. Zhou, and I.E. Somssich. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley[J]. Plant Cell, 2004. 16(10): p. 2573-85.
    [64] Rushton, P.J., et al. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling[J]. Plant Cell, 2002. 14(4): p. 749-62.
    [65] Wu, K.L., et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Res, 2005. 12(1): p. 9-26.
    [66] Liu, X., et al. OsWRKY71, a rice transcription factor, is involved in rice defense response[J]. J Plant Physiol, 2007. 164(8): p. 969-79.
    [67] Liu, X.Q., et al. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J]. Cell Res, 2005. 15(8): p. 593-603.
    [68] Peng, Y., et al. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice[J]. Mol Plant, 2008. 1(3): p. 446-58.
    [69] Wang, H., et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants[J]. Plant Mol Biol, 2007. 65(6): p. 799-815.
    [70] Cai, M., et al. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance[J]. Plant Cell Environ, 2008. 31(1): p.86-96.
    [71] Qiu, D., et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. Mol Plant Microbe Interact, 2007. 20(5): p. 492-9.
    [72] Zhang, J., Y. Peng, and Z. Guo. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J]. Cell Res, 2008. 18(4): p. 508-21.
    [73] Chujo, T., et al. Characterization of an elicitor-induced rice WRKY gene, OsWRKY71[J]. Biosci Biotechnol Biochem, 2008. 72(1): p. 240-5.
    [74] Shimono, M., et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. Plant Cell, 2007. 19(6): p. 2064-76.
    [75]Tao, Z., et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J]. Plant Physiol, 2009. 151(2): p. 936-48.
    [76] Knoth, C., et al. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis[J]. Plant Physiol, 2009. 150(1): p. 333-47.
    [77] Skibbe, M., et al. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008. 20(7): p. 1984-2000.
    [78] Hui, D., et al. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs[J]. Plant Physiol, 2003. 131(4): p. 1877-93.
    [79] Ralph, S., et al. Genomics of hybrid poplar (Populus trichocarpax deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar[J]. Mol Ecol, 2006. 15(5): p. 1275-97.
    [80] Kasuga, M., et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol, 1999. 17(3): p. 287-91.
    [81] Chen, M., et al. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.) [J]. J Exp Bot, 2009. 60(1): p. 121-35.
    [82] Bhatnagar-Mathur, P., et al. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions[J]. Plant Cell Rep, 2007. 26(12): p. 2071-82.
    [83] Pino, M.T., et al. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield[J]. Plant Biotechnol J, 2007. 5(5): p.591-604.
    [84] Kasuga, M., et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer[J]. Plant Cell Physiol, 2004. 45(3): p. 346-50.
    [85] Yamaguchi-Shinozaki, K. and K. Shinozaki. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Novartis Found Symp, 2001. 236: p. 176-86; discussion 186-9.
    [86] Yang, B., et al. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009. 9: p. 68.
    [87] Kusnierczyk, A, et al. Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack[J]. Plant Cell Environ, 2008. 31(8): p. 1097-115.
    [88] Zhao, J., et al. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus[J]. Planta, 2007. 227(1): p. 13-24.
    [89] Knoth, C. and T. Eulgem. The oomycete response gene LURP1 is required for defense against Hyaloperonospora parasitica in Arabidopsis thaliana[J]. Plant J, 2008. 55(1): p. 53-64.
    [90] Jofuku K D, den Boer B G W, Van Montagu M,et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J].Plant Cell,1994,6:1211-1225.
    [91] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J].Plant Cell,1995,7:173-182.
    [92] Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product[J],Cell,1991,65:991-1002.
    [93] Leon-Kloosterziel K M, Keijzer C J, Koornneef M.A seed shape mutant of Arabidopsis that is affected in integument development[J].Plant Cell,1994,6:385-392.
    [94] Wilson K, Long D, Swinburne J, et al. A dissociation insertion causes a semidominant mutation that increases expression of TINY,an Arabidopsis gene related to APETALA2[J].Plant Cell,1996,8:659-671.
    [95] Elliott R C, Betzner A S,Huttner E,et al. Aintegumenta,an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J].Plant Cell,1996,8:155-168.
    [96] Okamuro J K, Caster B, Villarroel R,et al. The AP2 domain of APETALA2 defines a large new familu of DNA binding proteins in Arabidopsis[J].Proc Natl Acad Sci USA,1997,94:70076-7081.
    [97] Klucher K M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2[J].Plant Cell,1996,8:137-153.
    [98] Zhou J M, Tang X Y, Martin G B. The Proteinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes[J].EMBO J,1997,16:3207-3218.
    [99] leubnermetzger G, Petruzzelli L, Waldvogel R, et al. Ethylene-responsive element binding protein expression and the transcriptional regulation of class beta-1,3-glucanase during tobacco seed germination[J].Plant Mol Biol,1998,38:785-795.
    [100] Sasaki T,Song J,Koga-Ban Y,et al. Toward cataloguing all rice genes:large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library[J].Plant J,1994,6:615-624.
    [101] Weigel D. The APETALA2 domain is related to a novel type of DNA binding domain[J].Plant Cell,1995,388-389.
    [102] Moose S P, Sisco P H, Glossy 15.an APETALA2-like gene from maize that regulates leaf epidermal cell identity[J].Genes and Development,1996,10:3018-3027.
    [103] Buttner M, Singh K B. Arabidopsis ethylene-responsive element binding protein(AtEBP),an ethylene-inducible,GCC box DNA-binding protein interacts with an ocs element binding ptotein[J].Proc Natl Acad Sci USA,1997,94:5961-5966.
    [104] Xu P, Narasimhan M L, Samson T, et al. A nitrilase-like protein interacts with GCCbox DNA-binding proteins involved in ethylene and defense response[J],Plant Physiol,1998,118:867-874.
    [105] Hao D Y, Ohmetakagi M, Sarai. A Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor in plant[J].J Biol Chem,1998,273:2657-2661.
    [106] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors,DREB1 and DREB2,with an EREVP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression in Arabidopsis[J].Plant Cell,1998,10:1391-1406.
    [107] Kasuga M, Liu Q, Miura S, et al. Improving plant drought,salt, and freezing tolerance by gene transfer of a single stress- inducible transcription factor[J].Nature Biotechnology,1999,17:287-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700