面向宽带IPTV业务的IP over optical层叠组播网络技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电信运营商的三重播放业务架构中,IPTV被认为将成为下一个杀手级应用,在大量消耗互联网上可用带宽资源的同时推动未来网络的进一步发展。近年以来,在北美、欧洲以及亚太地区,许多运营商都宣布开始为用户提供IPTV业务。在IPTV系统中,组播技术因为能够优化网络的资源利用,对直播电视等典型业务提供良好的支持而起到关键的作用。在目前的网络中有三种最具代表性的组播方式:IP组播,应用层组播以及光组播。
     为了支持诸如IPTV等业务的可靠传输需要,国家高性能宽带信息示范网(3Tnet)采用了一种新的网络模型,IP over optical层叠组播网络模型。在层叠组播网络中,IP组播流通过光树在核心光网络中进行传输。相对于传统的IP组播,层叠组播网络能够提供严格的QoS保障以及具有良好的可扩展性。
     本文的主要内容是对IP over optical层叠组播网络中所遇到的一些技术问题进行研究。主要包括层叠组播网络的实现,静态业务模型下的多树组播流汇聚,动态用户行为下组播流汇聚问题的稳定性研究,网络拓扑未知条件下的组-树映射和层叠组播网络中的频道切换。
     本文的第一章是绪论,分析了IP over optical层叠组播网络技术的研究背景,概括了主要研究内容和方法。
     第二章主要集中于研究层叠组播网络中光组播的分布式控制问题。基于OIF UNI的基础上,我们对已有的信令协议作出扩展以支持点到多点的连接。同时,我们还研究了GMPLS框架下IETF为了支持组播连接做出的各种信令扩展。
     第三章研究了静态业务模型下的多树组播流汇聚。多树是指在IPTV系统中,一个频道可能同时被多个头端所提供,用户可以根据当前的网络状态选择不同的头端作为其收看频道的源节点。我们提出一个先分解后汇聚的启发式算法,将一个具有多头端的频道分解成多个具有单头端的新的组播会话。这样就把问题简化为单树组播流汇聚,进而获得优化的网络资源利用。
     第四章主要集中于动态用户行为下组播流汇聚问题的稳定性研究。对于IPTV等实时性要求很高的业务而言,任何光树的重构(包括光树路由的变化或汇聚的频道集合的变化)都可能导致大的频道切换时延甚至是业务中断,造成无法容忍的后果。因此,我们提出了组播流汇聚稳定性的概念以及数学定义。然后我们提出了一个两步的启发式算法来解决稳定性问题,同时获得尽量优化的网络资源利用。
     第五章中我们考虑的是拓扑未知网络条件下的组-树映射。以随机图网络模型为基础,我们通过数学推导得出网络带宽浪费阈值与组成员相似度之间的关系,进而使用组成员相似度作为判断条件进行组-树映射,解决了无法得知具体网络拓扑信息的问题。
     第六章讨论了层叠组播网络模型中传送IPTV等视频业务时的频道切换问题。首先,我们介绍基于传统IP组播的IPTV系统中所碰到的频道切换问题以及频道切换时延的构成。然后着重研究和分析了层叠组播网络中不同信令流程对频道切换时延造成的影响。最后,我们在实际网络中进行了实验,测量了不同信令流程所引入的网络时延,并参加了一次1040个并发用户的大规模测试来评估层叠组播网络对整体频道切换时延性能的影响。
IPTV is expected to be the next killer application in the telcos’triple-play service portfolio that will consume available bandwidth on the Internet and enable future network growth. Nowadays, many deployments have been announced by operators in the North American, European, and Asia/Pacific regions. In the IPTV system, multicasting will play a key role in the delivery of high-quality video services to optimize the utilization of network resources. There are three main types of multicast based on different layers of the network: IP, application layer and optical layer.
     China 3Tnet project employed a new IP over optical overlay multicast networks architecture for supporting IPTV service. The key idea of this architecture is that IP multicast flow is transferred in the core optical network through a light-tree. This overlay multicast architecture can achieve better scalability and QoS than traditional single layer IP multicasting.
