花生中DREB、bZIP类转录因子耐逆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在其生长过程中经常会遭受到不同程度的生物和非生物逆境胁迫,这些胁迫严重影响植物的生长发育,’并对农业生产造成极大的负面影响。研究发现,在长期的生物进化过程中,植物自身已经发展了多种抵抗干旱胁迫的机制,以通过调节自身生理和代谢变化来抵御干旱。其中的一个重要机制就是通过逆境胁迫信号转导来启动逆境胁迫响应基因的表达。在胁迫信号转导途径中,转录因子由于能够调节多个胁迫响应功能基因的表达而备受关注。
     我们从出口型大花生鲁花14不同发育时期种子混合cDNA文库中克隆鉴定出了3个花生AP2/EREBP类基因,命名为PNDREB1、PNTINY1、PNTINY2以及1个bZIP类基因,命名为PNbZIP1。作为AP2/EREBP家族的一类成员,DREBs类转录因子特异的存在于植物中,参与植物对干旱、高盐和低温等非生物胁迫的应答与响应。而在植物中,bZIP类转录因子参与蛋白与种子贮藏基因表达、光形态发生及器官建成的控制相关。研究PNDREB1、PNTINY1、PNTINY2、PNbZIP1并应用于实践对改良植物的品质,提高植物抗逆性具有很重要的意义。
     本论文工作取得的主要研究结果如下:
     1、通过RT-PCR的方法对PNDREB1、PNbZIP1进行了非生物胁迫的表达模式分析,并对PNbZIP1进行组织表达及诱导表达模式分析。对PNDREB1表达模式分析显示,该基因可对低温处理产生响应,低温下表达水平成倍增加;表达水平也受水杨酸诱导而增强,但对乙烯处理响应不明显,且基因的表达受茉莉酸甲脂的抑制。对PNbZIP1表达模式研究显示,其在花生的根、茎、叶、花、种子、果针中均有表达,为组成型表达,且在花和幼小种子中的表达量较高;受低温、乙烯、水杨酸诱导,响应较迅速,但对Nacl、茉莉酸甲脂、ABA响应不明显。PNTINY1能够响应Nacl.低温、乙烯、茉莉酸甲脂、ABA处理条件,并不响应水杨酸。对乙烯响应程度非常强烈。茉莉酸甲脂条件下,响应程度逐渐降低。PNTINY2能够响应Nacl.低温、乙烯、茉莉酸甲脂、ABA、水杨酸处理条件。茉莉酸甲脂条件下,响应程度随着处理时间增加而降低,48小时检则测不到表达。水杨酸条件下,PNTINY2响应程度逐渐增加。
     2、利用酵母单杂交系统对PNbZIP1的结合及激活活力进行了鉴定,结果显示:PNbZIP1不能与ABRE元件结合,但具有转录激活活性。利用含有DRE顺式元件的酵母单杂交系统验证PNTINY1、PNTINY2的结合及激活活性,结果表明均能够与DRE顺式元件结合并具有转录激活活性。
     3、T1代PNDREB1转基因烟草经继代后进一步筛选,获得T2代PNDREB1反义转基因烟草共6个株系。构建PNbZIP1的正、反义植物表达载体pCAMBIA1301-PNbZIP1(+)-GUS及pCAMBIA1301-PNbZIP1(-)-GUS,用于烟草转化。目前已获得T2代PNbZIP1正反义转基因材料各10个株系。T1代PNTINY1、PNTINY2转基因烟草经继代后进一步筛选,获得T2代PNTINY1正、反义转基因烟草各6个株系,获得T2代PNTINY2反义转基因烟草2个株系。
     4、对获得的T2代PNDREB1、PNbZIP1转基因烟草进行非生物胁迫下植株耐逆性分析,发现PNDREB1(-)对低温胁迫较敏感,低温下转基因植株中胁迫相关基因的表达及生理指标的变化都与野生型有所不同,推测该基因在低温信号响应及转导中发挥作用,该基因同时对ABA、Nacl、干旱胁迫也有一定的响应,认为该基因在植物对非生物胁迫综合抗性方面具有一定功能。PNbZIP1耐逆性实验正在进行。
     本研究为揭示PNDREB1、PNTINY1、PNTINY2、PNbZIP1在非生物逆境下作用及功能,及它们在胁迫信号传导途径的中的调控机制提供了较好的线索,并为进一步研究这两个基因的功能奠定了良好的工作基础。为通过分子育种手段培育综合抗性提高的转基因抗逆新品种提供了理论依据和优良的基因资源。
In its growth process of plants are often subjected to different degrees of biotic and abiotic stress, these stress seriously affect plant growth and development, and agricultural production tremendously negative impact. Study found that long-term process of biological evolution; plants have developed their own resistance to drought stress a variety of mechanisms to regulate itself through physiological and metabolic changes in resistance to drought. One important mechanism is through the environmental stress signal transduction to activate gene expression in response to environmental stress. In stress signal transduction, transcription factors regulate several stress response due to the expression of genes of concern.
