农杆菌介导bdDREB2基因转化紫花苜蓿的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿(Medicago sativa)是世界上栽培最早、分布最广、也是最为重要的一种多年生优质豆科牧草,由于其具有产量高、适口性好、蛋白质含量高等优点,素有“牧草之王”的美誉。近年来,紫花苜蓿在我国东北、华北以及西北等地被广泛种植,且其种植规模具有逐年扩大的趋势。近年来,随着气候条件的恶化,干旱和水资源的匮乏成为了限制我过农业发展的重要因素,同时也限制了紫花苜蓿的种植及畜牧业的发展。近年来通过基因改良技术改造植物品种,成为生物工程研究的一个热点。
     为培育出具有抗旱能力的紫花苜蓿品种,本研究选取由中国农业科学院畜牧兽医研究所牧草育种研究室通过常规育种技术育成的紫花苜蓿品种“中苜一号”作为基因转化受体,分别选用胚根、下胚轴及子叶作为转化受体,进行组织培养学系统研究,寻找相对分化率较高的外植体和适合于该品种的培养基搭配,测定了最佳菌液工作浓度、侵染时间、共培养时间等要素。并利用农杆菌介导的方法,将从野牛草(Buchloe dactyloides(Nutt.) Engelm.)中克隆得到的抗逆基因BdDREB2导入紫花苜蓿“中苜一号”中。获得如下实验结果:
     1、胚根、下胚轴和子叶愈伤率均较高,但胚根和下胚轴不易分化出胚状体,子叶相对愈伤率低于下胚轴,但分化率较高。适合作为转化受体。最适合培养基搭配为:UM培养基为最佳诱导愈伤培养基和胚状体分化培养基;1/2MS为最佳诱导生根培养基。
     2、农杆菌菌液最佳工作浓度为OD600≈0.6;侵染时间为10 min;共培养时间为3d。
     3、最佳转化体系为:诱导愈伤培养基: UM+2,4-D 2 mg/L+KT 0.25 mg/L+Cef 500 mg/L+Kan 75 mg/L最佳分化培养基: UM+KT 2 mg/L+Cef 500 mg/L+Kan 75 mg/L最佳生根培养基: 1/2MS
     4、获得8个转化株系,通过PCR分子鉴定,获得4株阳性苗。阳性率为50%。RT-PCR检测结果表明目的基因已经整合到苜蓿基因组中;Southern blot分析表明,BdDREB2基因已经稳定整合到转基因植株的基因组中。
As“the king of forages”,Medicago sativa is the earliest cultivation,the most extensive distribution and the most important perennial quality legumes which is high yield, good palatability and protein-rich. Recently, Medicago sativa is cultivated in north China area widely and the cultivation scale has the trendency of expanding gradually year. As the environment of China turn worse, the water resourse turn less. The soil salinization of part areas’land is serious. These greatly restrict the planting of alfalfa and the development of animal husbandry. Improving the soil has many shortcomings, for example, tremendous cost of soil and little effect. But these years,improveing plant cultivar by genetic engineering technology becomes a hot spot of biological engineering research.
     In this study, the gene transformation acceptor selected is the alfalfa cultivar Medicago sativa L.“zhongmu NO.1”, which comes from the conventional big field breeding technology by the CASI. I selected the radicle, the hypocotyls and the cotylecdons as the explant, conducted the tissue culture systematic research, seeked a high differentiation rate explant and the basic culture medium which suit for this variety, and determined the best concentration of bacilli, the best infection time and the co-culture time. Addition to these, the BdDREB2 (Buchloe dactyloides Dehydration Responsive Element Binding protein 2)gene which was cloned from Buchloe dactyloides (Nutt.) Engelm was introduced into the genome of the alfalfa (Zhongmu No.1) by using Agrobacterium tumefaciens-mediated transformation. The main results were as following:
     1. The radicle, the hypocotyls and the cotylecdons callus rate are all higher, but the radicle and the hypocotyls are hard to differentiated embryo. The callus rate of cotylecdon is lower than the hypocotyl’s callus rate, but its differentiation rate is higher. It is indicated that cotylecdon is suitable as explant. UM medium is the best embryogenic callus induction medium and the best embryo induction medium and 1/2MS medium is the best root development medium.