     The dissertation focuses on some technique issues in overlay multicast networks. It mainly includes the implementation of overlay multicast networks, multi-tree multicast flow aggregation (MFA) under static traffic model, stability of MFA under the dynamical scenario, group-to-tree mapping within topology-unawared networks and the channel zapping in overlay multicast networks.
     The first chapter is an introductory and gives a brief overview on the research background of overlay multicast networks. Afterwards, this chapter also introduces the main content of this dissertation and technical problems to be addressed in this work.
     Chapter 2 covers the distributed control problem of optical multicast in overlay multicast networks. We extend the existing signaling protocol to support point-to-multipoint connections based on the OIF UNI specification. We also investigate the signaling extensions in GMPLS framework for supporting optical multicast.
     In chapter 3 we discuss multi-tree MFA under static traffic model. In the IPTV system, the same program may be redundantly provided by several head ends in the network. End users could choose different head end as its root according to current network condition, so called multi-tree. A heuristic algorithm is proposed to simply the multi-tree MFA problem through decomposing one channel with multiple head ends into several new requests which has single source. Thus, we can treat it as a normal MFA problem and try to minimize the total network resource usage.
     In chapter 4 we focus on the stability of MFA under the dynamical scenario. In the IPTV system, any light-trees reconfiguration, including both the combination of the aggregated programs and the routes of light-trees, may lead to degradation of quality of experience (QoE) for the end users, say, large latency of channel zapping or service interruption. We define and formulate the stable MFA problem. Afterwards, a two-stage heuristic algorithm is proposed to achieve better performance in terms of stability as well as network resource utilization.
     The group-to-tree mapping within topology-unawared networks is discussed in chapter 5. We formulate the problem on a random graph and get the relationship between the bandwidth overhead and the group members similarity. Therefore, we can use the group members similarity to do the group-to-tree mapping, which does not need any topology information.
     In chapter 6 we discuss the channel zapping problem in overlay multicast network for IPTV delivery. First, we introduce the channel zapping in contemporary IPTV system based on IP multicasting. After that, we demonstrate the network architecture and signaling procedure in overlay multicast network and discuss their influence on the channel zapping delay. Finally, we measure the network delay introduced by various signaling procedures on the testbed and present statistical results by 1040 concurrent users testing to evaluate the impact of overlay multicast network on the performance of the overall channel zapping time.
引文
[1]刘多, ITU-T IPTV标准研究最新进展, 2006
    [2] ITU-T FG IPTV, Overall definition and description of IPTV in the business role model, July 2006
    [3] A. Dan, D. Sitaram, and P. Shahabuddin,“Scheduling Policies for an On-Demand Video Server with Batching,”Proc. ACM Multimedia, ACM Press, 1994, pp. 15-23
    [4] C. Aggarwal, J. Wolf, and P. Yu,“On Optimal Batching Policies for Video-On-Demand Service,”Proc. IEEE Int’l Conf. Multimedia Computing and Systems (ICMCS99), IEEE Computer Soc. Press, 1999, pp. 226-231
    [5] A. Dan, D. Sitaram, and P. Shahabuddin,“Dynamic Batching Policies for an On-Demand Video Server,”ACM Multimedia Systems, 1996, vol. 4, no. 3, pp. 112-121
    [6] S. Sheu, K.A. Hua, and T.H. Hu,“Virtual Batching: A New Scheduling Technique for Video-On-Demand Servers,”Proc. 5th Int’l Conf. Database Systems for Advanced Applications (DASFAA 97), World Scientific, 1997, pp. 481-490