     We export large Luhua peanut seed mix of 14 different developmental stages in the cloned cDNA library identified the three peanut AP2/EREBP genes, named PNDREB1, PNTINY1,PNTINY2 and a bZIP genes, named PNbZIP1.As a class AP2/EREBP family members,DREBs specific transcription factor present in plants,involved in plant drought, high salinity and low temperature and other abiotic stress response and response.In plants,bZIP transcription factor involved in seed storage protein gene expression,light organ morphogenesis and control related built.Research PNDREB1,PNTINY1, PNTINY2,PNbZIPl'and applied to practice on improving the quality of plants, improving plant resistance has very important significance.
     This paper has made the major findings are as follows:
     1, by RT-PCR method on PNDREBl,PNbZIP1 were non-expression pattern analysis of biological stress, and PNbZIP1 expression and induction of organized expression pattern analysis. Expression pattern of the PNDREB1 analysis revealed that the gene can produce responses to low temperature treatment, low temperature expression doubled; expression levels induced by salicylic acid is enhanced, but not obvious to ethylene response, and gene expression is regulated by jasmonic acid a fat suppression. Expression pattern of the PNbZIPl study shows that in peanut roots, stems, leaves,flowers,seeds,fruit needle was expressed in both the constitutive expression, and in flowers and young seeds in the higher expression; by low temperature, ethylene, salicylic acid, a more rapid response, but Nacl, jasmonic acid methyl ester, ABA response is not obvious. PNTINY1 able to respond Nacl, low temperature, ethylene jasmonic acid methyl ester, ABA treatment conditions, did not respond to salicylic acid. Very strong level of ethylene response. Jasmonic acid methyl ester under the conditions of decreased responsiveness.PNTINY2 able to respond Nacl, low temperature,ethylenejasmonic acid methyl ester,ABA,salicylic acid treatment conditions. Jasmonic acid methyl ester under the conditions of the processing time to respond to the increase with the degree of reduction, while measuring less than 48 hours to check the expression. Acid conditions, PNTINY2 responsiveness gradually increased.
     2,using yeast one-hybrid system and the activation energy PNbZIP1 binding were identified, the results show:PNbZIP1 cannot ABRE element binding, but the transcriptional activation activity. Containing the DRE cis-element using the yeast one-hybrid system verification PNTINYl,PNTINY2 binding and activation activity, the results show that both can and DRE cis-element binding and transcriptional activation activity.
     3,Ti transgenic tobacco on behalf of PNDREB1 After further screening by the subculture to obtain T2 generation of PNDREB1 antisense transgenic tobacco plants were six lines. Construction PNbZIP1 of sense and antisense plant expression vector pCAMBIA1301-PNbZIP1(+)-GUS and pCAMBIA1301-PNbZIP1(-)-GUS, used for tobacco transformation. There has been a generation of PNbZIP1 T2 antisense transgenic lines each 10. T1 generation of PNTINY1,PNTINY2 transgenic tobacco by further screening after subculture, were T2 generation of PNTINYl sense and antisense transgenic tobacco lines of all six, were PNTINY2 T2 generation of transgenic tobacco antisense lines 2.