     2. The best concentration of bacilli is OD600≈0.6; the best infection time is 10 minutes; and the co-culture time is 3 days.
     3. The best transformation system is as following.
     Embryogenic callus induction medium: UM+2,4-D 2mg/L+KT 0.25mg/L+Cef 500mg/L+Kan 75mg/L The best embryo induction medium: UM+KT 2mg/L+Cef 500mg/L+Kan 75mg/L The best root development medium: 1/2MS
     4. Finally eight transformant was achieved. PCR analysis indicated that four of the eight transformant were transgenic plants. The positive rate is 50%. RT-PCR results showed that the geneof BdDREB2 is transcribed into mRNA in positive transgenic alfalfa. Stable integration of the BdDREB2 gene into the genome of transgenic plants was confirmed by Southern blot analyses.
引文
[1] Ludwig A A, Romeis T, Jones J D G. CDPK-mediated signalling pathways: specificity and cross-talk[J]. Journal of Experimental Botany, 2004, 55 (395): 181-188
    [2] S. Luan, J. Kudla, M. Rodriguez-Concepcion, et al. Calmodulins and Calcineurin B-like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants[J]. Plant Cell, May 1, 2002; 14(90001): S389-400
    [3] Sanders D, Pelloux J, Brownlee C, et al. Calcium at the crossroads of signalling[J].The Plant Cell (Supp 1), 2002, 14: S401-S417
    [4] Botella JR, Arteca Jm, Somodevilla M, et al. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata)[J]. Plant Molecular Biology, 1996, 30: 1129-1137
    [5] Patharkar O.R, Cushman JC. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator [J ].The Plant Journal, 2000, 24(5): 679-691
    [6]路子显,常团结,刘翔,朱祯.植物碱性亮氨酸拉链(bZIP)蛋白的研究进展(一)——结构、分类、分布和同源性分析[J].遗传, 2001,(06)
    [7] Bray EA. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome[J], Plant Cell Environ, 2002 Feb, 25(2): 153-161
    [8] Marcotte W R Jr, Guiltinan M J, Quatrano R S. ABA-regulated gene expression: cis-acting sequences and trans-acting factors[J]. Biochem Soc Trans, 1992 Feb, 20(1): 93-7
    [9] Guiltinan M J, Marcotte W R Jr, Quatrano R S. A plant leucine zipper protein that recognizes an abscisic acid response element. [J] Science, 1990 Oct 12, 250(4978): 267-71
    [10] Choi H, Hong J, Ha J, et al. ABFs, a family of ABA-responsive element binding factors [J]. Biol Chem, 2000 Jan 21, 275(3): 1723-30
    [11] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response [J]. Plant Mol Biol, 2003 Jan, 51(1): 21-37
    [12] Zhou QY, Tian AG, Zou HF, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnol J, 2008 Mar: 31-36
    [13] Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression[J]. J Biol Chem, 2004 Dec 31, 279(53): 55355-61
    [14] Higashi K, Ishiga Y, Inagaki Y, et al. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana[J]. Mol Genet Genomics, 2008 Mar, 279(3): 303-12
    [15]陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学学报, 2002, 28(2): 81
    [16] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression[J]. Plant Cell, 1997 Oct, 9(10): 1859-68
    [17] Urao T, Yamaguchi-Shinozaki K, Urao S, et al. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence [J]. Plant Cell, 1993 Nov, 5(11): 1529-39
    [18] Sugimoto K, Takeda S, Hirochika H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes [J]. Plant Cell, 2000 Dec, 12(12): 2511-2528
    [19] Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon [J]. Proc Natl Acad Sci USA, 2007 Dec 26, 104(52): 21002-7
    [20] Jiang WK, Xu QS, Piao YQ. Genetic polymorphism of the PRODH and 5-HT(2A) receptor gene in Korean-Chinese and Han nationality in Chinese Yanbian area[J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2008 Feb, 25(1): 93-5
