玉米ZmSNAC1和高粱SbSNAC1基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐碱等非生物逆境胁迫严重影响植物的正常生长发育,而植物在长期进化过程中会形成一系列有效的作用机制,其中包括调控胁迫相关基因的表达以应对外界不良环境。逆境胁迫诱导表达基因可大致分为两大类:即功能蛋白编码基因和参与逆境胁迫信号转导过程的转录调控蛋白编码基因。NAC转录因子是具有多种生物学功能的植物特异转录调控因子,在植物生长发育、形态建成、激素调节和逆境胁迫应答过程中发挥着重要作用。目前在模式植物如拟南芥和水稻中的NAC基因与植物抗逆性相关研究方面已经取得了重要进展,然而在一些重要的C4禾本科作物如玉米和高粱中与逆境胁迫相关的NAC基因的研究报道较少。本研究克隆了两个NAC家族基因,玉米ZmSNAC1和高粱SbSNAC1基因,分别对其进行了基因表达模式分析和抗逆相关生物学功能验证。主要实验结果如下:
     1.玉米ZmSNAC1基因的克隆与功能分析
     首先,从玉米耐旱自交系“CN165”中分离得到一个玉米NAC家族基因ZmSNAC1,进化分析表明玉米ZmSNAC1与水稻SNAC1进化关系较近。诱导表达分析结果表明ZmSNAC1受非生物逆境胁迫如低温、高盐、干旱和植物激素脱落酸(ABA)的诱导表达上调,受水杨酸(SA)诱导表达下调;组织特异性表达分析结果证明ZmSNAC1在玉米根中和穗位叶的相对表达量较高。亚细胞定位实验结果表明ZmSNAC1定位在拟南芥原生质体细胞核中,转录激活分析证明ZmSNAC1蛋白具有转录激活活性。进一步通过过表达ZmSNAC1基因对其进行转基因拟南芥株系在不同生长发育时期的抗逆表型鉴定,在种子萌发阶段,ZmSNAC1过表达转基因株系能够显著提高其对ABA和渗透胁迫的敏感性;在苗期,转基因株系通过降低离体叶片失水速率来提高植株的耐脱水性;对生殖生长发育时期内ZmSNAC1过表达转基因株系的耐旱、耐盐性表型鉴定结果表明,在干旱胁迫条件下,转基因株系较野生型株系存活率提高了50-52%,转基因株系的相对电导率较野生型株系降低了17-21%,叶绿素含量较对照株系提高了36-47%,脯氨酸含量提高了17-23%;在300mM NaCl胁迫条件下,转基因株系的存活率提高了36-40%。抗逆功能研究结果证明过表达ZmSNAC1显著提高了转基因株系的耐旱和耐盐性。
     2.高粱SbSNAC1基因的克隆与功能分析
     从新疆耐旱高粱品种“XGL-1”中克隆得到高粱SbSNAC1基因,对其氨基酸序列分析结果发现SbSNAC1蛋白主要由位于N-末端的典型的NAC保守结构域和序列高度多样性的C-末端两部分组成。基因表达模式研究发现SbSNAC1基因受非生物逆境胁迫诱导表达上调,且响应植物激素ABA的诱导;组织特异性表达分析结果表明SbSNAC1在高粱根中表达量最高。转录激活实验证明SbSNAC1蛋白的C-末端为其转录激活区,而其N-末端没有转录激活活性,且215-235氨基酸区段为转录激活的必须区段。亚细胞定位结果证明SbSNAC1为细胞核蛋白,且其核定位信号主要存在于SbSNAC1的NAC保守结构域中(N-末端)。进一步通过遗传转化拟南芥的方式对其进行了抗逆功能鉴定,结果表明SbSNAC1过表达转基因株系较对照株系显著提高植株的耐旱性,且在干旱胁迫处理下,转基因拟南芥中一些胁迫应答基因(如RD29B、RAB18、ABI1等)的表达量较野生型显著上调。综合以上研究结果表明SbSNAC1作为应答逆境胁迫的转录因子在植物抗逆调控网络中起正向调控作用,为将来基因工程改良作物抗逆性提供了重要的候选基因。
Abiotic stresses that cause adverse effects on the growth and development of plants. Thephysiologic response to these stresses arises out of changes in gene expression. The products of thesestress induced genes can be classified into two groups: functional genes and the regulatory genes thatinvolved in signal transduction in the stress response. NAC proteins are plant-specific transcriptionfactors that play essential roles in stress responses. However, only little information regardingstress-related NAC genes is available in grass family such as maize and sorghum. In this study, wecharacterized two NAC family members which were designed as ZmSNAC1and SbSNAC1. Weexamined their expression profiles and analyzed their abiotic stress-related functions, respectively.
     1. Isolation and functional analysis of maize ZmSNAC1
     A maize NAC gene, ZmSNAC1, was isolated from the maize inbred line “CN165” and functionallycharacterized. ZmSNAC1had more close relationship with rice SNAC1according to the phylogeneticanalysis. Expression analysis revealed that ZmSNAC1was strongly induced by low temperature, highsalinity, drought stress, and abscisic acid (ABA) treatment, but downregulated by salicylic acid (SA)treatment. Subcellular localization experiments in Arabidopsis protoplast cells indicated that ZmSNAC1was localized in the nucleus. Transactivation assays demonstrated that ZmSNAC1functioned as atranscriptional activator. Overexpression of ZmSNAC1in Arabidopsis led to hypersensitivity to ABAand osmotic stress at the germination stage, but enhanced tolerance to dehydration compared towild-type (WT) seedlings. Moreover, over-expression of ZmSNAC1in Arabidopsis conferred enhanceddrought and salt tolerance, which was supported not only by the improved survival percentage inZmSNAC1transgenic lines compared with the WT lines but also by physiological changes, such as thereduced electrolyte leakage and higher chlorophyll content in transgenic plants. These results indicatedthat ZmSNAC1may function as a positive regulator in multiple pathways of plants response to abioticstresses and is potentially useful in transgenic breeding to improve stress tolerance in crops.
