大豆转录因子GmNAC2和GmNAC5功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NAC转录因子是植物中家族成员较多的转录因子之一,它的表达受发育时期和多种环境因素的诱导,并在植物生理、发育等过程中起到广泛的调控作用。大豆的NAC转录因子研究在近5年才开始发展,因而对其的调控机制还不是很明确。本文研究探讨了两个大豆转录因子GmNAC2和GmNAC5的功能,发现GmNAC2转录因子参与逆境调控,GmNAC5转录因子在大豆发育中参与调控,为大豆种子产量和品质的遗传改良提供理论依据。
     GmNAC2属于NAC转录因子ATAF亚家族。ATAF亚家族包括许多参与生物胁迫或非生物胁迫应答过程的蛋白,例如ATAF1, ATAF2和OsNAC6蛋白等。组织表达分析显示,GmNAC2基因在正在发育的种子中(开花后40天)表达量最高,预示着GmNAC2转录因子可能参与种子的发育过程。GmNAC2基因在根中也有较高的表达量。同时逆境胁迫发现GmNAC2受JA、机械损伤、高盐、干旱胁迫和冷冻处理等非生物胁迫的诱导表达,这与GmNAC2在根中较高水平的组织表达有一定的关联。GmNAC2基因在100μMABA处理下表达量的变化不明显,这可能说明在GmNAC2在非生物逆境胁迫下的诱导表达并不依赖于ABA。
     为分析GmNAC2转录因子在非生物逆境胁迫下的调控作用,我们将GmNAC2基因转化烟草和大豆毛状根。分析发现,GmNAC2基因过量表达烟草对干旱、高盐和冷害胁迫较敏感,表现出幼苗矮小,根长较短等现象,同时逆境下转基因烟草的MDA含量比野生型烟草高,说明转基因烟草的膜脂过氧化反应和活性氧毒害作用较强烈。GmNAC2基因过量表达的转基因烟草叶片进行NBT和DAB组织染色,也发现逆境下超氧阴离子自由基和过氧化氢增多。对转基因大豆毛状根进行干旱、高盐和冷害胁迫处理,发现过量表达GmNAC2基因导致大豆毛状根MDA含量升高,SOD酶活和APX酶活下降,而沉默GmNAC2基因导致大豆毛状根MDA含量降低,SOD酶活和APX酶活上升。以上这些现象表明GmNAC2转录因子使逆境条件下的转基因烟草和大豆毛状根维持活性氧产生与清除动态平衡的能力明显下降,造成较大的氧化伤害。
     为进一步分析GmNAC2转录因子调控ROS平衡体系的机制,对正常条件下生长的GmNAC2基因过量表达转基因烟草叶片进行转录本分析,发现一些抗氧化相关的基因(涉及抗氧化酶类和非酶促的抗氧化物质)都发生下调现象,例如编码SOD酶的CSD2,编码硫氧还原蛋白的ACHT5,催化AsA产生的MIOX1和MIOX2等。结合上述GmNAC2转录因子使逆境条件下的转基因烟草和大豆毛状根氧化伤害增加这些现象,可以推断GmNAC2转录因子负调控与活性氧清除途径相关的一些基因,导致逆境条件下GmNAC2基因过量表达转基因植株活性氧增多,氧化伤害加剧。
     GmNAC5属于NAM亚家族,目前已经报到的这个家族的成员主要维持和调节顶端分生组织的正常发育过程。组织表达分析表明,GmNAC5基因在正在发育的种子中(开花后40天)表达量最高,表明GmNAC5基因可能与种子的发育过程有关;GmNAC5基因在根中的表达量也较高。分析GmNAC5基因在非生物胁迫下的表达,发现GmNAC5受机械损伤、高盐和冷害诱导,预示GmNAC5转录因子可能也参与了胁迫代谢途径。同时GmNAC5基因在100μM ABA处理下表达量的变化不明显,这可能说明GmNAC5在非生物逆境胁迫下的诱导表达并不依赖于ABA。在研究中发现GmNAC5转基因烟草叶片形态发生改变,过量表达GmNAC5基因导致烟草叶片变狭长。同时通过农杆菌介导的大豆子叶节转化法,获得了GmNAC5基因过量表达转基因大豆,qPCR验证,GmNAC5基因在转基因大豆叶片中表达量显著提高(最高10倍左右的表达量),观察T1代转基因大豆植株株型时,发现有部分转基因大豆侧枝明显增多,株型发生了改变。
The NAC (NAM, ATAF1,2, CUC2) family proteins are one of the largest plant-specific families of transcription factors which comprise several sub-families, such as ATAF, NAP and NAM. NAC (NAM, ATAF1,2, and CUC2) proteins have regulatory activity, transcription regulation and resistance to stress in plant development. NAC genes may be induced by developmental events or multiple environmental factors. The research of NAC transcription factors of soybean (Glycine max (L.) Merr.) has developed only5years, so the regulation mechanism of most NAC proteins in soybean is not clear. Here we report functions of GmNAC2and GmNAC5to serve theory basis for genetic improvement of soybean quality.