     4,the obtained T2 generation of PNDREB1,PNbZIPl transgenic tobacco to non-biological stress on plant stress tolerance analysis, we found PNDREB1 (-) to low temperature stress than the sensitive, low temperature, the transgenic plants, stress-related gene expression and physiological changes in both different from the wild type, suggesting that the gene in low-temperature signal transduction in response and the role of the gene while ABA,Nacl,drought stress has a certain response, that the gene in plant resistance to abiotic stress has a comprehensive certain functions.PNbZIPl stress tolerance test in progress.
     This study reveals PNDREB1,PNTINY1,PNTINY2,PNbZIP1 in non-biological role and function under stress, and they stress signal transduction pathway in the regulation mechanism provides a good clue for the further study the functions of these two genes lay a good working basis. Means of fostering the adoption of integrated molecular breeding to improve resistance to new varieties of genetically modified resilience provides a theoretical basis and excellent genetic resources.
引文
1张洪博.ERF转录因子TSRF1的功能分析.中国农业大学.博士论文,2005.
    2 Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress response.Curr Opin Plant Biol,2002,5 (5):430~436.
    3孙珊,拟南芥中DREB类转录因子TINY的功能研究.清华大学博士论文.2007.
    4. Meshi T,Iwabuchi M.Plant transcription factors.Plant Cell Physiol..1995,36(8):1405~1420.
    5 Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants. Eur J Biochem,1999,262:247~257.
    6 Sainz M B, Goff S A, Chandler V L.Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo. Mol Cell Biol.1997; 17(1):115-122.
    7 Kriz A R, Wallace M S, Paiva R. Globulin Gene Expression in Embryos of Maize viviparous Mutants:Evidence for Regulation of the Glbl Gene by Abscissic Acid. Plant Physiol,1990, 92(2):538-542.
    8 Bobb A J, Eiben H G, Bustos M M. PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J,1995, 8(3):331~343.
    9 Eulgem T,Rushton PJ,Robatzek S,Somssich IE.The WRKY superfamily of plant transcription factors. Trends Plant Sci.2000,5:199-206.
    10 Jakoby M, Weisshaar B, Dr ge-Laser W,et al. bZIP transcription factors in Arabidopsis.Trends in Plant Science,2002,7:106~111.
    11 Ishiguro S and Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1,that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet.,1994,244:563~571.
    12 De Pater S, Greco V, Pham K, Memelink J, and Kijne J. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res.,1996,24:4624~4631.
    13 Ulker B, Somssich IE.WRKY transcription factors:from DNA binding towards biological function. Curr Opin Plant Biol,2004,7(5):491-498.
    14 Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. GmDREB2, a soybean DRE-binding transcription factor,conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun,2007,353(2):299~305.
    15 Xie Z, Zhang ZL, Zou X, Huang J, Rugs P, Thompson D, Shen QJ. Annotations and functional analyses of the rice WRKYgene super family reveal positive and negative regulators of ahscisic acid signaling in aleurone cells. Plant Physiol,2005,137:176~189.
    16 Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiqutination and degradation of ICE1. Proc Natl Acad Sci USA,2006,103(21):8281-8286.
    17 Kalde M, Barth M, Somssich IE and Lippok B.Members of the Arabidopsis WRKY group Ⅲ transcription factors are part of different plant defense signaling pathways.Plant Microbe Interact.2003,16:295~305.
    18 Paz Ares J, Ghosal D, Wienand U, Peterson P,and Saedler H. The regulatory cl locus ofZea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J,1987,6,3553~3558.
    19 Wanes R.Selvadurai H R,Oliver I R,and Hudson A.The PHONTOSTIC.O gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinnrn. Cell,1998,93(5):779-789.
    20 Loguerico L, Zhang J Q, and Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Cossypinrnhirsuturn L.).Mol Gen Genet,1999,261(4-5):660~671.
    21 Miyake K., lto T., Senda M., lshikawa R., Harada T., Niizeki M.,and Akada S. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol. Biol,2003,53(1-2):237~245.
    22 Chen Y.H.,Yang X.Y,He K.et,al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol,2006,60(1):107~124.
    23 Bilaud T, Koering CE, Bine Brasselet E, Ancelin K, Pollice A,Gasser SM, Gilson E. The telobox, a myb2 related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res,1996,24:1294~1303.