     2. Isolation and functional analysis of sorghum SbSNAC1
     SbSNAC1is a member of the plant-specific NAC transcription factor superfamily that plays animportant role in the abiotic stress response in sorghum. The SbSNAC1protein consists of a typicalNAC conserved domain at its N terminus and a diverse C-terminal region. The expression of SbSNAC1was induced by various abiotic stresses, such as drought and salinity. SbSNAC1is also expressed at arelatively higher concentration in roots and responds to the phytohormone abscisic acid. Transactivationanalysis indicated that the transactivation activity of SbSNAC1is located in the C-terminal region,whereas no activity was detected in the conserved NAC-domain, localized in the N-terminus. The testedregion (215-235aa) of the C-terminus was considered to be necessary for its transactivation activity.Subcellular localization assays using constructs of different SbSNAC1fragments fused with greenfluorescent protein revealed that the SbSNAC1protein localized in the nucleus, and that the nuclearlocalization signal was present in the N-terminal section. Furthermore, transgenic plants overexpressingSbSNAC1had an improved drought stress tolerance compared with wild-type plants, but no obviousretardation was detected in plant growth and development. SbSNAC1-overexpressed transgenic plants showed increased transcription of the stress-responsive genes under drought treatment. These resultssuggest that SbSNAC1functions as a stress-responsive transcription factor in positive modulation ofabiotic stress tolerance, and may have applications in the engineering of drought-tolerant crops.
引文
1.曹红利,岳川,王新超,杨亚军. bZIP转录因子与植物抗逆性研究进展.南方农业学报,2012,43(8):1094-1100.
    2.陈儒钢,巩振辉,逯明辉,李大伟,黄炜.植物抗逆反应中的转录因子网络研究进展.农业生物技术学报,2010,18(1):126-134.
    3.刘欣,李云.转录因子与植物抗逆性研究进展.中国农学通报,2006,22:61-65.
    4.山仑,徐炳成.论高粱的抗旱性及在旱区农业中的地位.中国农业科学,2009,42(7):2342-2348.
    5.杨德鑫,周时荣,权瑞党,黄荣峰. AP2/ERF蛋白调控植物的非生物胁迫应答机制.中国农业科技导报,2012,14(6):23-29.
    6.杨颖,高世庆,唐益苗,冶晓芳,王永波,刘美英,赵昌平.植物bZIP转录因子的研究进展.麦类作物学报,20,2009,29(4):730-737.
    7.左然,徐美玲,柴国华,周功克.植物MYB转录因子功能及调控机制研究进展.生命科学,2012,24(10):1133-1140.
    8. Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-Shinozaki K.. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling.The Plant Cell,2003,15(1):63-78.
    9. Agarwal M., Hao Y., Kapoor A., Dong C.H., Fujii H., Zheng X., Zhu J.K.. A R2R3type MYBtranscription factor is involved in the cold regulation of CBF genes and in acquired freezingtolerance. Journal of Biological Chemistry,2006,281:37636-37645.
    10. Aida M., Ishida T., Fukaki H., Fujisawa H., Tasaka M.. Genes involved in organ separation inArabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell,1997,9:841–857.
    11. Allen R.G., Tresini M.. Oxidative stress and gene regulation. Free Radical Biology Medicine,2000,28:463-499.
    12. Allen R.S., Li J., Stahle M.I., Dubroué A., Gubler F., Millar A.A.. Genetic analysis revealsfunctional redundancy and the major target genes of the Arabidopsis miR159family. Proceedingsof the National Academy of Sciences,2007,104(41):16371-16376.
    13. Alscher R.G., Donahue J.L., Cramer C.L.. Reactive oxygen species and antioxidants:relationships in green cells. Physiologia Plantarum,1997,100(2):224-233.
    14. Amtmann A., Bohnert H.J., Bressan R.A.. Abiotic stress and plant genome evolution. PlantPhysiology,2005,138:127-130.
    15. Bartels D., Sunkar R.. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences,2005,24(1):23-58.
    16. Bihani P., Char B., Bhargava S.. Transgenic expression of sorghum DREB2in rice improvestolerance and yield under water limitation. Journal of Agricultural Science,2011,149:95-101.
    17. Broun P.. Transcription factors as tools for metabolic engineering in plants. Current Opinion inPlant Biology,2004,7:202-209.
    18. Bu Q., Jiang H., Li C.B., Zhai Q., Zhang J., Wu X., Sun J., Xie Q., Li C.. Role of the Arabidopsisthaliana NAC transcription factors ANAC019and ANAC055in regulating jasmonicacid-signaled defense responses. Cell Research,2008,18:756-767.
    19. Century K., Reuber T.L., Ratcliffe O.J.. Regulating the regulators: the future prospects fortranscription-factor based agricultural biotechnology products. Plant Physiology,2008,147:20-29.
    20. Chen Q.F., Wang Q., Xiong L.Z., Lou Z.Y.. A structural view of the conserved domain of ricestress-responsive NAC1. Protein Cell,2011,2:55-63.
    21. Chen W.J., Zhu T.. Networks of transcription factors with roles in environmental stress response.Trends in Plant Science,2004,9:591-596.
    22. Chen Y.H., Yang X.Y., He K., Liu M.H., Li J.G., Gao Z.F., Lin Z.Q., Zhang Y.F., Wang X.X., QiuX.M., Shen Y.P., Zhang L., Deng X.H., Luo J.C., Deng X.W., Chen Z.L., Gu H.Y., Qu L.J.. TheMYB transcription factor superfamily of Arabidopsis: expression analysis and phylogeneticcomparison with the rice MYB family. Plant Molecular Biology,2006,60(1):107-124.
    23. Choi H., Hong J., Ha J., Kang J., Kim S.Y.. ABFs, a family of ABA-responsive element bindingfactors. Journal Biological Chemistry,2000,21:1723–1730.
    24. Close T. J.. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.Physiologia Plantarum,1996,97(4):795-803.
    25. Clough S.J., Bent A.F.. Floral dip: a simplified method for Agrobacterium-mediatedtransformation of Arabidopsis thaliana. The Plant Journal,1998,16:735-743.
    26. Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N.,Dellaporta S.L., Tonelli C.. A guard-cell-specific MYB transcription factor regulates stomatalmovements and plant drought tolerance. Current Biology,2005,15:1196-1200.
    27. Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R.. Abscisic acid: emergence of a coresignaling network. Annual Reviews Plant Biology,2010,61:651-679.
    28. Dai X.Y., Xu Y.Y., Ma Q.B., Xu W.Y., Wang T., Xue Y.B., Chong K.. Overexpression of anR1R2R3MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress intransgenic Arabidopsis. Plant Physiology,2007,143:1739–1751.
    29. Delessert C., Kazan K., Wilson L.W., Straeten D.V.D., Manners J., Dennis E.S., Dolferus R.. Thetranscription factor ATAF2represses the expression of pathogenesis-related genes in Arabidopsis.The Plant Journal,2005,43:745-757.
