CMO启动子驱动CMO基因在烟草中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜碱是一种非毒性的小分子渗透调节剂,多种高等植物在盐碱或干旱的环境下在细胞中积累甜菜碱,以维持细胞正常的膨压。在植物中甜菜碱是由胆碱经两步反应生成的,催化第一步反应的酶是胆碱单加氧酶(choline monooxygenase,CMO)。本实验室的前期工作中分离了辽宁碱蓬CMO基因、CMO启动子,发现CMO启动子(pC:-267~+1bp)是盐诱导启动子,在400 mmol/L NaCl条件下处理时,其驱动的GUS基因活性是未经NaCl诱导时的5倍。本文构建了pC启动子驱动CMO基因的植物表达载体,转化烟草,分析pC启动子驱动CMO基因在转基因烟草中的表达及转基因烟草的甜菜碱含量,为胁迫诱导型启动子驱动外源基因的应用奠定了基础。具体工作及结果如下:
     利用PCR技术从克隆载体pUC19-CMO中扩增出约1.3kb的CMO基因编码区,经过酶切、连接,替代表达载体pCAMBIA1301-pC-GUS中的GUS基因获得新的表达载体pCAMBIA1301-pC-CMO。
     冻融法将pCAMBIA1301-pC-CMO导入根癌农杆菌(Agrobacterium tumefaciens)LBA4404,获得工程菌LBA4404- pCAMBIA1301-pC-CMO。
     采用农杆菌介导的叶盘转化法将pCAMBIA1301-pC-CMO、pBI121-CMO (CaMV 35S启动子驱动CMO基因)转入烟草, PCR检测获得阳性植株。半定量RT-PCR检测表明,35S-CMO转基因烟草CMO基因的表达量高于pC-CMO转基因烟草;甜菜碱含量检测表明,pC-CMO转基因烟草甜菜碱含量与野生烟草的甜菜碱含量相近或略高于野生烟草的甜菜碱含量,35S-CMO转基因烟草中的甜菜碱含量高于pC-CMO转基因烟草。
     100 mmol/L NaCl胁迫处理转基因烟草和野生烟草24 h后,pC-CMO转基因烟草中CMO基因表达量高于35S-CMO转基因烟草,与此相对应,pC-CMO转基因烟草中甜菜碱含量均提高,而野生型烟草和35S-CMO转基因烟草中的甜菜碱含量基本没有变化,且pC-CMO转基因烟草中甜菜碱含量均高于野生烟草、35S-CMO转基因烟草。说明pC可以驱动CMO基因在转基因烟草中适时表达,从而相应提高甜菜碱含量。
Betaine is a non-toxic osmopretectant which protects the cell from salt or drought stress by maintaining an osmotic balance with the environment. In plants,glycine betaine is synthesized via the two pathway from choline, and the first step is catalyzed by choline monooxygenase (CMO).Our preliminary work showed that CMO gene promoter (pC: -267 ~ +1bp) is salt-induced promoter. Compared to noninductive leaves, the GUS enzyme activity driven by CMO promoter was enhanced 5-fold in transgenic tobacco leaves in the presence of 400mmol/L NaCl. In this article, the pCAMBIA1301-pC-CMO was constructed and transferred into tobacco. The expression of CMO gene in transgenic plants was analysed.
     The 1.3 kb coding region of CMO gene was amplified from cloning vector pUC19-CMO by PCR. CMO gene was inserted into pCAMBIA1301-pC-GUS by replacing GUS gene, and the new expression vector, pCAMBIA1301-pC-CMO was obtained. Then pCAMBIA1301- pC-CMO was transferred into Agrobacterium tumefaciens strain LBA4404.
     pCAMBIA1301-pC-CMO, pBI121-CMO(35S-CMO) were transferred into tobaccos (Nictiana tabacum L. cv. 89) via Agrobacterium mediation. PCR positive tobaccos were obtained. Semi-Quantitative RT-PCR detection showed that CMO gene has expressed in two types transgenic tobaccos. The expression of CMO gene in pC-CMO transgenic plants is lower than that in 35S-CMO transgenic plants. Betaine content analysis in the transgenic tobacco leaves showed that the betaine content in pC-CMO transgenic plants is less than that in 35S-CMO transgenic plants.