     GmNAC2(Glycine max NAC like gene2) is the first ATAF-like NAC identified transcription factor in soybean. The ATAF genes are involved in response to a variety of abiotic stresses, such as drought, cold and salinity. The soybean organ expression patterns of the gene were examined, and GmNAC2was highly expressed in the roots and immature embryos, especially strongly in immature embryo of40days after flowering. We found GmNAC2was induced by JA, mechanical wounding, high salinity, drought, and cold treatments, especially it was strongly affected by drought stress, but was not induced by ABA. The result suggests that up-regulation of GmNAC2by drought, salinity and cold may be not dependent on ABA.
     To analyze regulatory effect of GmNAC2gene under abiotic stresses, the transgenic tobacco and hairy root of GmNAC2gene were used for further study. We found GmNAC2overexpression tobacco lines were hypersensitive to drought, high salinity, and cold stress. MDA content of transgenic tobacco was higher than CK under abiotic stresses while O2and H2O2(ROS) contents of transgenic tobacco were also higher than CK after stress treatments. GmNAC2overexpression hairy roots reduces SOD activities and APX activities under drought, salt and cold stress, and GmNAC2silencing hairy roots enhances SOD activities and APX activities under drought stress, salt stress and cold stress conditions. The results demonstrate the great potential of this gene to reduce the ROS-scavenging ability and stress tolerance of crops.
     To further elucidate the mechanism of GmNAC2-mediated tolerance, we performed transcriptome analyses comparing GmNAC2overexpression tobacco with wild type tobacco leaves under normal conditions. We identified interesting down-regulated genes such as related to ROS-scavenging in GmNAC2overexpression tobacco. The down-regulated genes related to ROS-scavenging include genes coding thioredoxin, SOD enzyme, peroxiredoxin proteins. Collectively, GmNAC2may function as a negative regulator in drought, high salinity, and cold stress signaling pathways through modulation of ROS-scavenging genes expression.
     GmNAC5(Glycine max NAC like gene5) is a member of NAM subfamily belonging to NAC transcription factor in soybean. To date, the documents about NAM transcription factors showed that NAM subfamily members often maintained SAM development. The soybean organ expression patterns of the gene were examined, and GmNAC5gene was highly expressed in the roots and immature embryos, especially strongly in immature embryo of40days after flowering. We found GmNAC5was induced by mechanical wounding, high salinity and cold treatments, but was not induced by ABA. The results suggest GmNAC5may have regulatory effect in abiotic stresses response. GmNAC5overexpression transgenic tobacco plants have GmNAC5gene expression tested by qPCR. Analysis the leaves growth of transgenic plants and CK we found leaves of GmNAC5overexpression tobacco were narrower than CK tobacco. We first got GmNAC5overexpression transgenic soybean plants with about10times GmNAC5overexpression in leaves. Analyze the plant type of transgenic soybean, we found some T1generation plants had more lateral shoots.
引文
Aglika E.2005. Generation and scavenging of reactive oxygen species in chloroplasts:a submolecular approach. Agriculture, Ecosystems & amp; Environment 106,119-133.
    Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M.1997. Genes Involved in Organ Separation in Arabidopsis:An Analysis of the cup-shaped cotyledon Mutant. The Plant Cell Online 9,841-857.
    Allen RD.1995. Overexpression of chloroplastic Cu/Zn superoxide dismutase in plants. Methods Mol Biol 44,309-323.
    Beyer WF, Jr., Fridovich I.1987. Assaying for superoxide dismutase activity:some large consequences of minor changes in conditions. Anal Biochem 161,559-566.
    Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P.2008. A conserved molecular framework for compound leaf development. Science 322, 1835-1839.
    Breton G, Danyluk J, Charron JB, Sarhan F.2003. Expression profiling and bioinformatic analyses of a novel stress-regulated multisparming transmembrane protein family from cereals and Arabidopsis. Plant Physiol 132,64-74.
    Cain P, Hall M, Schroder WP, Kieselbach T, Robinson C.2009. A novel extended family of stromal thioredoxins. Plant Mol Biol 70,273-281.
    Chee PP, Fober KA, Slightom JL.1989. Transformation of Soybean (Glycine max) by Infecting Germinating Seeds with Agrobacterium tumefaciens. Plant Physiol 91,1212-1218.
    Chen C, Chen T, Lo K, Chiu C.2004. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Science 166,103-111.
    Christianson JA, Dennis ES, Llewellyn DJ, Wilson IW.2010. ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav 5,428-432.
    Christianson ML, Warnick DA, Carlson PS.1983. A morphogenetically competent soybean suspension culture. Science 222,632-634.
    Christou P, McCabe DE, Swain WF.1988. Stable Transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol 87,671-674.
    Christou P, Murphy JE, Swain WF.1987. Stable transformation of soybean by electroporation and root formation from transformed callus. Proc Natl Acad Sci USA84,3962-3966.
    Dayer R, Fischer BB, Eggen RI, Lemaire SD.2008. The peroxiredoxin and glutathione peroxidase families in Chlamydomonas reinhardtii. Genetics 179,41-57.
    de Azeredo-Oliveira MT, Mello ML.1998. Peroxidase activity in Malpighian tubules of Triatoma infestans Klug. Cytobios 93,83-92.
    del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB.2003. Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55,71-81.
    Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R.2005. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J A3,745-757.
    Dhindsa R, Matowe W.1981. Drought tolerance in two mosses correlated with enzymatic defence against lipid peroxidation. Journal of experimental botany Feb 32,79-91.
    Dhir SK, Dhir S, Savka MA, Belanger F, Kriz AL, Farrand SK, Widholm JM.1992. Regeneration of Transgenic Soybean (Glycine max) Plants from Electroporated Protoplasts. Plant Physiol 99, 81-88.
    Dinkins RD, Srinivasa Reddy MS, Meurer CA, Yan B, Trick H, Thibaud-Nissen F, Finer JJ, Parrott WA, Collins GB.2001. Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cell Dev Biol 37,742-747.
    Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS.2006. Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103,6518-6523.
    E1-Shemy HA, Khalafalla MM, Fujita K, Ishimoto M.2007. Improvement of protein quality in transgenic soybean plants. Biologia Plantarum 51,277-284.
    Endres S, Tenhaken R.2009. Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149,1042-1049.
    Ernst HA, Olsen AN, Skriver K, Larsen S, Lo Leggio L.2004. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. Embo Reports 5,297-303.
    Finer JJ.1988. Apical Proliferation of Embryogenic Tissue of Soybean [Glycine-Max (L) Merrill]. Plant Cell Reports 7,238-241.
    Foyer C, Lelandais M, Galap C, Kunert KJ.1991. Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions. Plant Physiol 97,863-872.
    Foyer CH, Pellny TK, Locato V, De Gara L.2009. Analysis of redox relationships in the plant cell cycle:determinations of ascorbate, glutathione and poly (ADPribose)polymerase (PARP) in plant cell cultures. Methods Mol Biol 476,193-209.
    Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M.2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12,393-404.
    Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS.2007. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143,707-719.
    Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK.2008. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 177,889-898.
    Guo Y, Gan S.2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46,601-612.
    Hamby-Mason RL, Mason PA, Schenker S, Henderson GI.1998. Histochemical method for localization of hydrogen peroxide and oxygen radicals in the intact neonatal brain. Methods Find Exp Clin Pharmacol 20,743-748.
    Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, MaB, Zhang JS, Chen SY.2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 44,903-916.
    He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY.2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44,903-916.
    Hibara K, Takada S, Tasaka M.2003. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J36,687-696.
    Hinchee MAW, Connorward DV, Newell CA, Mcdonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB.1988. Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Bio-Technology 6,915-921.