    30. Dietz K.J., Vogel M.O., Viehhauser A.. AP2/EREBP transcription factors are part of generegulatory networks and integrate metabolic, hormonal and environmental signals in stressacclimation and retrograde signaling. Protoplasma,2010,245:3-14.
    31. Duval M., Hsieh T.F., Kim S.Y., Thomas T.L.. Molecular characterization of AtNAM: a memberof the the Arabidopsis NAC domain superfamily. Plant Molecular Biology,2002,50:237-248.
    32. Ent S.V., Verhagen B.W.M., Doorn R.V., Bakker D., Verlaan M.G., Pel M.J.C., Joosten R.G.,Proveniers M.C.G., Loon L.C.V., Ton J., Pieterse C.M.J.. MYB72is required in early signalingsteps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiology,2008,146:1293-1304.
    33. Ernst H.A., Olsen A.N., Skriver K., Larsen S., Leggio L.L.. Structure of the conserved domain ofANAC, a member of the NAC family of transcription factors. Scientific Report,2004,5:297-303.
    34. Fang Y., You J., Xie K., Xie W., Xiong L.. Systematic sequence analysis and identification oftissue-specific or stress-responsive genes of NAC transcription factor family in rice. MolecularGeneral Genetics,2008,280:547-563.
    35. Flexas M.J., Pinheiro C.. Photosynthesis under drought and salt stress: regualtion mechanismsfrom whole plant to cell. Annals of Botany,2009,103:551-56
    36. Fujita M., Fujita Y., Maruyama K., Seki M., Hiratsu K., Ohme-Takagi M., Tran L.P.,Yamaguchi-Shinozaki K., Shinozaki K.. A dehydration-induced NAC protein, RD26, is involvedin a novel ABA-dependent stress-signaling pathway. The Plant Journal,2004,39:863-876.
    37. Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K.. ABA-mediated transcriptionalregulation in response to osmotic stress in plants. Journal of Plant Research,2011,124:509-525.
    38. Gao F, Xiong A., Peng R., Jin X., Xu J., Zhu B., Chen J., Yao Q.. OsNAC52, a rice NACtranscription factor, potentially responds to ABA and confers drought tolerance in transgenicplants. Plant Cell Tissue Organ,2010,100:255-262.
    39. Gao S.Q., Xu H.J., Cheng X.G., Chen M., Xu Z.S., Ll L.C.,Ye X.G., Du L.G., Hao X.Y., Ma Y.Z..Improvement of wheat drought and salt tolerance by expression of a stressinducible transcriptionfactor GmDREB of soybean (Glycine max). Chinese Science Bulletin,2005,50:2714-2723.
    40. Gonzalez A., Zhao M., Leavitt J.M., Lloyd A.M.. Regulation of the anthocyanin biosyntheticpathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The PlantJournal,2008,53(5):814-827.
    41. Guo A.Y., Chen X., Gao G., Zhang H., Zhu Q.H., Liu X.C., Zhong Y.F., Gu X., He K., Luo J.C..PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Research,2008,36:966-969.
    42. Guo Y.F., Gan S.H.. AtNAP, a NAC family transcription factor, has an important role in leafsenescence. The Plant Journal,2006,46:601-612.
    43. Haake V., Cook D., Riechmann J., Pineda O., Thomashow M.F., Zhang J.Z.. Transcription factorCBF4is a regulator of drought adaptation in Arabidopsis. Plant Physiology,2002,130(2):639-648.
    44. Hao H.Y., Ohme-Takagi M., Sarai A.. Unique mode of GCC Box recognition by theDNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. TheJournal of Biological Chemistry,1998,273:26857-26861.
    45. Hao H.Y., Song Q.X., Chen H.W., Zou H.F., Wei W., Kang X.S., Ma B., Zhang W.K., Zhang J.S.,Chen S.Y.. Plant NAC-type transcription factor proteins contain a NARD domain for repressionof transcriptional activation. Planta,2010,232:1033-1043.
    46. Hao Y.J., Wei W., Song Q.X., Chen H.W., Zhang Y.Q., Wang F., Zou H.F., Lei G., Tian A.G.,Zhang W.K., Ma B., Zhang J.S., Chen S.Y.. Soybean NAC transcription factors promote abioticstress tolerance and lateral root formation in transgenic plants. The Plant Journal,2011,68:302-313.
    47. He X.J., Mu R.L., Cao W.H., Zhang Z.G., Zhang J.S., Chen S.Y.. AtNAC2, a transcription factordownstream of ethylene and auxin signaling pathways, is involved in salt stress response andlateral root development. The Plant Journal,2005,44:903-916.
    48. Hirayama T., Shinozaki K.. Research on plant abiotic stress responses in the post-genome era:past, present and future. The Plant Journal,2010,61:1041-1052.
    49. Hoekstra F.A., Golovina E.A., Buitink J.. Mechanisms of plant desiccation tolerance. Trends inPlant Science,2001,6(9):431-438.
    50. Hossain M.A., Lee Y., Cho J.I., Ahn C.H., Lee S.K., Jeon J.S., Kang H., Lee C.H., An G., ParkP.B.. The bZIP transcription factor OsABF1is an ABA responsive element binding factor thatenhances abiotic stress signaling in rice. Plant Molecular Biology,2010,72:557-566.
    51. Hu H., You J., Fang Y., Zhu X., Qi Z., Xiong L.. Characterization of transcription factor geneSNAC2conferring cold and salt tolerance in rice. Plant Molecular Biology,2008,67:169-181.
    52. Hu H.H., Dai M.Q., Yao J.L., Xiao B.Z., Li X.H., Zhang Q.F., Xiong L.Z.. Overexpressing aNAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerancein rice. Proceedings of the National Academy of Sciences,2006,103:12987-12992.
    53. Hu R., Qi G., Kong Y., Kong D., Gao Q., Zhou G.. Comprehensive analysis of NAC domaintranscription factor gene family in Populus trichocarpa. BMC Plant Biology,2010,10:145.
    54. Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F.. ArabidopsisCBF1overexpression induces COR genes and enhances freezing tolerance. Science,1998,280:104-106.
    55. Jakoby M., Weisshaar B., Dr ge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., Parcy F..bZIP transcription factors in Arabidopsis. Trends in Plant Science,2002,7(3):106-111.
    56. Jensen M.K., Hagedorn P.H., Torres-Zabala M., Grant M.R., Rung J.H., Collinge D.B., LyngkjaerM.F.. Transcriptional regulation by an NAC (NAM–ATAF1,2–CUC2) transcription factorattenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei inArabidopsis. The Plant Journal,2008,56:867-880.