     Under 100 mmol/L NaCl stress, Semi-Quantitative RT-PCR detection showed that the expression of CMO gene in plants was different. The expression of CMO gene in pC-CMO transgenic plants is higher than that in 35S-CMO transgenic plants. Further detection showed that the betaine content in pC-CMO transgenic plants is more than wild type and35S-CMO transgenic plants. The results showed that under salt stress the expression of CMO gene driven by CMO promoter increased in transgenic plants..
引文
[1]赵寿元.英汉遗传工程词典(第二版).上海:复旦大学出版社,1999.
    [2]王颖,麦维军,梁承邺,等.高等植物启动子的研究进展.西北植物学报,2003,23 (11):2040-2048.
    [3] Joshi C.E. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Research, 1987, 15 (16):6643-6653.
    [4] Zhu Q, Dabi T, Lamb C. TATA box and initiator functions in the accurate transcription of a plant minimal promoter invitro. Plat Cell, 1995 ,7 (10):16-19.
    [5]李杰,张福城,王文泉,等.高等植物启动子的研究进展.生物技术通讯, 2006,17 (4) : 658-661.
    [6] Li Y K, Wang J F. Advances of the studies on plant promoter. Chinese B ullentin of Botany, 1998 ,15 (Suppl):1-6.
    [7] Huang W W, Bateman E. TATA elements direct bi-directional transcription by RNA polymerasesⅡandⅢ. Nucleic acids Res, 1996, 24(6):1158-1163.
    [8] Fridlender M, Harrison K, Jones JDG, et al. Repression of the Ac transposase gene promoter by Ac transposase. Plant J, 1996, 9:911-917.
    [9] P.C.特纳,A.G.麦克伦南,A.D.贝茨等著.分子生物学.刘进元等译校,北京:科学出版社, 2001.
    [10]任茂智.棉花nodulin-like和arfl基因及其启动子的分离和功能分析:[博士学位论文].北京:中国农业科学院,2004.
    [11] Gusmarol I G, Tonell I C, Mantovan I R. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene, 2002, 283 (1-2):41-48.
    [12] Nicholass FJ, Smith CJ, Schuch W, et al. High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plant Mol Biol, 1995, 28(3):423-435.
    [13] Mary E, Williams R F, Chua Nam-hai. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. The plant cell, l992, 4:485-496.
    [14] Wu C Y, Haruhiko W, Yasuyuki O et al. Quantitative nature of the protamin-box, ACGT and AACA, motif in a rice glutelin gene promoter:minimal ciselement requirements for endosrm-specific gene expression. The Plant Journal, 2000, 23 (3):415-421.
    [15]刘良式.植物分子遗传学.北京:科学出版社,1998: 214.
    [16] Weising K, Kahl G. Towards an understanding of plant gene regulation the action of nuclear factors. Z. Naturforsch. C, 1991,46:1-11.
    [17] Holtorf S, Apel K, Bohlmann H. Comparison of different constitutive and inducible promoters for the transgenes in A rabidopsisthaliana. Plant Mol Biol,1995,29: 637- 646.
    [18] Benfey P N, Ren L, Chua N H. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J, 1990, 9 (6):1685-1696.
    [19] Benfey P N, Ren L, Chua N H. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J, 1990, 9 (6):1677-1684.
    [20] Beyfey P N, Chua N H. The cauliflower mosaic virus 35S promoter: combinational regulation of transcription in plants. Science, 1990, 250:959-966.
    [21] McElroy D, et al. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell , 1990, 2:163.
    [22] Christensen A H, et al. Maize polyubiquitin genes : structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol, 1992, 18:675.
    [23] Naomi Shirasawa-Seo, et al. Constitutive promoters available for transgene expression instead of CaMV35S RNA promoter : Arabidopsis promoters of tryptophan synthase protein subunit and phytochrome B. Plant Biotech, 2002, 19 (1):19.
    [24]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志, 2003, 23 (1):1-41.
    [25] Nitz I, Berkefeld H, Puzio P S, et al. Pyk10, a seedling and root specific gene and promoter from A rabidopsis thaliana. Plant Science, 2001, 161:337-346.
    [26] Borisjuk N C, et al. Production of recombinant proterins in plant root exudates. Nature Biotech, 1999, 17 :466.
    [27] Mariani C, De Beuckeleer M, Truettner J, et al. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990,347 :737.