    [21] Najafabadi MM, Mostajeran A, Horie T, et al. Drought Stress Alters Water relations and Expression of PIP-type Aquaporin Genes in Nicotiana tabacum Plants[J]. Plant Cell Physiol, 2008 Apr, 1 (1): 1688-1701
    [22] Budik S, Walter I, Tschulenk W, et al. Significance of aquaporins and sodium potassium ATPase subunits for expansion of the early equine conceptus[J]. Reproduction, 2008 Apr, 135(4): 497-508
    [23] Ríos-Cardona D, Ricardo-González RR, Chawla A, et al. A role for GPRx, a novel GPR3/6/12-related G-protein coupled receptor, in the maintenance of meiotic arrest in Xenopus laevis oocytes [J]. Dev Biol, 2008 Mar, 7(3): 236-248
    [24] Zhu C, Schraut D, Hartung W. Differential responses of maize MIP genes to salt stress and ABA[J]. J Exp Bot, 2005, 56: 2971–2981
    [25] Hundertmark M, Hincha DK. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana [J]. BMC Genomics, 2008 Mar 4, 9(1): 118
    [26] Iturriaga G. The LEA proteins and trehalose loving couple: a step forward in anhydrobioticengineering [J]. Biochem J, 2008 Mar 1, 410(2): e1-2
    [27] Rajesh S, Manickam A. Prediction of functions for two LEA proteins from mung bean[J]. Bioinformation, 2006 Apr 16, 1(4): 133-8
    [28] Cellier F, Conéjéro G, Breitler JC, et al. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower[J]. Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol, 1998 Jan, 116(1): 319-28
    [29] Cellier F, Conéjéro G, Casse F. Dehydrin transcript fluctuations during a day/night cycle in drought-stressed sunflower [J]. J Exp Bot, 2000 Feb, 51(343): 299-304
    [30] Grabov A. Plant KT/KUP/HAK potassium transporters: single family - multiple functions. Ann Bot (Lond), 2007 Jun, 99(6): 1035-41
    [31] Golldack D, Quigley F, Michalowski CB, et al. Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently [J]. Plant Mol Biol, 2003 Jan, 51(1): 71-81
    [32] Tadauchi T, Inada T, MatsUM0to K, et al. Posttranscriptional regulation of HO expression by the Mkt1-Pbp1 complex [J]. Mol Cell Biol, 2004 May, 24(9): 3670-3681
    [33] Grallath S, Weimar T, Meyer A, et al. The AtProT family.Compatible solute transporters with similar substrate specificity but differential expression patterns[J]. Plant Physiol, 2005 Jan, 137(1): 117-26
    [34] Mizuta K, Osawa Y, Mizuta F, et al. Functional Expression of GABAB Receptors in Airway Epithelium[J]. Am J Respir Cell Mol Biol, 2008 Apr, 10(6): 3708-3721
    [35] Gao Y, Zeng Q, Guo J, et al. Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis[J]. Plant J, 2007 Dec, 52(6): 1001-13
    [36] R?nning SB, Berdal KG, Andersen CB, et al. Novel reference gene, PKABA1, used in a duplex real-time polymerase chain reaction for detection and quantitation of wheat- and barley-derived DNA [J]. Agric Food Chem, 2006 Feb 8, 54(3): 682-687
    [37] Allen G J, Murata Y, Chu S P, et al. Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2 [J]. Plant Cell, 2002 Jul, 14(7): 1649-1662
    [38] Leyman B, Geelen D, Quintero FJ, et al. A tobacco syntaxin with a role in hormonal control of guard cell ion channels [J].Science, 1999 Jan 22, 283(5401): 537-540
    [39]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报, 2000, 45: 1465-1474
    [40]秦红霞,宋玉霞,刘敬梅.植物DREB转录因子的研究进展及应用[J].生物技术通讯,2006, 05-0780-04: 1009-0002
    [41] Drews GN, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product[J]. Cell, 1991, 65: 991-1002
    [42] Leon-Kloosterziel K M, Keijzer C J, Koornneef M. A seed shape mutant of Arabidopsis that is affected in integument development[J]. Plant Cell, 1994, 6: 385-392
    [43] Elliott R C, Betzner A S, Huttner E. Amtegumenta an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth.[J]. Plant Cell, 1996, 8: 155-168