    24 Ito M. Factors controlling cyclin B expression. Plant Mol Biol,2000,43:677~690.
    25 Legay S.,Lacombe E.,Goicoechea M.,BriTre C.Scguin A.,Mackay J.,and Grima-Pettenati J. Molecular characterization of EgMYBl, a putative transcriptional repressor of the lignin biosynthetic pathway.Plant Science,2007,173(5):542~549.
    26 Payne C.T., Zhang F., Lloyd A.M.GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics,2000,156 (3):1349-1362.
    27 Yang X.Y., Li J.G., Pei M., Gu H., Chen Z.L., and Qu L.J. Over-expression of a flower-specific transcription factor gene OtMYB24 causes aberrant anther development.Plant Cell Rep,2007, 26(21:219~228.
    .28 Takos A.M.,Jaffe F.W.,Jacob S.R.,Bogs J.,Robinson S.P. Light-induced expression of a gene regulates anthocyanin biosynthesis in red apples. Plant Physiol,2006,142(3):1216~1232.
    29 Villalohos M.A.,Bartels D.,lturriaga GStress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol,2004,135 (1):309~324.
    30 Miyake K., lto T., Senda M., lshikawa R., Harada T., Niizeki M.,and Akada S. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions.Plant Mol. Biol,2003,53(1-2):237~245.
    31 Lea U.S., Slimestad R., Smedvig P., and Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta,2007,225(5):1245~1253.
    32 Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis, analysis of the cup-shaped cotyledon mutant. The Plant Cell,1997,9 (6):841~ 857.
    33 Souer E, Houwelingen V A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell,1996,85 (2):159~170.
    34 Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y. Comprehensive analysis ofNAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research,2003,10 (6):239~ 247.
    35 Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L.Overexpressing SNAC1, a transcription factor predominantly induced in guard cells, enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA,2006,103:12987-12992
    36 Ruiqin Zhong, Taku Demura and Zheng-Hua Ye SND1, a NAC Domain Transcription Factor, Is a Key Regulator of Secondary Wall Synthesis in Fibers of Arabidopsis The Plant Cell,2006,18:3158~3170 (2006)
    37刘强张贵友陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45(14)1465~1474.
    38 Ciceri P, Gianazza E, Lazzari B, et al. Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. Plant Cell,1997,9:97-108.
    39 Vincentz-Carbajosa J, Moose S P, Parsons R L, et al. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA,1997,94:7685~7690.
    40 Nantel A, Quatrano R S. Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA-binding activity. J Biol Chem,1996,271:31296-31305.
    41 Schultz TF, Spiker S, Quatrano RS. Histone HI enhances the DNA binding activity of the transcription factor EmBP-1. J Biol Chem,1996,271:25742~25745.
    42 Riechmann JL,Meyerowitz EM. The AP2/EREBP family of plant transcription factors. Biol Chem,1998,379(6):633-46.
    43 Riechmann J L, Heard J, Martin G,etal. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science,2000,290:2105~2110.
    44 Okamuro JK, Caster B, Villarroel R. The AP2 domain of APETALA2 define a large new family of DNA binding protein in Arabidopsis. Proc Natl Acad Sci USA,1997,94(13):7076~7081.
    45 Klucher K. M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell,1996,8(2):137~153.
    46 Elliott R C, Betzner A S, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996,8(2):155~168.
    47 Jofuku K D, den Boer B G, Van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell,1994,6(9):1211~1225.
    48 Chuck G, Meeley R B, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikeletl. Genes Dev,1998,12(8):1145~1154.
    49 Moose S P, Sisco P H. Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev,1996,10(23):3018-3027.
    50 Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell,1991,65(6):991~1002.
    51 Krizek B A. AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic acids research,2003,31 (7):1859~1868.
    52. Nole-Wilson S, Krizek B. A. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic acids research,2000,28(21):4076~4082.
    53 Nilsson L, Carlsbecker A, Sundas-Larsson A, et al. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta,2007,225(3):589~602.
    54 Ogawa T, Uchimiya H, Kawai-Yamada M. Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2. Annals of botany,2007,99(2):239~244.