    [28] Mariani C, Gossele V, De Beuckeleer M, et al. A chimaeric ribonuclease-inhibitor gene restores fertility to male-sterile plants. Nature, 1992, 357 :384.
    [29]李胜国,刘玉乐,朱锋,等.基因工程雄性不育烟草的获得.植物学报,1995,37 (8):659.
    [30]周雪荣,彭仁旺,方荣祥,等.表达核糖核酸酶基因的雄性不育油菜的获得.遗传学报,1997, 24 (6):531.
    [31]张晓国,刘玉乐,康良仪,等.水稻花药特异表达基因启动子的扩增及克隆.武汉大学学报(自然科学版),1997, 43 (4):480.
    [32]刘大文,谢友菊,王守才,等.拟南芥菜花药绒毡层启动子的克隆和序列分析.作物学报, 2000,26 (4):406.
    [33] Subramanian S, Rajagopal B, Rock C D. Harlequin (hlq) and short blue root (sbr), two A rabidopsis mutants that ectopically express an abscisic acid-and auxin-inducible transgenic carrot promoter and have pleiotropic effects on morphogenesis. Plant Mol Biol, 2002 , 49 (1):93-105.
    [34]张春晓,王文棋,蒋湘宁,等.植物基因启动子研究进展.遗传学报, 2004, 31(12):1455-1464.
    [35]彭建令,董宏平,包志龙,等.受细菌诱导的植物启动子的克隆及其在转基因烟草中的活性.南京农业大学学报,2003, 26 (3):36-40.
    [36] Xu D, David M, Robert W et al. Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol, 1993, 22:573-588.
    [37] Li A, Chen L L, Ren H Y et al. Analysis of the essential DNA region for OsEBP289 promoter in response to methyl jasmonic acid. Science in China Series C: Life Sciences, 2008, 51 (3):280-285.
    [38] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218: 1-14.
    [39]杨献光,梁卫红,齐志广等.植物非生物胁迫应答的分子机制.麦类作物学报, 2006, 26 (6):158~161.
    [40] Narusaka Y, Nakashima K, Shinwari ZK et al. Interaction between two cis-acting elements,ABRE and DRE,in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34 (2):137-148.
    [41] Zhao J S, Ren W, Zhi D Y et al. Arabidopsis REB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep, 2007, 6:1521-1528.
    [42]赵恢武,陈杨坚,胡鸢雷等.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性.植物学报, 2000, 42 (6):616-619.
    [43] Roy S D, Saxena M, Bhomkar P S et al. Generation of marker free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters. Plant Cell Tiss Organ Cult, 2008, 95: 1-11.
    [44] Behnam B, Kikuchi A, Celebi-Toprak F et al. Arabidopsis rd29A:: DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep, 2007, 26: 1275-1282.
    [45] Gao S Q, Xu H J, Cheng X G et al. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean. Chinese Sci Bul, 2005, 50 (23):714-2723.
    [46] Kasuga M, Liu Q, Miura S et al. Improving plant drought, salt, andfreezing tolerance by gene transfer of asingle stress-inducible transcription factor. Nature Biotecnol, 1999, 17 (3): 287-291
    [47] Kasuga K, Miura S, Shinozaki K et al. A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer, Plant and Cell Physiol, 2004, 45 (3):346-350.
    [48] Bhatnagar-Mathur P, Devi M J, Reddy D S et al. Stress-inducible expression of AtDREB1A in transgenic peanut increases transpiration efficiency underwater-limiting conditions. Plant Cell Rep, 2007, 26:2071-2082.
    [49] Kim K Y, Kwon S Y, Lee H S et al. A novel oxidative stress- inducible peroxidase promoter from sweetpotato:molecular cloning and characterization in transgenic tobacco plants and cultured cells, Plant Mol Biol, 2003, 51:831-838.
    [50] Ahmad R, Kim M D, Back K H et al. Stress- induced expression of choline oxidase in potatoplant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. plant Cell Rep, 2008, 7:687-698.
    [51] Tang L, Kwon S Y, Kim S H et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep, 2006, 25:1380-1386.
    [52]陈铮,邹维华,张霞等.转录因子ABP9基因在不同启动子驱动下对转基因拟南芥生长发育的影响.中国农业科技导报, 2008, 10 (3): 58-63.
    [53] Fu D L, Huang B R, Xiao Y M et al. Overexpression of barley hva1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep, 2007, 26: 467-477.