    [44] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA Binding proteins that interact with an ethylene-responsive element [J]. Plant Cell, 1995, 7: 173-182
    [45] Leubnermetzger G, Petruzzelli L, Waldvogel R, et al. nEthylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1, 3-glucanase during tobacco seed germination [J]. Plant Mol Biol, 1998, 38: 785-795
    [46] Zhao J, Ren W, Zhi D, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress[J]. Plant Cell Rep, 2007 Sep, 26(9): 1521-1528
    [47] Se-Jun Oh, Sang Ik Song, Youn Shic Kim, et al. Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth. [J]. Plant Physiology, 2005, 138: 341-351
    [48] Cheng C, Yun KY, Ressom HW, et al. An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice[J]. BMC Genomics, 2007 Jun 18, 8: 175
    [49] Yan Guo, Liming Xiong, Manabu Ishitani, et al. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures [J]. Plant Biology, May 28, 2002: 7786-7791
    [50] Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors[J]. Cell Biochem, 1994, 55: 32-58
    [51] Yamaguchi-Shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein [J]. Plant Cell Physiol, 1992, 33: 217-224
    [52] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress[J]. Plant Cell, 1994: 6251-6264
    [53] Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, et al. The dehydration-inducible rd17(cor47) gene and its promoter region in Arabidopsis thaliana[J]. Plant Physilo, 1997, 115:1287
    [54] Wang H, Datla R, Georges F, et al. Promoters from kin1 and cor6.6 two homologous Arabidopsis thaliana gene: Transcriptional regulation and gene expression induced by low temperature. ABA osmoticum and dehydration[J]. Plant Mlo Biol, 1995, 28: 605-617
    [55] Baker S S, Wilhelm K s, Thomashow M F. The 5’-region of Arabidopsis thaliana cor 15a has cis acting elements that confer cold-, drought- and ABA-regulated gene expression[J]. Plant Mol Biol, 1994, 24: 701-713
    [56] Jiang C, Lu , Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus[J]. Plant Mol Biol, 1996, 30: 679-684
    [57] Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003 Feb, 33(4): 751-63
    [58] Stockinger EJ, Gimour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperture and water deficig [J]. Proc Natl Acad SCI usa, 1997, 94: 1035
    [59] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arabidopsis [J]. Plant Cell, 1998, 10: 1391
    [60] Gimour SJ, Zarka DG, Stockinger EJ, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression [J]. Plant J, 1998,16: 433
    [61] Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by absicisic acid or dehydration [J]. Plant Physilo, 1999, 119: 463
    [62] Nakashima K, Shinwari ZK, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and hight-salinity responsive gene expression [J]. Plant Mol Biol, 2000, 42(4): 657
    [63] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J]. Genes, 2003, 17: 1043
    [64] Wang XL, Sun XQ, et al. Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris[J]. Mol Biol(Mosk), 2005, 39(1): 21
    [65] Patharkar OR, Cushman JC. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator[J]. Plant J, 2000 Dec, 24(5): 679-91
    [66] Chehab EW, Patharkar OR, Hegeman AD, et al. Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. [J]. Plant Physiol, 2004 Jul, 135(3): 1430-46
    [67] Catala R, Santos E, Alonso JM, et al. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis[J]. Plant Cell, 2003, 15: 2940
    [68] Agarwal P, Agarwal PK, Nair S, et al. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity [J]. Mol Genet Genomics, 2007 Feb, 277(2): 189-98