    57. Jensen M.K., Kjaersgaard T., Nielsen M.M., Galberg P., Petersen K., O'Shea C., Skriver K.. TheArabidopsis thaliana NAC transcription factor family: structure-function relationships anddeterminants of ANAC019stress signaling. Biochemical Journal,2010,426(2):183-196.
    58. Jensen M.K., Rung JH., Gregersen P.L., Gjetting T., Fuglsang A.T., Hansen M., Joehnk M.,Lyngkjaer M.F., Collinge D.B.. The HvNAC6transcription factor: a positive regulator ofpenetration resistance in barley and Arabidopsis. Plant Molecular Biology,2007,65:137-150.
    59. Jeong J.S., Kim Y.S., Baek K.H., Jung H., Ha S.H., Choi Y.D., Kim M., Reuzeau C., Kim J.K..Root-specific expression of OsNAC10improves drought tolerance and grain yield in rice underfield drought conditions. Plant Physiology,2010,153:185-197.
    60. Jeong R.D., Chandra-Shekara A.C., Kachroo A., Klessig D.F., Kachroo P.. HRT-mediatedhypersensitive response and resistance to Turnip crinkle virus in Arabidopsis does not require thefunction of TIP, the presumed guardee protein. Molecular Plant Microbe Interactions,2008,21(10):1316-1324.
    61. Jia J., Xing J.H., Dong J.G., Han J.M., Liu J.S.. Functional analysis of MYB73of Arabidopsisthaliana against Bipolaris oryzae. Agriculture Sciences China,2011,10(5):721-727.
    62. Jia L., Clegg M.T., Jiang T.. Evolutionary dynamics of the DNA-binding domains in putativeR2R3-MYB genes identified from rice subspecies indica and japonica genomes. PlantPhysiology,2004,134(2):575-585.
    63. Jin H., Huang F., Cheng H., Song H., Yu D.. Overexpression of the GmNAC2gene, an NACtranscription factor, reduces abiotic stress tolerance in tobacco. Plant Molecular Biology Report,2013,31:435-442.
    64. Jin L, Tran D.Q., Ide C.F., McLachlan J.A., Arnold S.F.. Several synthetic chemicals inhibitprogesterone receptor-mediated transactivation in yeast. Biochemical and Biophysical ResearchCommunications,1997,233:139-146.
    65. Jung C., Seo J.S., Han S.W., Koo Y.J., Kim C.H., Song S.I., Nahm B.H., Choi Y.D., Cheong J.J..Overexpression of AtMYB44enhances stomatal closure to confer abiotic stress tolerance intransgenic Arabidopsis. Plant Physiology,2008,146:623-635.
    66. Kang J.Y., Choi H.I., Im M.Y., Kim S.Y.. Arabidopsis basic leucine zipper proteins that mediatestress-responsive abscisic acid signaling. Plant Cell,2002,14:343–357.
    67. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K.. Improving plant drought,salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nature Biotechnology,1999,17:287-291.
    68. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K.. Improving plant drought,salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nature Biotechnology,1999,17:287-291.
    69. Khraiwesh B., Zhu J.K., Zhu J.. Role of miRNAs and siRNAs in biotic and abiotic stressresponses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819(2):137-148.
    70. Kikuchi K., Ueguchi-Tanaka M., Yoshida K.T., Nagato Y., Matsusoka M., Hirano H.Y..Molecular analysis of the NAC gene family in rice. Molecular General Genetics,1999,262:1047-1051.
    71. Kim M.J., Park M.J., Seo P.J., Song J.S., Kim H.J., Park C.M.. Controlled nuclear import ofNTL6transcription factor reveals a cytoplasmic role of SnRK2.8in drought stress response.Biochemical Journal,2012,448:353-362.
    72. Kim S.G., Lee S., Seo P.J., Kim S.K., Kim J.K., Park C.M.. Genome-scale screening andmolecular characterization of membrane-bound transcription factors in Arabidopsis and rice.Genomics,2010,95(1):56-65.
    73. Kirik V., Schnittger A., Radchuk V., Adler K., Hülskamp M., B umlein H.. Ectopic expression ofthe Arabidopsis AtMYB23gene induces differentiation of trichome cells. Developmental Biology,2001,235(2):366-377.
    74. Kjaersgaard T., Jensen M.K., Christiansen M.W., Gregersen P., Kragelund B.B., Skriver K..Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts withradical-induced cell death1through a disordered regulatory domain. Journal of BiologicalChemistry,2011,286(41):35418-35429.
    75. Kleinow T., Himbert S., Krenz B., Jeske H., Koncz C.. NAC domain transcription factor ATAF1interacts with SNF1-related kinases and silencing of its subfamily causes severe developmentaldefects in Arabidopsis. Plant Science,2009,177(4):360-370.
    76. Knight H., Knight M.R.. Abiotic stress signalling pathways: specificity and cross-talk. Trends inPlant Science,2001,6(6):262-267.
    77. Langridge P., Paltridge N., Fincher G.. Functional genomics of abiotic stress tolerance in cereals.Briefings in Functional Genomics and Proteomics,2006,4:343-354.
    78. Lata C., Yadav A., Prasad M.. Role of plant transcription factors in abiotic stress tolerance.Abiotic Stress Response in Plants-Physiological, Biochemical and Genetic Perspectives,2012,10:269-296.
    79. Le D.T., Nishiyama R., Watanabe Y., Mochida K., Yamaguchi-Shinozaki K., Shinozaki K., TranL.S.P.. Genome-wide survey and expression analysis of the plant-specific NAC transcriptionfactor family in soybean during development and dehydration stress. DNA Research,2011,18:263-276.
    80. Lee S., Seo P.J., Lee H.J., Park C.M.. A NAC transcription factor NTL4promotes reactiveoxygen species production during drought-induced leaf senescence in Arabidopsis. The PlantJournal,2012,70:831-844.
    81. Lee S.C., Choi H.W., Hwang I.S., Choi D.S., Hwang B.K.. Functional roles of the pepperpathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogeninfection and environmental stresses. Planta,2006,224:1209-1225.
    82. Levitt J.. Responses of Plants to Environmental Stresses. New York: Academic Press,1980.
    83. Li B., Qin Y., Duan H., Yin W., Xia X.. Genome-wide characterization of new and drought stressresponsive microRNAs in Populus euphratica. Journal of Experimental Botany,2011,62(11):3765-3779.