    [54] Hsieh T H, Lee J T, Charng Y Y et al. Heterology Expression of the Arabidopsis C-Repeat /Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato. Plant Physiol, 2002a, 1086-1094.
    [55] Hsieh T H, Lee J T, Charng Y Y et al. Tomato Plants Ectopically Expressing Arabidopsis CBF1 Show Enhanced Resistance to Water Deficit Stress. Plant Physiol, 2002b, 618-626.
    [56] Lee J T, Prasad V, Yang P T et al. Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerrance without affecting yield. Plant Cell and Envirom, 2003, 26: 1181-1190.
    [57] Xiao B Z, Huang Y M, Tang N et al. Over-expression of a LEA gene in rice improves drought resistance under the Weld conditions. Theor Appl Genet, 2007, 115:35-46.
    [58]梁峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理学通讯, 1995, 31 (1):1-8.
    [59] Rathinasabapathi B, Burnet K, Russel B L et al. Choline monoxygenase,an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci.USA, 1997, 94 :3454-3458.
    [60] Russell B, Rathinasabapathi B, Hanson A D.Osmotic stress induces expression of choline monooxygen-ase in sugar beet and Amaranth. Plant Physiology, 1998, 116 :859-865.
    [61]沈义国,杜保兴,张劲松,陈受宜.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析.生物工程学报.2001, 17(1):1-6.
    [62] LI Q L , LIU D W , GAO X R et al. Cloning of cDNA Encoding Choline Monooxygenase from and Salt Tolerance of Transgenic Tobacco. Acta Botanica Sinica , 2003, 45 (2) : 242-247.
    [63]申晓辉,陆海,王沙生等.菠菜胆碱单氧化酶(CMO)基因的克隆及在大肠杆菌中的诱导表达.北京林业大学学报, 2003, 01.
    [64]张守攻,韩素英,汪泉等.小叶杨胆碱单氧化物酶(CMO)基因的克隆与转化杂种落叶松及表达.分子植物育种, 2006, 04.
    [65]宋慧.羊草胆碱单氧化酶(CMO)基因的克隆及其在大肠杆菌中的表达: (硕士学位论文).长春:吉林农业大学,2007.
    [66] Nuccio M L, Russell BL, Nolte KD,et al. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J, 1998, 16(4):487-496.
    [67] Nuccio M L, McNeil S D, Ziemak M J et al. Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metab Eng. 2000, 2:300-311.
    [68]张慧军,董合忠,石跃进,等.山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达.作物学报, 2007, 33 (7):1073-1078.
    [69] Li Q L, Yin H, Li D et al. Isolation and Characterization of CMO Gene Promoter from Halophyte Suaeda liaotungensis K. Journal of Genetics and Genomics. 2007, 34(4): 355-361.
    [70]尹辉.辽宁碱蓬CMO基因启动子功能分析:(硕士学位论文).大连:辽宁师范大学,2007.
    [71] Nazmul H B, Akira H, Nana Y et al. Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. Journal of Experimental Botany, 2007, 58 :4203-4212.
    [72] Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12 (1):552-555.
    [73]汤章程.代植物生理学实验技术.北京:科学出版社,1999,303-304.
    [74] Wang Q Y, Guan Y C, Wu Y R et al. Overexpression of a rice OsDREB1F gene increases salt﹑rought﹑and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 2008, 67:589-602.
    [75] Zhang J Z, Creelman R A, Zhu J K.From laboratory to field.Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops.Plant Physiol, 2004,135:615-621.
    [76] Kang J Y, Choi H I, Im M Y, et al. Arabidopsis basic leucine zipper proteins that mediate stress- responsive abscisic acid signaling. Plant Cell, 2002, 14:343-357.
    [77] Wang M Y, Gu D, Liu T S et al. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol, 2007, 65:733-746.
    [78] Zhang X X, Liu S K, Takano T. Two cysteine proteinase inhibitors from Arabidopsis thaliana,AtCYSa and AtCYSb, increasing the salt﹑ drought﹑ oxidation and cold tolerance. Plant Mol Biol, 2008 68:131-143.
    [79] Zhuo R Y, Qiao G R, Sun Z X. Transgene expression in Chinese sweetgum driven by the salt induced expressed promoter. Plant Cell Tiss Organ Cult, 2007, 88: 101-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700