    [69] Hong JP, Kim WT. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang) [J]. Planta, 2005 Apr, 220(6): 875-88
    [70] Yoh Sakumaa, Kyonoshin Maruyamaa, Yuriko Osakabea. Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression [J]. The Plant Cell, 2006, 18: 1292-1309
    [71] Yong Hwa Cheong,Kyung-Nam Kim. CBL1, a Calcium Sensor That Differentially Regulates Salt, Drought, and Cold Responses in Arabidopsis[J]. The Plant Cell, Vol. 15, 1833-1845
    [72] Xiong Y, Fei S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.)[J]. Planta, 2006 Sep, 224 (4): 878-88
    [73] Schramm F, Larkindale J, Kiehlmann E, et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis[J]. Plant J, 2007 Nov, 12, 18: 255
    [74] Kant P, Kant S, Gordon M, et al. STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, Two DEAD-Box RNA Helicases That Attenuate Arabidopsis Responses to Multiple Abiotic Stresses [J]. Plant Physiol, 2007 Nov, 145(3): 814-30
    [75] Wang JW, Yang FP, Chen XQ, et al. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat[J]. Yi Chuan Xue Bao, 2006 May, 33(5): 468-76
    [76] Huang B, Jin L, Liu J. Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton[J]. Sci China C Life Sci, 2007 Feb, 50(1): 7-14
    [77] Kim Y H, Yang KS, Ryu SH, et al. Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato[J]. Plant Physiol Biochem, 2007 Oct 5: 108-117
    [78] Chen M, Wang QY, Cheng XG, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochem Biophys Res Commun, 2007 Feb 9, 353(2): 299-305
    [79] Liu N, Zhong NQ, Wang GL. Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens[J]. Planta, 2007 Sep, 226(4): 827-38
    [80] Feng Qin, Jie Li, Qiang Liu. Cloning and Functional Analysis of a Novel DREB1/CBF Transcription Factor Involved in Cold-Responsive Gene Expression in Zea mays L[J]. Plant and Cell Physiology, 2004, 45(8): 1042-1052
    [81] Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression [J]. Plant Cell 18, 2006: 1292–1309.
    [82]王建设.葡萄细胞悬浮系的建立及BADH基因转化的研究[M].泰安,山东农业大学, 2001
    [83]王春荣.杨树叶片高频再生体系的建立及根癌农杆菌介导的转基因耐盐杨树的获得[M].泰安,山东农业大学, 1998
    [84] Chabaud M, Passiatore F, et al. Parameters Affecting the Frequency of Kanamycin Resistant Alfalfa Obtained by Agrobacterium tumefaciens Mediated Transformation[J]. Plant Cell Rep, 1988, 7: 512-516
    [85] Anthony T, Stephen H, et al. Transformation of Medicago truncatula via Infiltration of Seedlings or Flowering Plants with Agrobacterium [J]. Plant Cell Rep, 2000, 22(6): 531-541
    [86] Beate H, Taon H T, et al. A New Medicago truncatula Line with Superior in Vitro Regeneration, Transformation, and Symbiotic Properties Isolated through Cell Culture Selection[J]. MPMI, 1997, 10(3): 307-315
    [87] Mireille C, Clotlde L, et al. Transformation of Barrel medic(Medicago truncatula Gaertn.)by Agrobacterium tumefaciens and Regeneration via Somatic Embryogenesis of Transgenic Plants with the MtENOD12 Nodulin Promoter Fused to the Gus Reporter Gene[J]. Plant Cell Reports, 1996, 15: 305-310
    [88]陈晨,曹致中等.农杆菌介导的紫花苜蓿遗传转化体系的建立与优化[J].甘肃农业大学学报, 2004, 39(5): 516-519
    [89] Austin S, Bingham E T, et al. Production and Field Performance of Transgenic Alfalfa(Medicago stativa L.) Expressing Alpha-amylase and Manganese-dependent Lignin Peroxidase[J]. Euphytica, 1995, 85: 381-393
    [90] Elias A S, Albert S. Transformation of Cultivated Alfalfa Using Disarmed Agrobacterium tumefaciens[J]. Crop Science, 1986, 26: 1235-1239
    [91]乔建江,王堃,杨青川.苜蓿转基因的研究现状和前景[J].中国草地学报, 2006, (05)
    [92]王凭青,周兴龙,杨青川等.紫花苜蓿高频再生组织培养体系建立[J].重庆大学学报(自然科学版), 2005, (02)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700