    [7] K.C. Almeroth and M.H. Ammar,“The Use of Multicast Delivery to Provide a Scalable and Interactive Video-On-Demand Service,”IEE J. Selected Areas in Comm., 1996, vol. 14, no. 6, pp. 1110-1122
    [8] K.A. Hua, Y. cai, and S. Sheu,“Patching: A Multicast Technique for True Video-On-Demand Services,”Proc. 6th ACM Int’l Multimedia Conf. (ACM Multimedia 98), ACM Press, Sept. 1998, pp. 192-200
    [9] L. Gao and D.F. Towsley,“Supplying Instantaneous Video-On-Demand Services Using Controlled Multicast,”Proc. IEEE Int’l Conf. Multimedia Computing and Systems (ICMCS 99), IEEE Computer Soc. Press, 1999, vol. 2, pp. 117-121
    [10] S. Sen et al.,“Optimal Patching Schemes for Efficient Multimedia Streaming,”Proc. 9th Int’l Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 99), ACM Press, 1999, pp. 265-277
    [11] R. Steinmetz and K. Nahrstedt, Multimedia: Computing, Communications, and Applications, Prentice Hall, 1995
    [12] B. Haskell, A. Netravali, and A. Puri,“Digital Video: An Introduction to Mpeg-2,”Springer, 1996
    [13] S. Vedanthan, S. Kim, D. Kataria,“Carrier-Grade Ethernet Challenges for IPTV Deployment”, IEEE Communications Magazine, Jul. 2006, vol. 44, issue 4, pp. 24-31
    [14] P.V. Mieghem, G. Hooghiemstra, and R. Hofstad,“On the efficiency of Multicast,”IEEE/ACM Trans. Networking, Dec. 2001, vol. 9, pp. 719-732
    [15] P. Sharma, E. Perry, and R. Malpani,“IP multicast operational network management: design, challenges and experiences,”IEEE Workshop on IP Operations and Management, 2002, pp. 126– 131
    [16] R. Perlman,“Models for IP multicast,”IEEE ICON 2004, vol. 2, pp. 678– 682
    [17] C. Diot, B.N. Levine, and et al.,“Deployment issues for the IP multicast service and architecture,”IEEE Network, Jan./Feb. 2000, vol.14, issue 1, pp. 78-88
    [18] D. Milic, M. Brogle, and T. Braun,“Video Broadcasting using Overlay Multicast, Seventh IEEE International Symposium on Multimedia,”Dec. 2005, pp. 515-522
    [19] Min Sik Kim, S.S. Lam, and Dong-Young Lee,“Optimal distribution tree for Internet streaming media,”23rd International Conference on Distributed Computing Systems 2003, pp.116 - 125
    [20] Baoxian Zhang and H.T. Mouftah, A destination-driven shortest path tree algorithm, IEEE ICC 2002, vol.4, pp. 2258-2262
    [21] S. Deering, D. Estrin, and et al.,“An architecture for wide-area multicast routing,”In Proceedings of the SIGCOMM, 1994
    [22] Nian-Feng Tzeng and P. Alla,“Guided shared trees for efficient multicast in large networks,”IEEE ICC 2003, vol. 1, pp.87-92
    [23] Su-Wei Tan, G. Waters, and et al.,“A multiple shared trees approach for application layer multicasting,”IEEE ICC 2004, vol. 3, pp.1456– 1460
    [24] C. Bolton and G. Lowe,“Analyses of the reverse path forwarding routing algorithm,”International Conference on Dependable Systems and Networks, July 2004, pp. 485– 494
    [25] K.C. Almeroth, A long-term analysis of growth and usage patterns in the Multicast Backbone (MBone), IEEE INFOCOM 2000, vol. 2, pp. 824– 833
    [26] J.D. Bansemer and M.Y. Eltoweissy,“On performance metrics for IP multicast routing,”I-SPAN 2000, pp. 282– 291
    [27] Liming Wei and D. Estrin,“Multicast routing in dense and sparse modes: simulation study of tradeoffs and dynamics,”IEEE ICC 1995, pp. 150– 157
    [28] S. Deering and D. Cheriton,“Multicast routing in datagram internetworks and extended LANs,”ACM Trans. Computer Systems, May 1990, pp. 85-111
    [29] P.G. Ranjitkar, I.M. Suliman, and et al.,“IP multicast implementation based on the multicast extensions to OSPF protocol,”IEEE International Conference on Personal Wireless Communications, 2000, pp. 484– 489
    [30] IETF, RFC2201,“Core Based Trees (CBT) Multicast Routing Architecture,”1997
    [31] L. Allen, C. Murray, and et al.,“GBS IP multicast tunneling,”MILCOM 2000, vol.2, pp. 699– 703