    55 Jofuku K D, Omidyar P K, Gee Z, et al. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci U S A,2005,102(8):3117~3122.
    56 Ohto M A, Fischer R L, Goldberg R B, et al. Control of seed mass by APETALA2. Proc Natl Acad Sci U S A,2005,102(8):3123~3128.
    57 Wurschum T, Gross-Hardt R, Laux T. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell,2006,18(2):295~307.
    58 Allen M D, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO journal,1998,17(18):5484~5496.
    59 Kizis D, Pages M. Maize DRE-binding proteins DBF I and DBF2 are involved in rabl7 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J, 2002,30(6):679~689.
    60 Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic acids research,1999,27(2):470~478.
    61 Sohn K H, Lee S C, Jung H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol,2006,61(6):897~915.
    62 Sakuma Y, Liu Q, Dubouzet 3G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun. 2002,290:998~1009.
    63张梅.植物中DREB类转录因子抗逆性相关的功能研究.山东师范大学硕士论文.2009.
    64 Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant cell, 1994,6(2); 251~264.
    65 Kazuko Yamaguchi-Shinozakiaib, Kazuo Shinozaki. A Novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. The Plant Cell,1994,6(2):251~264.
    66 Baker SS, Wilhelm KS, Thomashow MF. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol,1994,24(5):701~713.
    67 Choi DW, Zhu B, Close TJ, The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet,1999,98(8):1234~1247.
    68 Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol,1996,30(3):679~684.
    69 Busk PK, Jensen AB, Pages M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J,1997,11(6):1285~1295.
    70 Ouellet F, Vazquez-Tello A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett,1998,423(3):324~328.
    71 Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant cell,1998,10(8):1391~1406.
    72 Nakashima K, Shinwari Z K, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression. Plant Mol Biol,2000,42(4):657~665.
    73 Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A,2006,103(49):18822~18827.
    74 Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA,1997,94(3):1035~1040.
    75 Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J,1998,16(4):433~442
    76 Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively. in Arabidopsis. The Plant Cell,1998,10(8):1391~1406.
    77 Gao MJ, Allard G, Byass L, Flanagan AM, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol,2002,49(5):459~471.
    78 Choi DW, Rodriguez EM, Close TJ. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol,2002,129(4):1781-1787.
    79 Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet,2003,106(5):923~930.
    80 Dubouzet J.G.,Sakuma Y.,Ito Y.,Kasuga M.,Dubouzet E.G.,Miura S.,Seki M.,Shinozaki K.,Yamaguchi-Shinozaki K.OsDREB genes in Rice,Oryza sativa L.,encode transcription activators that function in drought-,high-salt and cold-responsive gene rxpression.The Plant Journal 2003,3:751~763.
    81 Landschulz W H,Johnson P F,Mcknight S L.The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins. Science,1988,240:1759~1764.
    82 Aashima N, Mukesh J, Akhilesh k,etal. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology,2008,146,333~350.
    83 Satoh R, Fujita Y, Nakashima K,etal. A novel subgroup of bZIP proteins functions as transcriptional acti-vators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis.Plant and Cell Physiology,2004,45:309~317.
    84 Ciceri P, Gianazza E B, Lazzari G,et al. Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity. The Plant Cell,1997,9:97~108.
    85 Weisshaar B, Armstrong G A, Block A,et al. Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promoter element with functional relevance in light responsiveness.The EMBO Journal,1991,10:1777~1786.
    86 Yong L, Hong-Feng Zou, W Wei,etal. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenticArabidopsis.Planta,2008,228:225-240.
    87 Buttner M, Singh K B. Arabidopsis thaliana ethylene-reponsive element binding protein, anethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding pro-tein. Proc Natl Acad Sci USA,1997,94:5961-5966.
    88. Chuang C F, Running M P, Williams R W,et al. The PERIAN-THIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes&Development,1999,13:334~344.
    89 Schindler U, Menkens A E, Beckmann H,et al. Heterodimeriza-tion between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. The EMBO Journal,1992, 11:1261~1273.