    84. Lim S.. Sorghum gene expression modulated by water deficit and cold stress. Doctoraldissertation, Texas A&M University,2006.
    85. Lindemose S., O’Shea S., Jensen M.K., Skriver K.. Structure, function and networks oftranscription factors involved in abiotic stress responses. International Journal of MolecularSciences,2013,14:5842-5878.
    86. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K.. Twotranscription factors, DREB1and DREB2, with an EREBP/AP2DNA binding domain separatetwo cellular signal transduction pathways in drought-and low temperature-responsive geneexpression, respectively, in Arabidopsis. The Plant Cell,1998,10(8):1391-1406.
    87. Liu X., Bai X., Wang X., Chu C.. OsWRKY71, a rice transcription factor, is involved in ricedefense response. Plant Physiology,2007,164(8):969-979.
    88. Liu Z.J., Shao F.X., Tang G.Y., Shan L., Bi Y.P.. Cloning and characterization of a transcriptionfactor ZmNAC1in maize (Zea mays). Hereditas (Beijing),2009,31:199-205.
    89. Livak K.J., Schmittgen T.D.. Analysis of relative gene expression data using real-timequantitative PCR and the2-DDCtmethod. Methods,2001,25:402-408.
    90. Lu M., Ying S., Zhang D.F., Shi Y.S., Song Y.C., Wang T.Y., Li Y.. A maize stress-responsiveNAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenicArabidopsis. Plant Cell Reports,2012,31:1701-1711.
    91. Lu P.L., Chen N.Z., An R., Zhao S., Qi B.S., Ren F., Chen J., Wang X.C.. A noveldrought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates theexpression of stress-responsive genes in Arabidopsis. Plant Molecular Biology,2007,63:289-305.
    92. Ludwig A.A., Romeis T., Jones, J.D.. CDPK-mediated signalling pathways: specificity andcross-talk. Journal of Experimental Botany,2004,55(395):181-188.
    93. Maas E.V., Poss J.A., Hoffman G.J.. Salinity sensitivity of sorghum at three growth stages.Irrigation science,1986,7:1-11.
    94. Mao X., Zhang H, Qian X., Li A., Zhao G., Jing R.. TaNAC2, a NAC-type wheat transcriptionfactor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal ofExperimental Botany,2012,63:2933-2946.
    95. Matsui K., Hiratsu K., Koyama T., Tanaka H., Ohme-Takagi M.. A chimeric AtMYB23repressorinduces hairy roots, elongation of leaves and stems, and inhibition of the deposition of mucilageon seed coats in Arabidopsis. Plant and CellPhysiology,2005,46(1):147-155.
    96. Matsukura S., Mizoi J., Yoshida T., Todaka D., Ito Y., Maruyama K., Shinozaki K.,Yamaguchi-Shinozaki K.. Comprehensive analysis of rice DREB2-type genes that encodetranscription factors involved in the expression of abiotic stress-responsive genes. MolecularGeneral Genetics,2010,283:185-196.
    97. Matsukura S., Mizoi J., Yoshida T., Todaka D., Ito Y., Maruyama K., Shinozaki K.,Yamaguchi-Shinozaki K.. Comprehensive analysis of rice DREB2-type genes that encodetranscription factors involved in the expression of abiotic stress-responsive genes. MolecularGeneral Genetics,2010,283:185-196.
    98. Melkonian J., Yu L.X., Setter T.L.. Chilling responses of maize (Zea mays L.) seedlings: roothydraulic conductance, abscisic acid, and stomatal conductance. Journal of Experimental Botany,2004,55:1751–1760.
    99. Miao Y., Laun T., Zimmermann P., Zentgraf U.. Targets of the WRKY53transcription factor andits role during leaf senescence in Arabidopsis. Plant Molecular Biology,2004,55(6):853-867.
    100. Mitsuda N., Ohme-Takagi M.. Functional analysis of transcription factors in Arabidopsis. PlantCell Physiol,2009,50(7):1232-1248.
    101. Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K.. AP2/ERF family transcription factors in plantabiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanism,2012,1819:86-96.
    102. Mochida K., Yoshida T., Sakurai T., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S.P..LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatulatranscription factors. Bioinformatics,2010,26(2):290-291.
    103. Morran S., Eini O., Pyvovarenko T., Parent B., Singh R., Ismagul A., Eliby S., Shirley N.,Langridge P., Lopato S.. Improvement of stress tolerance of wheat and barley by modulation ofexpression of DREB CBF factors. Plant Biotechnology Journal,2011,9:230-249.
    104. Munns R.. Comparative physiology of salt and water stress. Plant Cell and Environment,2002,25:239-250.
    105. Munns T.R., Mark.. Mechanisms of salinity tolerance. Annual Reviews Plant Biology,2008,59:652-681.
    106. Nakashima K., Ito Y., Yamaguchi-Shinozaki K.. Transcriptional regulatory networks in responseto abiotic stresses in Arabidopsis and grasses. Plant Physiology,2009,149:88-95.
    107. Nakashima K., Kiyosue T., Yamaguchi-Shinozaki K., Shinozaki K.. A nuclear gene encoding achloroplasttargeted Clp protease regulatory subunit homolog is not only induced by water stressbut also developmentally up-regulated during senescence in Arabidopsis thaliana. The PlantJournal,1997,12:851-861.
    108. Nakashima K., Takasaki H., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K.. NAC transcriptionfactors in plant abiotic stress responses. Biochimica et Biophysica Acta,2012,1819:97-103.
    109. Nakashima K., Tran L.S., Van Nguyen D., Fujita M., Maruyama K., Todaka D., Ito Y., HayashiN., Shinozaki K., Yamaguchi-Shinozaki K.. Functional analysis of a NAC-type transcriptionfactor OsNAC6involved in abiotic and biotic stress-responsive gene expression in rice. ThePlant Journal,2007,51:617-630.
    110. Nakashima K., Yamaguchi-Shinozaki K.. Regulons involved in osmotic stress-responsive andcold stress-responsive gene expression in plants. Physiologia Plantarum,2006,126:62-71.
    111. Naqvi A.R., Haq Q.M., Mukherjee S.K.. MicroRNA profiling of Tomato leaf curl New Delhivirus (TolCNDV) infected tomato leaves indicates that deregulation of mir159/319and mir172might be linked with leaf curl disease. Virology Journal,2010,7(1):281.