    [32] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang,“Enabling Conferencing Applications on the Internet Using an Overlay Multicast Architecture,”ACM SIGCOMM 2001
    [33] B. Zhang, S. Jamin and L. Zhang,“Host multicast: a framework for delivering multicast to end users,”INFOCOM 2002, vol. 3, pp. 1366-1375
    [34] S. Ratnasamy, et al.“Topologically-Aware overlay construction and server selection,”INFOCOM 2002, vol. 3, pp. 1190-1199
    [35] Y. Sherlia, Shi Jonathan, and S. Turner,“Routing in Overlay Multicast Networks,”INFOCOM 2002, vol. 3, pp. 1200-1208
    [36] K. Cheuk, S.Chan, and J.Y. Lee,“Island multicast: the combination of IP multicast with application-level multicast,”IEEE ICC 2004, vol. 3, pp.1441-1445
    [37] Yang-hua Chu, S.G. Rao, and et al.,“A case for end system multicast,”IEEE JSAC 2002, vol. 20, pp. 1456-1471
    [38] N.M. Malouch, Zhen Liu, and et al.,“A graph theoretic approach to bounding delay in proxy-assisted end-system multicast,”IEEE 10th International Workshop on Quality of Service, 2002, pp. 106– 115
    [39] http://www.isi.edu/div7/yoid/
    [40] Y. Chawathe, Scattercast: An Architecture for Internet Broadcast Distribution as an Infrastructure Service: Ph.D. thesis, Department of EECS, UC Berkeley, Dec. 2000
    [41] S. McCanne,“Scalable multimedia communication using IP Multicast and lightweight sessions,”IEEE Internet Computing, 1999, pp. 33-45, vol.3
    [42] Xijun Zhang, J. Wei, and Chunming Qiao,“On fundamental issues in IP over WDM multicast,”8th International Conference on Computer Communications and Networks 1999, pp. 84-90
    [43] L. H. Sahasrabuddhe and B. Mukherjee,“Light-trees: optical multicasting for improved performance in wavelength-routed networks,”IEEE Communication Magazine, Feb. 1999, vol. 37, pp. 67-73
    [44] G. N. Rouskas,“Optical layer multicast: Rationale, building blocks, and challenges,”IEEE Network, Jan./Feb. 2003, vol. 17, pp. 60–65
    [45] W. S. Hu and Q. J. Zeng,“Multicasting Optical Cross Connects Employing Splitter-and-Delivery Switch,”IEEE Photonics Technique Letter, July 1998, vol. 10, pp. 970–972
    [46] Z. Pan, H. J. Yang, J. Q. Yang, and et al.,“Advanced optical-label routing system supporting multicast, optical TTL, and multimedia applications,”Journal of Lightwave Technology, 2005, vol. 23 issue 10, pp. 3270-3281
    [47] F. K. Hwang, D. S. Richard, and P, Winter,“The Steiner Tree Problem,”Elsevier Science Publishers B. V., 1992
    [48] Ashraf M. Hamad and Ahmed E. Kamal,“Optical Power-Aware Design of All-Optical Multicasting in Wavelength Routed Networks,”2004, pp. 1796-1800
    [49] Y. Xin, G. Rouskas, and Harry G. Perros,“Multicast Routing under Optical Layer Constraints,”IEEE INFOCOM’04, 2004
    [50] R. Libeskind-Hadas, J. R. Hartline, K. Dresner, and et al.,“Multicast virtual topologies in WDM paths and rings with splitting loss,”Computer Communications and Networks, 2002, Proceedings Eleventh International Conference on, pp. 318-321
    [51] S. Gao, X. Jia, X. Hu, and et al.,“Wavelength Requirements and Routing for Multicast Connections in Lightpath and Light-tree Models of WDM Networks with Limited Drops,”Communications, IEE Proceedings, 2001, vol. 148, issue 6, pp. 363-367
    [52] X. Zhang, J. Wei, and C. Qiao,“Constrained Multicast Routing in WDM Networks with Sparse Light Splitting,”IEEE INFOCOM 2000, vol. 3, pp. 1781-1790
    [53] X. Zhang, J. Wei, and C. Qiao,“Constrained Multicast Routing in WDM Networks with Sparse Light Splitting,”Journal of Lightwave Technology, 2000, vol.18, no. 12, pp. 1917-1927
    [54] S. G. Yan, M. Ali, J. Deogun,“Route optimization of multicast session in sparse light-splitting optical networks,”GLOBECOM’01 IEEE, vol. 4, pp. 2134-2138
    [55] RFC4461,“Signaling requirements for point-to-multipoint traffic-engineered MPLS label switched paths (LSPs),”2006
    [56] RFC4875,“Extensions to Resource Reservation Protocol– Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs),”2007.