    90 Armstrong G A, Weisshaar B, Hahlbrock K,et al. Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores.The Plant Cell,1992,4:525~537.
    91 Terzaghi W B, Bertekap R J, Cashmore A R,et al. Intracellular localization of GBF proteins and blue light-induced imported of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells.Plant,1997,11:967~982.
    92 Wellmer F, SchaEfer E, Harter K,et al. The DNA binding properties of the parsley bZIP transcription factor CPRF4a are regulated by light. Journal of Biological Chemistry,2001,276: 6274-6279.
    93 Chern M S, Bobb A J, Bustos M,et al. The regulator of MAT2 (ROM2) protein binds to early maturation Promoters and represses PvALF-activated transcription.The Plant Cell,1996,8:305-321.
    94 Hardtke, C.S.et al. HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBOJ,2000,19,4997~5006.
    95 Holm, M. et al. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO Journal.2001,20,118~127.
    96 Ang, L-H. et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell,1998,213~222
    97 Fukazawa J, Sakai T, Ishida S,etal. Repression of Shoot Growth, a bZIP transcriptional activator, regulates cell elongation by control-ling the level of gibberellins.The Plant Cell,2000,12:901~915.
    98 Yin Y, Zhu Q, Dai S. RF2a, a bZIP transcriptional activator of the phloem specific rice turgro bacilliform virus promoter, functions in vascular development.EMBO Journal.1997,18(17): 5247~5259.
    99 Rook, F. et al. Sucrose-specific signaling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant Journal.,1998,15,253~263.
    100 Martinez-Garcia, J.F. et al. Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define.a new subfamily of bZIP transcription factors. Plant Journal..,1998,13,498~505.
    101 Sung C L,Hyoug W C, In S H,et al.Functional roles of the pepper pathogel induced bZIP transcription factor, CAbZIPl,inenhanced resistance to pathogen infection and environmental stresses.Planta.2006.224.1209-1225.
    102 Fridtjof W, Fatima R, Andrea E,etal. Expression patterns within the Arabidopsis C/Sl bZIP transcription factor network:availability of heterodimerization partners controls gene expression during stress response and development. Plant Molecular Biology,2009,69,107~ 119.
    103 Zimmermann P, Hirach-Hoffmann N, Henning L,et al. Arabidopsis microarray database and analysis toolbox. Plant Physiology,2004,136:2621~2632.
    104 Ditzer A, Bartels D. Identification of a dehydration and ABA-responsive promoter regulation and isolation of corresponding DNA binding proteins for the group 4 LEA geneCPC2from C. plant agineum.Plant Molecular Biology,2006,61:643~663.
    105 Magnus H,Li-Geng M, L-Jia Q, Xing-Wang.Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis.Geves & Dev.2002, 16:1247-1259.
    106 Choi H, Hong J, Kang J,etal. ABFs, a family of ABA-responsive element binding factors.The Journal of Biological Chemistry,2000,21:1723~1730.
    107 Xia Z, Bernd W, Dong J. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor.2008, Journal of Experimental Botany,13:1~10.
    108 Fuminori Kobayashi,Eri Maetal,Akihiro Terashima.Development of abiotic stress tolerance via bZIP-type transcription factor LJP19 in common wheat.Journal of Experimental Botany.2008,59(4):891~905.
    109 Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001,127(3):910-917.
    110 Gao MJ, Allard G, Byass L, Flanagan AM, Singh J. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol,2002,49(5):459-471.
    111 Choi DW, Rodriguez EM, Close TJ. Barley Cbf3 gene identification, expression pattern, and map location. Plant.Physiol.2002,129:1781~1787.
    112 Hong JP, Kim WT. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta,2005,220(6):875~888.
    113赵艳.基因枪介导转化的外源基因表达框和质粒在水稻中遗传和表达行为的比较研究.浙江大学博士论文.2003.
    114 Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J,2004, 38(6):982-993.
    115 Lyons J M. Chilling injury in plants. Ann Rev Plant Physiol.1973,24:445~466.
    116黄金光,棉花GhDREB1调节低温抗性与生长发育的分子机理.山东农业大学博士论文.2009.