    112. Nuruzzaman M., Manimekalai R., Sharoni A.M., Satoh K., Kondoh H., Ooka H., Kikuchi S..Genome-wide analysis of NAC transcription factor family in rice. Gene,2010,465(1):30-44.
    113. Nuruzzaman M., Sharoni A.M., Satoh K., Moumeni A., Venuprasad R., Serraj R., Kumar A.,Leung H., Attia K., Kikuchi S.. Comprehensive gene expression analysis of the NAC gene familyunder normal growth conditions, hormone treatment, and drought stress conditions in rice usingnear-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64.Molecular General Genetics,2012,287:389-410.
    114. Ohnishi T., Sugahara S., Yamada T., Kikuchi K., Yoshiba Y., Hirano H.Y., Tsutsumi N.. OsNAC6,a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Systems,2005,80:135-139.
    115. Olsen A.N., Ernst H.A., Leggio L.L., Skriver K.. NAC transcription factors: structurally distinct,functionally diverse. Trends in Plant Science,2005,10:80-87.
    116. Ooka H., Satoh K., Doi K., Nagata T., Otomo Y., Murakami K., Matsubara K., Osato N., KawaiJ., Carninci P., Hayashizaki Y., Suzuki K., Kojima K., Takahara Y., Yamamoto K., Kikuchi K..Comprehensive analysis of NAC family genes in oryza sativa and Arabidopsis thaliana. DNAResearch,2003,10:239-247.
    117. Park J., Kim Y.S., Kim S.G., Jung J.H., Woo J.C., Park C.M.. Integration of auxin and salt signalsby the NAC transcription factor NTM2during seed germination in Arabidopsis. Plant Physiology,2011,156:537-549.
    118. Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G.,Hellsten U., Mitros T., Poliakov A., Schmutz J., Spannagl M., Tang H., Wang X.Y., Wicker T.,Bharti A.K., Chapman J., Feltus F.A.,,Gowik U., Peterson D.G.. The Sorghum bicolor genomeand the diversification of grasses. Nature,2009,457(7229):551-556.
    119. Peng H., Cheng H.Y., Chen C., Yu X.W., Yang J.N., Gao W.R. Shi Q.H., Zhang H., Li J.G., Ma H..A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved indrought stress response and various developmental processes. Journal of Plant Physiology,2009,166:1934-1945.
    120. Peng Y, Zhang J, Cao G, Xie Y, Liu X, Lu M, Wang G. Overexpression of a PLDa1gene fromSetaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its droughttolerance. Plant Cell Reports,2010,29:793-802.
    121. Petroni K., Falasca G., Calvenzani V., Allegra D., Stolfi C., Fabrizi L., Tonelli C.. The AtMYB11gene from Arabidopsis is expressed in meristematic cells and modulates growth in planta andorganogenesis in vitro. Journal of Experimental Botany,2008,59(6):1201-1213.
    122. Plieth C., Hansen U.P., Knight H., Knight M.R.. Temperature sensing by plants: the primarycharacteristics of signal perception and calcium response. The Plant Journal,1999,18(5):491-497.
    123. Puranik S., Bahadur R.P., Srivastava P.S., Prasad M.. Molecular cloning and characterization of amembrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.].Molecular Biotechnology,2011,49(2):138-150.
    124. Puranik S., Sahu P.P., Srivastava P.S., Prasad M.. NAC proteins: regulation and role in stresstolerance. Trends in Plant Science,2012,17:369-381.
    125. Qin F, Shinozaki K., Yamaguchi-Shinozaki K.. Achievements and challenges in understandingplant abiotic stress responses and tolerance. Plant Cell Physiology,2011,52:1569-1582.
    126. Qin F., Kakimoto M., Sakuma Y., Maruyama K., Osakabe Y., Tran L.S., Shinozaki K.,Yamaguchi-Shinozaki K.. Regulation and functional analysis of ZmDREB2A in response todrought and heat stresses in Zea mays L. The Plant Journal,2007,50:54-69.
    127. Raffaele S., Rivas S., Roby D.. An essential role for salicylic acid in AtMYB30-mediated controlof the hypersensitive cell death program in Arabidopsis. FEBS Letters,2006,580:3498-3504.
    128. Ram′rez V., Agorio A., Coego A., Garc′a-Andrade J., Herna′ndez MJ., Balaguer B., OuwerkerkP.B.F., Zarra I., Vera P.. MYB46modulates disease susceptibility to Botrytis cinerea inArabidopsis. Plant Physiology,2011,155:1920-1935.
    129. Raschke K.. Stomatal responses to pressure changes and interruptions in the water supply ofdetached leaves of Zea mays L. Plant Physiology,1970,45:415-423.
    130. Rashid M., Guangyuan H., Guangxiao Y., Gussain J., Xu Y.. AP2/ERF transcription factor in rice:Genome-wide canvas and syntenic relationships between monocots and eudicots. EvolutionaryBioinformatics,2012,8:321-355.
    131. Raskin I.. Role of salicylic acid in plants. Plant Physiology,1992,43:439-463.
    132. Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C.Z., Keddie J., Pineda A.O., Ratcliffe O.J.,Samaha R.R., Creelman R., Pilgrim M., Broun P., Zhang J.Z., Ghandehari D., Sherman B.K., YuG.L.. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.Science,2000,290:2105-2109.
    133. Rushton P.J., Bokowiec M.T., Han S., Zhang H., Brannock J.F., Chen X., Laudeman T.W., TimkoM.P.. Tobacco transcription factors: novel insights into transcriptional regulation in theSolanaceae. Plant Physiology,2008,147(1):280-295.
    134. Rushton P.J., Macdonald H., Huttly A.K., Lazarus C.M., Hooley R.. Members of a new family ofDNA-binding proteins bind to a conserved cis-element in the promoters of α-Amy2genes. PlantMolecular Biology,1995,29(4):691-702.
    135. Saitou N., Nei M.. The neighbor-joining method: a new method for reconstructing phylogenetictrees. Molecular Biology Evolution,1987,4:406–425.
    136. Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K., Yamaguchi-Shinozaki K.. Dualfunction of an Arabidopsis transcription factor DREB2A in water-stress-responsive andheat-stress-responsive gene expression. Proceedings of the National Academy of Sciences,2006,103:18822-18827.