    [57] X. Wei, Y. Jin, G. Zhang, and et al.,“Demonstration of GMPLS-controlled dynamic point-to-multipoint trees in optical networks,”Optical Communication, 2005. ECOC 2005. 31st European Conference on, pp. 29–30
    [58] G. Zhang, F. Yin, R. Jing, and et al.,“Multicast extension to RSVP-TE for UNI2.0,”2005
    [59] B. Yener, Y. Offek, M. Yung,“Design and performance of convergence routing on multiple spanning trees,”Proceedings of 1994 IEEE Global Telecommunications Conference (GLOBECOM’94), vol. 1, pp. 169-175
    [60] M. Medard, S. G. Finn, R. A. Barry, and et al.,“Redundant trees for preplanned recovery in arbitrary vertex-redundant or edge- redundant graphs,”IEEE/ACM Transactions on Networking, 1999, vol. 7, issue 5, pp. 641-652
    [61] N. K, Singhal, L. H. Sahasrabuddhe, B. Mukhekjiee,“Provisioning of survivable multicast sessions against single link failures in optical WDM mesh networks,”Journal of Lightware Technology, 2003, vol. 21, issue 11, pp. 2587-2594
    [62] P. Leelarusmee, C. Boworntummarat, L. Wuttisittikulkij,“Design and analysis of five protection schemas for preplanned recovery in multicast WDM networks,”Proceedings of IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communication, Apr 26-27, Princeton, NJ, USA, New York, NY, USA, IEEE, 2004, pp. 167-170
    [63] C. Boworntummarat, L. Wuttisittikulkij, S. Segkhoonthod,“Light-tree based protection strategies for multicast traffic in transport WDM mesh networks with multi-fiber systems,”Proceedings of 2004 IEEE International Conference on Communications, vol. 3, pp. 1791-1795
    [64] W. Sun, Y. Jin, et al.,“Prototype and demonstration of IP multicasting over optical network with dynamic point-to-multipoint configuration,”IEEE/OSA OFC 2005, OWG3, 2005
    [65] Y. Zhu, Y. Jin, W. Sun, and et al.,“Multicast flow aggregation in IP over optical network,”IEEE Journal on Selected Areas in Communications, Jun. 2007, vol. 25, issue 5, pp. 1011-1021
    [66] A. Fei, J. Cui, M. Gerla, and et al.,“Aggregated multicast: an approach to reduce multicast state,”In the proceedings of Sixth Global Internet Symposium (GI), Nov. 2001
    [1] L. H. Sahasrabuddhe and B. Mukherjee,“Light-trees: optical multicasting for improved performance in wavelength-routed networks,”IEEE Communication Magazine, Feb. 1999, vol. 37, pp. 67-73
    [2] G. N. Rouskas,“Optical layer multicast: Rationale, building blocks, and challenges,”IEEE Network, Jan./Feb. 2003, vol. 17, pp. 60–65
    [3] W. Sun, Y. Jin, et al.,“Prototype and demonstration of IP multicasting over optical network with dynamic point-to-multipoint configuration,”IEEE/OSA OFC 2005, OWG3, 2005
    [4] OIF2000.125.7,“User Network Interface (UNI) 1.0 Signaling Specification”
    [5] OIF2002.024.5,“Assessment of UNI 2.0 Candidates”
    [6] Chinese 863 project 3TNET networking symposium, Apr. 2004, Shanghai
    [7] W. S. Hu and Q. J. Zeng,“Multicasting Optical Cross Connects Employing Splitter-and-Delivery Switch,”IEEE Photonics Technique Letter, July 1998, vol. 10, pp. 970–972
    [8] M. Kodialam, T. V. Lakshman, S. Sengupta,“Online multicast routing with bandwidth guarantees: a new approach using multicast network flow”, IEEE/ACM Transaction on Networking, 2003, vol. 11, no. 4, pp. 676-686
    [9] Internet Engineering Task Force,“Generalized Multi-Protocol Label Switching (GMPLS) Signaling Constaint-based Routed Label Distribution Protocol (CR-LDP) Extensions,”RFC3472, Jan. 2003
    [10] Internet Engineering Task Force,“Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource Reservation Protocol-Traffic Engineering Extensions,”RFC3473, Jan. 2003