    117王国莉,郭振飞.植物耐冷性分子机理的研究进展.植物学通报.2003,20:671-679.
    118 Ludmila Rizhsky., Hongjian Liang, and Ron Mittler.The Water-Water Cycle Is Essential for Chloroplast Protection in the Absence of Stress. Jour Biol Ghem.2003,278(40):38921~925.
    119刘鸿先.曾韶西.王以柔.低温对不同耐寒力黄瓜幼苗子叶各细胞器官中SOD的影响.植物生理学报1985(01).
    120 Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nature Biotech.1999,17:287-291.
    121 Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana.Plant Cell Physiol.2004, 45:712~722.
    122任清.早熟禾中DREB基因的克隆及特性分析.中国农业科学院博士论文.2007.
    123 Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci,1999,148:131-138.
    124 Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Maro D A, Coraggio I. Genga A. The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol,2006,69:26~42.
    125 Qin F, Sakuma Y, Phan T L, Maruyama.K, Kidokoro S, Fujito Y,Fujita M, Umezawa,T,Sawano Y, Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell.2008,20:1693~1707.
    126 Shinozaki K.,Yamaguchi-Shinozaki K.Gene expression and signal transduction in water-stress response. Plant Physiol 1997,.115:327~334.
    127 Shinozaki K., Yamaguchi-Shinzaki K.. Molecular responses to dehydration and low temperature:Differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 2000,3:217-223.
    128 Park H.C., Kim M.L., Kang Y.H.,.et al. Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol.2004,135:2150~2161.
    129 Martinea C arcia J F,Movano E,Alcocer M J,et nl. Two bZIP proteins from Antirrhinum flowers preferentially hind a hybrid C-box/G-box motif and help to define a new sub-family of bZIP transcription factors.Plant,1998.13:498~505.
    130 Strathmann A,Kuhlmann M,Heinekamp T,et al.BZI-1 specifically heterodimerise with the tobacco bZIP transcription factors BZI-2,BZI-3/T BZF and BZI-4,and is functionally involved in flower development.Plant,2001,28:1~15.
    131刘强,赵南明,Yamaguchi-Shinozaki K., Shinozaki K. DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,1:11~16.
    132杨颖,高世庆,唐益苗.植物bZIP转录因子的研究进展.麦类作物学报.2009,29(4):730~737
    133 Liu Y., Zhao T.J., Liu J.M. et al.The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Letters.2006,580:1303~1308.
    134 Boulikas T.Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem 1994,55:3258.
    135 Varagona M.J., Raikhel N.V.The basic domain in the bZIP regulatory protein Opaque2 serves two independent function:DNA binding and nuclear localization. Plant J 1994,5:207~214.
    136 Zhang Z.L., Xie Z., Zou X., Casaretto J., Ho T.H., Shen Q.J.. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 2004,134:1500~1513.
    137 Kim S., Kang J.Y., Cho D.L, Park J.H., and Kim S.Y.. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.Plant J 2004,40:7587.
    138.高世庆,大豆,小麦抗逆相关Gm/TaAREB转录因子基因、启动子克隆及功能鉴定.中国农.业科学院博士论文,2008
    139 Uno Y, Furihata T., Abe H., Yoshida R., Shinozaki K.&Yamaguchi-Shinozaki K.. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 2000,97:11632~11637.
    140 Kim J B, Kang J Y, Kim S Y. Over-expression of a transcription factor regulating ABA res-ponsive gene expression confers multiple stress tolerance.Plant Biotechnology Joumal,2004,2:459-466.
    141 Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physio.2003,133:29-36
    142 Guo H, Ecker JR. The ethylene signaling pathway:new insights. Curr Opin. Plant Biol.2004,7: 40-49.
    143 Wilson K, Long D, Swinburne J, Coupland G. A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell,1996,8:659-671.
    144 Rombauts S, Dehais P, Van Montagu M, Rouze P. PlantCARE, a plant cis-acting regulatory element database.Nucleic Acids Res,1999,27(1):295-296.
    145 Thordal-Christensen H.,Zhang Z.G,Wei YD.,Collinge D.B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and persensitiVe response during the barley-powdery mildew interaction. Plant J,1997,11:1187-1194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700