    137. Seger R., Krebs E.G.. The MAPK signaling cascade. The FASEB journal,1995,9(9):726-735.
    138. Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y., Kamiya A., Nakajima M., Enju A.,Sakurai T., Satou M., Akiyama K., Taji T., Yamaguchi-Shinozaki K., Carninci P., Kawai J.,Hayashizaki Y., Shinozaki K.. Monitoring the expression profiles of7000Arabidopsis genesunder drought, cold and high-salinity stresses using a full-length cDNA microarray. The PlantJournal,2002,31(3):279-292.
    139. Selth L.A., Dogra S.C., Rasheed M.S., Healy H., Randles J.W., Rezaian M.A.. A NAC domainprotein interacts with tomato leaf curl virus replication accessory protein and enhances viralreplication. The Plant Cell,2005,17(1):311-325.
    140. Seo P.J., Kim M.J., Park J.Y., Kim S.Y., Jeon J., Lee Y.H., Kim J., Park C.M.. Cold activation of aplasma membrane-tethered NAC transcription factor induces a pathogen resistance response inArabidopsis. The Plant Journal,2010,61:661-671.
    141. Seo P.J., Kim S.G., Park C.M.. Membrane-bound transcription factors in plants. Trends in PlantScience,2008,13(10):550-556.
    142. Seo P.J., Park C.M.. MYB96-mediated abscisic acid signals induce pathogen resistance responseby promoting salicylic acid biosynthesis in Arabidopsis. New Phytologist,2010,186(2):471-483.
    143. Seo P.J., Park C.M.. Signaling linkage between environmental stress resistance and leafsenescence in Arabidopsis. Plant Signal Behavior,2011,6(10):1564-1566.
    144. Seo P.J., Xiang F, Qiao M, Park J.Y., Lee Y.N., Kim S.G., Lee Y.H., Park W.J., Park X.M.. TheMYB96transcription factor mediates abscisic acid signaling during drought stress response inArabidopsis. Plant Physiology,2009,151:275-289.
    145. Shekhawat U.K.S., Ganapathi, T.R., Srinivas L.. Cloning and characterization of a novelstress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. KaribaleMonthan (ABB group) using transformed banana cells. Molecular Biology Reports,2011,38(6):4023-4035.
    146. Shen H., Yin Y., Chen F., Xu Y., Dixon R.A.. A bioinformatic analysis of NAC genes for plantcell wall development in relation to lignocellulosic bioenergy production. BioEnergy Research,2009,2(4):217-232.
    147. Shin B., Choi G., Yi H., Yang S., Cho I., Kim J., Choi G.. AtMYB21, a gene encoding aflower-specific transcription factor, is regulated by COP1. The Plant Journal,2002,30(1):23-32.
    148. Shinozaki K., Yamaguchi-Shinozaki K.. Gene networks involved in drought stress response andtolerance. Journal of Experimental Botany,2007,58:221-227.
    149. Song S.Y., Chen Y., Chen J., Dai X.Y., Zhang W.H.. Physiological mechanisms underlyingOsNAC5-dependent tolerance of rice plants to abiotic stress. Planta,2011,234:331-345.
    150. Souer E., van Houwelingen A., Kloos D., Mol J., Koes R.. The no apical meristem gene ofpetunia is required for pattern formation in embryos and flowers and is expressed at meristemand primordia boundaries. Cell,1996,85:159–170.
    151. Sperotto R.A., Ricachenevsky F.K., Duarte G.L., BoV T., Lopes K.L., Sperb E.R., Grusak M.A.,Fett J.P.. Identification of up-regulated genes in fag leaves during rice grain filling andcharacterization of OsNAC5, a new ABA-dependent transcription factor. Planta,2009,230:985-1002.
    152. Stracke R., Werber M., Weisshaar B.. The R2R3-MYB gene family in Arabidopsis thaliana.Current Opinion in Plant Biotechnology,2001,4:447-456.
    153. Takasaki H., Maruyama K., Kidokoro S., Ito Y., Fujita Y., Shinozaki K., Yamaguchi-Shinozaki K.,Nakashima K.. The abiotic stress-responsive NAC-type transcription factor OsNAC5regulatesstress-inducible genes and stress tolerance in rice. Molecular General Genetics,2010,284:173-183.
    154. Tamura K., Dudley J., Nei M., Kumar S.. MEGA4: molecular evolutionary genetics analysis(MEGA) software version4.0. Molecular Biology Evolution,2007,24:1596-1599.
    155. Tang Y.M., Liu M.Y., Gao S.Q., Zhang Z., Zhao X., Zhao C.P., Zhang F.T.. Molecularcharacterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers droughttolerance in tobacco. Physiologia Plantarum,2012,144:210-224.
    156. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. The CLUSTALXwindows interface: flexible strategies for multiple sequence alignment aided by quality analysistools. Nucleic Acids Research,1997,25:4876-4882.
    157. Todaka D., Nakashima K., Shinozaki K., Yamaguchi-Shinozaki K.. Toward understandingtranscriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice,2012,5(1):1-9.
    158. Tran L.S., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y., Maruyama K., Fujita M., Seki M.,Shinozaki K., Yamaguchi-Shinozaki K.. Isolation and functional analysis of Arabidopsisstress-inducible NAC transcription factors that bind to a drought-responsive cis-element in theearly responsive to dehydration stress1promotor. The Plant Cell,2004,16:2481-2498.
    159. Tran L.S.P., Nakashima K., Sakuma Y., Osakabe Y., Qin F., Simpson S.D., Maruyama K., FujitaY., Shinozaki K., Yamaguchi-Shinozaki K.. Co-expression of the stress-inducible zinc fingerhomeodomain ZFHD1and NAC transcription factors enhances expression of the ERD1gene inArabidopsis. The Plant Journal,2006,49:46-63.
    160. Tran L.S.P., Nishiyama R., Yamaguchi-Shinozaki K., Shinozaki K.. Potential utilization of NACtranscription factors to enhance abiotic stress tolerance in plants by biotechnological approach.GM Crops,2010,1:32-39.
    161. Umezawa T., Fujita M., Fujita Y., Yamaguchi-Shinozaki K., Shinozaki K.. Engineering droughttolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion inBiotechnology,2006,17(2):113-122.
    162. Umezawa T., Nakashima K., Miyakawa T., Kuromori T., Tanokura M., Shinozaki K.,Yamaguchi-Shinozaki K.. Molecular basis of the core regulatory network in ABA responses:sensing, signaling and transport. Plant Cell Physiology,2010,51:1821-1839.
    163. Van der Ent S., Verhagen B. W., Van Doorn R., Bakker D., Verlaan M. G., Pel M. J., Joosten R.G.,Proveniers M.C., Van Loon L.C., Ton J., Pieterse, C.M.. MYB72is required in early signalingsteps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiology,2008,146(3):1293-1304.