    [11] Internet Engineering Task Force,“Signaling Requirements for Point-to-Multipoint Traffic-Engineering MPLS Label Switched Paths (LSPs),”RFC4461, Apr. 2006
    [12] Internet Engineering Task Force,“Extensions to Resource Reservation Protocol– Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs),”RFC4875, May 2007
    [13] Ethereal, http://www.ethereal.com
    [1] B. Haskell, A. Netravali, and A. Puri,“Digital Video: An Introduction to Mpeg-2,”Springer, 1996
    [2] Y. Zhu, Y. Jin, W. Sun, and et al.,“On Topology-Independent IP Group Aggregation in Multicast Capable Optical Networks,”In the proceedings of GLOBECOM 2005, Nov. 2005
    [3] Y. Zhu, Y. Jin, W. Sun, and et al.,“Multicast flow aggregation in IP over optical network,”IEEE Journal on Selected Areas in Communications, Jun. 2007, vol. 25, issue 5, pp. 1011-1021
    [4] A. Fei, J. Cui, M. Gerla, and et al.,“Aggregated multicast: an approach to reduce multicast state,”In the proceedings of Sixth Global Internet Symposium (GI), Nov. 2001
    [5] K. Zhu and B. Mukherjee,“A Review of Traffic Grooming in WDM Optical Networks: Architectures and Challenges,”SPIE Optical Networks Magazine, March/April 2003, vol. 4, pp. 55-64
    [6] N. Singhal and B. Mukherjee,“Architectures and Algorithms for Multicasting in Optical WDM Mesh Networks using Opaque and Transparent Optical Cross-connects,”In the proceedings of OFC 2001, TuG8, March 2001
    [7] A. Billah, B. Wang, and Abdul A. S. Awwal,“Multicast Traffic Grooming in WDM Optical Mesh Networks,”In the proceedings of GLOBECOM 2003, pp. 2755-2760
    [8] X. Huang, F. Farahmand, and J. P. Jue,“An Algorithm for Traffic Grooming in WDM Mesh Networks with Dynamically Changing Light-Trees,”In the proceedings of GLOBECOM 2004, vol. 3, pp. 1813-1817
    [9] A. Khalil, A. Hadjiantonis, and et al.,“Sequential and Hybrid Grooming Approaches for Multicast Traffic in WDM Networks,”In the proceedings of GLOBECOM 2004, pp. 1808-1812
    [10] A. Fei, Z. Duan, and M. Gerla,“Constructing Shared-Tree for Group Multicast with QoS Constraints,”In the proceedings of GLOBECOM 2001, pp. 2389-2394
    [11] J. Cui, J. Kim, D. Maggiorini, and et al.,“Aggregated Multicast - A Comparative Study,”In the proceedings of IFIP Networking 2002, May 2002, pp. 19-24
    [12] J. Cui , M. Faloutsos and M. Gerla,“An Architecture for Scalable, Efficient, and Fast Fault-Tolerant Multicast Provisioning,”IEEE Network, Mar./Apr. 2004, vol.18, no.2, pp. 26-34
    [13] L. Lao, J. Cui, and M. Gerla,“Tackling group-to-tree matching in large scale group communications,”Elsevier Journal of Computer Networks, 2007, vol. 51, issue 11, pp. 3069-3089
    [14] http://www.nist.gov/dads/HTML/binpacking.html
    [15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,“Introduction to Algorithms,”MIT, 1990
    [1] W. Sun, Y. Jin, et al.,“Prototype and demonstration of IP multicasting over optical network with dynamic point-to-multipoint configuration,”IEEE/OSA OFC 2005, OWG3, 2005
    [2] Y. Zhu, Y. Jin, W. Sun, and et al.,“Multicast flow aggregation in IP over optical network,”IEEE Journal on Selected Areas in Communications, Jun. 2007, vol. 25, issue 5, pp. 1011-1021
    [3] http://www.amazon.com/
    [4] G. Linden, B. Smith, J. York,“Amazon.com recommendations: item-to-item collaborative filtering,”Internet Computing, IEEE, Jan/Feb 2003, vol. 7, issue 1, pp. 76-80
    [5] D. Hilley, A. El-Helw, M. Wolenetz, and et al.“TV watcher: distributed media analysis and correlation,”Georgia Institute of Technology, Jul. 2004