    Hong Z, Lakkineni K, Zhang Z, Verma D.2000. Removal of feedback inhibition of Delta 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122,1129-1136.
    Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ.2003. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131,317-325.
    Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK.2010. Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Plant Physiology 153,185-197.
    Kereszt A, Li D, Indrasumunar A, Nguyen CD, Nontachaiyapoom S, Kinkema M, Gresshoff PM. 2007. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2,948-952.
    Kiba A, Nishihara M, Tsukatani N, Nakatsuka T, Kato Y, Yamamura S.2005. A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant Cell Physiol 46,1007-1015.
    Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY 2000. Molecular analysis of the NAC gene family in rice. Molecular and General Genetics 262, 1047-1051.
    Kim KH, Alam I, Lee KW, Sharmin SA, Kwak SS, Lee SY, Lee BH.2010. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol Lett 32,571-576.
    Kim WS, Krishnan HB.2004. Expression of an 11 kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotechnol J2,199-210.
    Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T.2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev19,1855-1860.
    Lam Son Phan T, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT.2009. Molecular characterization of stress-inducibleGmNAC genes in soybean. Molecular Genetics and Genomics 281,6,647-664.
    Li Z, Meyer S, Essig JS, Liu Y, Schapaugh MA, Muthukrishnan S, Hainline BE, Trick HN.2005. High-level expression of maize y-zein protein in transgenic soybean(Glycine max). Mol Breeding 16,11-20.
    Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC.2007. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Molecular Biology 63,289-305.
    Malamy JE, Benfey PN.1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124,33-44.
    Maly FE, Nakamura M, Gauchat JF, Urwyler A, Walker C, Dahinden CA, Cross AR, Jones OT, de Weck AL.1989. Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines. J Immunol 142, 1260-1267.
    Manohar M, Shigaki T, Mei H, Park S, Marshall J, Aguilar J, Hirschi KD.2011. Characterization of Arabidopsis Ca2+/H+ Exchanger CAX3. Biochemistry.
    Marrocco K, Zhou Y, Bury E, Dieterle M, Funk M, Genschik P, Krenz M, Stolpe T, Kretsch T. 2006. Functional analysis of EID1, an F-box protein involved in phytochrome A-dependent light signal transduction. Plant J 45,423-438.
    Melzer S, Kampmann G, Chandler J, Apel K.1999. FPF1 modulates the competence to flowering in Arabidopsis. Plant J 18,395-405.
    Meng Q, Zhang C, Gai J, Yu D.2007. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). Journal of Plant Physiology 164,8,1002-1012.
    Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J.2001. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25,295-303.
    Mitra SK, Gantt JA, Ruby JF, Clouse SD, Goshe MB.2007. Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques. J Proteome Res 6,1933-1950.
    Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M.2007. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19,270-280.
    Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M.2005. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17,2993-3006.
    Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7,405-410.
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F.2004. Reactive oxygen gene network of plants. Trends Plant Sci 9,490-498.
    Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G.2005. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17,2255-2270.
    Moller IM.2001. PLANT MITOCHONDRIA AND OXIDATIVE STRESS:Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annu Rev Plant Physiol Plant Mol Biol 52,561-591.
    Mravec J, Petrasek J, Li N, Boeren S, Karlova R, Kitakura S, Parezova M, Naramoto S, Nodzynski T, Dhonukshe P, Bednarek SY, Zazimalova E, de Vries S, Friml J.2011. Cell Plate Restricted Association of DRP1A and PIN Proteins Is Required for Cell Polarity Establishment in Arabidopsis. Curr Biol 21,1055-1060.
    Nakashima K, Tran LSP, Nguyen VD, Fujita M, Maruyama K, Todaka D, Ito Y, Shinozaki K, Yamaguchi-Shinozaki K.2006. Molecular characterization of stress-inducible OsNAC6, a member of the NAC family in rice. Plant and Cell Physiology 47, S102-S102.
    Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K.2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant Journal 51,617-630.
    Nan XR, Wei ZM.1999. [Promotion of transformation frequency of soybean (Glycine max L.) protoplasts using poly-L-omithine]. Shi Yan Sheng WuXue Bao 32,409-413.
    Neuteboom LW, Veth-Tello LM, Clijdesdale OR, Hooykaas PJ, van der Zaal BJ.1999. A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res6,13-19.