    164. Verslues P.E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J.K.. Methods and concepts inquantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.The Plant Journal,2006,45(4):523-539.
    165. Verza N.C., Figueira T.R.S., Sousa S.M., Arruda P.. Transcription factor profiling identifies analeurone-preferred NAC family member involved in maize seed development. Annals of AppliedBiology,2010,158:115-129.
    166. Wan L., Zhang J., Zhang H., Zhang Z., Quan R., Zhou S., Huang R.. Transcriptional activation ofOsDERF1in OsERF3and OsAP2-39negatively modulates ethylene synthesis and droughttolerance in rice. Plos one,2011,6(9): e25216.
    167. Wang W.X., Vinocur B., Altman A.. Plant responses to drought, salinity and extremetemperatures: towards genetic engineering for stress tolerance. Planta,2003,218:1-14.
    168. Wang Z.Y., Dane F.. NAC (NAM/ATAF/CUC) transcription factors in different stresses and theirsignaling pathway. Acta Physiologiae Plantarum,2013,35:1397-1408.
    169. Wu G., Zhang C., Chu L.Y., Shao H.B.. Responses of higher plants to abiotic stresses andagricultural sustainable development. Journal of Plant Interactions,2007,2:135-147.
    170. Wu L., Zhang Z., Zhang H., Wang X.C., Huang R.. Transcriptional modulation of ethyleneresponse factor protein JERF3in the oxidative stress response enhances tolerance of tobaccoseedlings to salt, drought, and freezing. Plant Physiology,2008,148(4):1953-1963.
    171. Xia N., Zhang G., Sun Y.F., Zhu L., Xu L.S., Chen X.M., Liu B., Yu Y.T., Wang X.J., Huang L.L.,Kang Z.S.. TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rustpathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology,2010,74:394-402.
    172. Xie Q., Frugis G., Colgan D., Chua N.H.. Arabidopsis NAC1transduces auxin signaldownstream of TIR1to promote lateral root development. Genes and Development,2000,14:3024-3036.
    173. Xiong L., Schumaker K.S., Zhu J.K.. Cell signaling during cold, drought, and salt stress. ThePlant Cell,2002,14:165-183.
    174. Xu Z.S., Chen M., Li L.C., Ma Y.Z.. Functions and application of the AP2/ERF transcriptionfactor family in crop improvement. Journal of Integrative Plant Biology,2011,53:570-585.
    175. Xue G.P., Way H.M., Richardson T., Drenth J., Joyce P.A., McIntyre C.L.. Overexpression ofTaNAC69leads to enhanced transcript levels of stress up-regulated genes and dehydrationtolerance in bread wheat. Molecular Plant,2011,4:697-712.
    176. Yamaguchi-Shinozaki K, Shinozaki K.. a Nove1cis-Acting element in an Arabidopsis gene isinvolved in responsiveness to drought, low temperature, or high-salt stress. The Plant Cell,1994,6:251-264.
    177. Yamaguchi-Shinozaki K., Shinozaki K.. Organization of cis-acting regulatory elements inosmotic-and cold-stressresponsive promoters. Trends in Plant Science,2005,10:88-94.
    178. Yamaguchi-Shinozaki K., Shinozaki K.. Transcriptional regulatory networks in cellular responsesand tolerance to dehydration and cold stresses. Annual Reviews Plant Biology,2006,57:781-803.
    179. Yamasaki K., Kigawa T., Seki M., Shinozaki K., Yokoyama S.. DNA-binding domains ofplant-specific transcription factors: structure, function, and evolution. Trends in Plant Science,2012, doi:10.1016/j.tplants.2012.09.001.
    180. Yang O., Popova O.V., Süthoff U., Lüking I., Dietz K.J., Golldack D..The Arabidopsis basicleucine zipper transcription factor AtbZIP24regulates complex transcriptional networks involvedin abiotic stress resistance. Gene,2009,436:45-55.
    181. Yang S.D., Seo P.J., Yoon H.K., Park C.M.. The Arabidopsis NAC transcription factor VNI2integrates abscisic acid signals into leaf senescence via the COR/RD genes. The Plant Cell,2011,23(6):2155-2168.
    182. Yang X.Y., Li J.G., Pei M., Gu H., Chen Z.L., Qu L.J.. Over-expression of a flower-specifictranscription factor gene AtMYB24causes aberrant anther development. Plant Cell Reports,2007,26(2),219-228.
    183. Ying S., Zhang D.F., Fu J., Shi Y.S., Song Y.C., Wang T.Y., Li Y.. Cloning and characterization ofa maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenicArabidopsis. Planta,2011,235:253-266.
    184. Yoon H.K., Kim S.G., Kim S.Y., Park C.M.. Regulation of leaf senescence by NTL9-mediatedosmotic stress signaling in Arabidopsis. Molecules and Cells,2008,25:438-445.
    185. Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K.,Yamaguchi-Shinozaki K.. AREB1, AREB2, and ABF3are master transcription factors thatcooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance andrequire ABA for full activation. The Plant Journal,2010,61:672–685.
    186. Zhang G., Chen M., Li L., Xu Z., Chen X., Guo J., Ma Y.. Overexpression of the soybeanGmERF3gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought,and diseases in transgenic tobacco. Journal of Experimental Botany,2009,60:3781-3796.
    187. Zhang H., Jin J., Tang L., Zhao Y., Gu X., Luo J.. PlantTFDB2.0: update and improvement of thecomprehensive plant transcription factor database. Nucleic Acids Res,2011,39: D1114-1117.
    188. Zhao T., Liang D., Wang P., Liu J., Ma F.. Genome-wide analysis and expression profiling of theDREB transcription factor gene family in Malus under abiotic stress. Molecular GeneralGenetics,2012,287:423-436.
    189. Zheng X., Chen B., Lu G., Han B.. Overexpression of a NAC transcription factor enhances ricedrought and salt tolerance. Biochemical and Biophysical Research,2009,379:985-989.
    190. Zhong R., Lee C., Ye Z.H.. Global analysis of direct targets of secondary wall NAC masterswitches in Arabidopsis. Molecular Plant,2010,3:1087-1103.
    191. Zhu J.K.. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6:441-445.
    192. Zimmermann R., Werr W.. Pattern formation in the monocot embryo as revealed by NAM andCUC3orthologues from Zea mays L. Plant Molecular Biology,2005,58:669-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700