    [6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,“Introduction to Algorithms,”MIT, 1990
    [7] H. F. Salama, D. S. Reeves, Y. Viniotis,“Evaluation of multicast routing algorithms for real-time communication on high-speed networks,”IEEE Journal of Select Areas Communications, 1997, vol. 15, no. 3, pp. 332-345
    [8] F. K. Hwang, D. S. Richard, and P, Winter,“The Steiner Tree Problem,”Elsevier Science Publishers B. V., 1992
    [9] M. Kodialam, T. V. Lakshman, S. Sengupta,“Online multicast routing with bandwidth guarantees: a new approach using multicast network flow”, IEEE/ACM Transaction on Networking, 2003, vol. 11, no. 4, pp. 676-686
    [10] P. Van Mieghem and M. Janic ,“Stability of a Multicast Tree,”in Proc. of the IEEE Infocom, 2002, vol. 2, pp. 1099– 1108
    [1] A. Fei, J. Cui, M. Gerla, and et al.,“Aggregated multicast: an approach to reduce multicast state,”In the proceedings of Sixth Global Internet Symposium (GI), Nov. 2001
    [2] Y. Zhu, Y. Jin, W. Sun, and et al.,“On Topology-Independent IP Group Aggregation in Multicast Capable Optical Networks,”In the proceedings of GLOBECOM 2005, Nov. 2005
    [3] A. Fei, J. Cui, M. Gerla, and et al.,“Aggregated multicast with inter-group tree sharing,”In the proceedings of NGC, Nov. 2001
    [4] J. Cui, J. Kim, D. Maggiorini, and et al.,“Aggregated Multicast - A Comparative Study,”In the proceedings of IFIP Networking 2002, May 2002, pp. 19-24
    [5] J. Cui, D. Maggiorini, J. Kim, and et al.,“A protocol to improve the state scalability of source specific multicast,”In the proceedings of GLOBECOM, Nov. 2002, vol. 2, pp. 1899-1904
    [6] J. Cui, L. Lao, D. Maggiorini, and et al.,“BEAM: a distributed aggregated multicast protocol using bi-directional trees,”In the proceedings of IEEE ICC, May 2003, vol. 1, pp. 689-695
    [7] J. Cui, L. Lao, M. Y. Sanadidi, and et al.,“Dynamic on-line group-tree matching for large scale group communications: a performance study,”In the proceedings of IEEE ISCC, Jun. 2005, pp. 412-417
    [8] A. Guitton, J. Moulierac,“Scalable tree aggregation for multicast,”In the proceedings of 8th International Conference on Telecommunications, 2005, vol. 1, pp. 129-134
    [9] L. Lao, J. Cui, and M. Gerla,“Tackling group-to-tree matching in large scale group communications,”Elsevier Journal of Computer Networks, 2007, vol. 51, issue 11, pp. 3069-3089
    [10] N. Ali, J. Moulierac, A. Belghith, et al.,“mQMA: multi-constrained QoS Multicast Aggregation,”In the proceedings of GLOBECOM, Nov. 2007, pp. 1927-1932
    [11] J. Moulierac, A. Guitton, and M. Molnar,“Multicast tree aggregation in large domains,”In the proceedings of IFIP Networking 2006, May 2006, pp. 691-702
    [12] P. Van Mieghem and M. Janic ,“Stability of a Multicast Tree,”in the Proceedings of IEEE Infocom, 2002, vol. 2, pp. 1099– 1108
    [13] G. Phillips, S. Shenker, and H. Tangmunarunkit,“Scaling of multicast trees: Comments on the Chuang-Sirbu scaling law,”in the Proceedings of ACM SIGCOMM, 1999
    [14] R. C. Chalmers and K. C. Almeroth,“Modeling the branching characeristics and efficiency gains in global multicast trees,”in the Proceedings of IEEE INFOCOM, Apr. 2001, pp. 449-458
    [15] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem,“First-passage percolation on the random graph,”Probability in the Engineering and Informational Sciences (PEIS), 2001, vol. 15, pp. 225-237
    [16] P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad,“A scaling law for the hopcount,”Report 2000125. Delft University of Technology, Delft, Netherlands.