    Nylander M, Svensson J, Palva ET, Welin BV.2001. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45,263-279.
    Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N.2005. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems 80,135-139.
    Olhoft PM, Donovan CM, Somers DA.2006. Soybean (Glycine max) transformation using mature cotyledonary node explants. Methods Mol Biol 343,385-396.
    Olhoft PM, Flagel LE, Donovan CM, Somers DA.2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216,723-735.
    Olhoft PM, Flagel LE, Somers DA.2004. T-DNA locus structure in a large population of soybean plants transformed using the Agrobacterium-mediated cotyledonary-node method. Plant Biotechnol J2,289-300.
    Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S.2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research 10,239-247.
    Owens LD, Smigocki AC.1988. Transformation of Soybean Cells Using Mixed Strains of Agrobacterium tumefaciens and Phenolic Compounds. Plant Physiol 88,570-573.
    Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun DJ, Lee KO.2009. Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150,552-561.
    Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB.2009. Complete inventory of soybean nac transcription factors:sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444,10-23.
    Rodriguez PL, Benning G, Grill E.1998. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421,185-190.
    Sablowski RW, Meyerowitz EM.1998. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92,93-103.
    Souer E, van Houwelingen A, Kloos D, Mol J, Koes R.1996. The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries. Cell 85,159-170.
    Sunkar R, Kapoor A, Zhu JK.2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18,2051-2065.
    Takada S, Hibara K, Ishida T, Tasaka M.2001. The CUP-SHAPED COTYLEDON 1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128,1127-1135.
    Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K.2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics 284, 173-183.
    Telfer A, Bishop SM, Phillips D, Barber J.1994. Isolated photosynthetic reaction center of photosystem Ⅱ as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. JBiol Chem 269,13244-13253.
    Tzfira T, Citovsky V.2000. From host recognition to T-DNA integration:the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol Plant Pathol 1,201-212.
    Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K.2006. CYP707A3, a major ABA 8'-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46,171-182.
    Wang G, Xu Y.2008. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant cell rep 27,1177-1184.
    Wang XE, Basnayake B, Zhang HJ, Li GJ, Li W, Virk N, Mengiste T, Song FM.2009. The Arabidopsis ATAF1, a NAC Transcription Factor, Is a Negative Regulator of Defense Responses Against Necrotrophic Fungal and Bacterial Pathogens. Molecular Plant-Microbe Interactions 22, 1227-1238.
    Xie Q, Frugis G, Colgan D, Chua NH.2000. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14,3024-3036.
    Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH.2002. SINAT5 promotes ubiquitin-related degradation of NAC 1 to attenuate auxin signals. Nature 419,167-170.
    Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD.2008. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227,659-669.
    Zhao J, Connorton JM, Guo Y, Li X, Shigaki T, Hirschi KD, Pittman JK.2009a. Functional studies of split Arabidopsis Ca2+/H+exchangers. JBiol Chem 284,34075-34083.
    Zhao J, Shigaki T, Mei H, Guo YQ, Cheng NH, Hirschi KD.2009b. Interaction between Arabidopsis Ca2+/H+exchangers CAX1 and CAX3. JBiol Chem 284,4605-4615.
    Zhong R, Richardson EA, Ye ZH.2007. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225, 1603-1611.
    Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY.2006. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580,1239-1250.
    Zimmermann R, Werr W.2005. Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L. Plant Molecular Biology 58,669-685.
    中华人民共和国国家标准.1994.饲料中含硫氨基酸测定方法.离子交换色谱法,Vol.GB/T15399-94.国家技术监督局:中华人民共和国国家标准,213-215.
    中华人民共和国国家标准.1997.氨基酸分析方法通则.Vol.JY/Y 019-1996.国家技术监督局:中华人民共和国国家标准.
    王永刚.2009.中国油脂油料供求、贸易、政策的现状与前景.粮食科技与经济 34,11-13.
    王恩慧.2010.中国大豆消费现状与展望.农业展望 6,33-36.
    石彦国.2010.调整产业结构确保大豆产业健康持续发展.中国食品学报10,1-7.
    吕品.2007.大豆胰蛋白酶抑制剂KSTI3基因的克隆及植物表达载体构建[D],长春:吉林农业大学.
    张明,常碧影.1994.大豆籽粒含硫氨基酸测定方法试验研究.大豆科学13,81-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700