    [17] P. V. Mieghem, G. Hooghiemstra, and R. Hofstad,“On the efficiency of multicast,”IEEE Transactions on Networking, Dec. 2001, vol. 9, no. 6, pp. 719-732
    [18] B. M. Waxman,“Routing of Multipoint Connections,”IEEE Journal on Selected Areas in Communications, Dec. 1988, vol. 6, no. 9, pp. 1617-1622
    [1] B. Alfonsi,“I Want My IPTV: Internet Protocol Television Predicted a Winner,”IEEE Distributed Systems Online, IEEE Computer Society, Feb. 2005, vol. 6, no. 2, pp. 1541-4922
    [2] Microsoft TV, http://www.microsoft.com/tv/IPTVEdition.mspx
    [3] FastTV, http://www.fasttv.net/
    [4] 3TNet, http://www.3tnet.com.cn/
    [5] L. H. Sahasrabuddhe and B. Mukherjee,“Light-trees: optical multicasting for improved performance in wavelength-routed networks,”IEEE Communication Magazine, Feb. 1999, vol. 37, pp. 67-73
    [6] G. N. Rouskas,“Optical layer multicast: Rationale, building blocks, and challenges,”IEEE Network, Jan./Feb. 2003, vol. 17, pp. 60–65
    [7] X. Wei, Y. Jin, G. Zhang, and et al.,“Demonstration of GMPLS-controlled dynamic point-to-multipoint trees in optical networks,”Optical Communication, 2005. ECOC 2005. 31st European Conference on, pp. 29–30
    [8] W. Sun, Y. Jin, et al.,“Prototype and demonstration of IP multicasting over optical network with dynamic point-to-multipoint configuration,”IEEE/OSA OFC 2005, OWG3, 2005
    [9] J. M. Boyce and A. M. Tourapis,“Fast efficient channel change [set-top box applications],”in IEEE Int. Con. on Consumer Electronics (ICCE), Jan. 8–12, 2005
    [10] Chunglae Cho, Intak Han, Yongil Jun, and et al.,“Improvement of channel zapping time in IPTV services using the adjacent groups join-leave method,”The 6th International Conference on Advanced Communication Technology, 2004, pp. 971-975
    [11] Private Communication: Engineer of Imagenio (IPTV of Telefonica) and Dick van Smirren (TV expert at TNO ICT), August 2005
    [12] B. Haskell, A. Netravali, and A. Puri,“Digital Video: An Introduction to Mpeg-2,”Springer, 1996
    [13] High Quality and Resilient IPTV Multicast Architecture, a white paper issued by: Siemens Communications and Juniper Networks, Inc
    [14] Y. Zhu, Y. Jin, W. Sun, and et al.,“Multicast flow aggregation in IP over optical network,”IEEE Journal on Selected Areas in Communications, Jun. 2007, vol. 25, issue 5, pp. 1011-1021
    [15] Internet Engineering Task Force,“Signaling Requirements for Point-to-Multipoint Traffic-Engineering MPLS Label Switched Paths (LSPs),”RFC4461, Apr. 2006
    [16] Internet Engineering Task Force,“Extensions to Resource Reservation Protocol– Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs),”RFC4875, May 2007
    [17] Internet Engineering Task Force,“Multicast Listener Discovery (MLD) for IPv6,”RFC2710, Oct. 1999
    [18] http://www.w3.org/TF/soap12
    [19] Ethereal, http://www.ethereal.com/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700