多个药物靶标蛋白在大肠杆菌无细胞系统高效表达及功能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无细胞蛋白质表达体系作为一种新兴的重组蛋白合成技术,相对于传统的体内蛋白表达系统具有如下明显的优势:没有细胞结构的限制,应用于生产对宿主细胞有毒害作用的外源蛋白质;反应操作简易,耗时短;反应体系开放,易于调节反应条件;亦可偶联其它的工艺步骤,加快后续的重组蛋白质纯化、功能表征和结构解析;反应体系小,能够直接以质粒或者PCR产物作为模板在微孔板上同时平行进行合成反应,有利于建立高通量的蛋白质合成和配体筛选平台。
     细菌肽聚糖生物合成途径的MraY转位酶将底物胞壁酸锚定于细胞膜磷脂双分子层内侧。作为细菌合成细胞壁的必需因子,MraY转位酶是新型广谱高效抗生素的重要靶标。受制于膜蛋白在体内蛋白质合成体系表达量过低等因素限制,MraY转位酶的生化功能和结构解析的研究进展极为缓慢。本工作采用无细胞蛋白质合成体系成功表达和纯化了制备级的革兰氏阳性枯草芽孢杆菌的和革兰氏阴性大肠杆菌MraY转位酶,并完成蛋白质功能表征和特异性抑制剂筛选。虽然两个MraY转位酶在无细胞合成体系的三种表达模式中(P-CF,D-CF和L-CF)均可以获得较高的产量,但是对最佳条件的选择却有明显差异。枯草芽孢杆菌MraY转位酶在所有的表达模式中均可正确折叠, P-CF模式表达的MraY转位酶在经过表面活性剂DDM重悬处理后,具有最高的酶活性。相比之下,P-CF和D-CF模式表达的大肠杆菌MraY转位酶与表面活性剂形成蛋白胶束之后,蛋白结构的稳定性受到较大影响,酶活力丧失。通过降低无细胞合成体系反应温度和提高体系内还原剂浓度,可以一定程度上提高大肠杆菌MraY转位酶的稳定性,但是酶活性低且重复性不高。L-CF模式添加的脂质体可以显著提高大肠杆菌MraY转位酶的稳定性,制备的蛋白样品能够在较长时间内保持酶活力。
     人类葡糖胺6-磷酸N-乙酰转移酶GNA1是尿嘧啶-5′-二磷酸-N-乙酰葡萄糖胺生物合成途径的一个重要酶,将底物乙酰辅酶A的乙酰基转移到葡糖胺-6-磷酸,形成N-乙酰葡糖胺-6-磷酸。作为新型的抗生素和抗癌靶标的GNA1转移酶,人类的GNA1转移酶和微生物同源物在蛋白结构和酶反应动力学具有明显的差异。本工作实现了人类GNA1转移酶以及融合sGFP的GNA1转移酶在大肠杆菌无细胞蛋白合成体系的功能性表达。每毫升反应液2小时内可以合成超过5mg的GNA1转移酶,未经纯化的GNA1-sGFP融合蛋白可以替代纯化的GNA1转移酶用于蛋白质合成快速检测,功能表征和抑制剂筛选。人类GNA1转移酶和GNA1-sGFP融合蛋白的酶活性被葡萄糖-6-磷酸特异性抑制,且抑制趋势相同,说明无细胞蛋白合成体系表达的GNA1转移酶以及GNA1-sGFP融合蛋白可以进行快速的酶功能表征和抑制剂的高通量筛选。
Cell-free (CF) expression systems have emerged in recent times as promisingtools in order to accelerate recombinant protein expression approaches. There areseveral advantages over the in vivo protein synthesis in using the E. coli CFexpression system, including the elimination of a living host environment duringprotein overexpression with problems of toxic effects of the recombinant proteins tothe host cell physiology. The open accessibility of the reaction could be easily tooperate the addition of assistant molecules to provide a suitable environment forcorrect folding of recombinant proteins. The ease in which large quantities of extractsmay be prepared and CF expression reactions be carried out in small volumes andincubated in short times are already sufficient for the production of proteins. Theimplement of expression vector or PCR fragment template creates very powerful toolsfor proteomic applications. The coupled protein expression and functional assayscould be developed to high throughput screening approaches for special ligands.
     MraY translocase catalyzes the first committed membrane bound step ofbacterial peptidoglycan synthesis leading to the formation of lipid I. The essentialmembrane protein therefore has a high potential as target for drug screeningapproaches to develop antibiotics against Gram-positive as well as Gram-negativebacteria. However, the production of large integral membrane proteins inconventional cellular expression systems is still very challenging. Cell-free expressiontechnologies have been optimized in recent times for the production of membraneproteins in the presence of detergents (D-CF), lipids (L-CF), or as precipitates (P-CF).We report the development of preparative scale production protocols for the MraYhomologues of Escherichia coli and Bacillus subtilis in all three cell-free expressionmodes followed by their subsequent quality evaluation. Although both proteins can becell-free produced at comparable high levels, their requirements for optimalexpression conditions differ markedly. B. subtilus MraY was stably folded in all three expression modes and showed highest translocase activities after P-CF productionfollowed by defined treatment with detergents. In contrast, the E. coli MraY appearsto be unstable after post-or cotranslational solubilization in detergent micelles.Expression kinetics and reducing conditions were identified as optimizationparameters for the quality improvement of E. coli MraY. Most remarkably, in contrastto B. subtilis MraY the E. coli MraY has to be stabilized by lipids and only theproduction in the L-CF mode in the presence of preformed liposomes resulted instable and translocase active protein samples.
     Human glucosamine-6-phosphate N-acetyltransferase (GNA1) is required forthe de novo synthesis of N-acetyl-D-glucosamine-6-phosphate representing anessential precursor in UDP-GlcNAc biosynthesis. Therefore, GNA1could become anattractive drug target for antimicrobials based on structural and kinetic differences inbetween human and microbial GNA1homologues. We report the development ofefficient cell-free expression strategies to rapidly produce preparative scale amountsof human GNA1derivatives suitable for throughput screening purposes. Cell-freeexpression yielded routinely more than five mg of GNA1in one ml of reactionmixture within two hours. We demonstrate that the derivative GNA1-sGFP canfurther be used for fast monitoring and inhibitor screening directly in the reactionmixtures without previous purification. The inhibitor glucose-6-phosphate to humanGNA1was identified by inhibition assay. We suggest that the cell-free production ofhuman GNA1and its derivative GNA1-sGFP provides a novel, fast and efficientapproach in order to support enzymatic assays and to develop throughput screeningapproaches for inhibitors.
引文
[1] Zamecnik P., Stephenson M., HechtIntermediate L.. Reactions in Amino AcidIncorporation[J]. Proceedings of the National Academy of Sciences USA,1958,44(2):73-78
    [2]沈同,王镜岩.生物化学[M].第二版.北京:高等教育出版社,1991:下册P392
    [3] Sidransky H., Staehelin T., Verney E.. Protein Synthesis Enhanced in the Liver ofRats Force-Fed a Threonine-Devoid Diet[J]. Science,1964,146(3645):766-768
    [4] Zubay G.. In vitro synthesis of protein in microbial systems[J].Annual Review ofGenetics,1973,7:267-287
    [5] Bassel B.A., Curry M.E.. Comparison of the Activities of Extracts of Escherichiacoliand Salmonella typhimurium in Amino Acid Incorporation[J]. Journal ofbacteriology1973,116(2):757-763
    [6] Martinez S., Lopez P., Espinosa M., et al. Cloning of a gene encoding a DNApolymerase exonuclease of Streptococcus pneumonia[J]. Gene,1986;44(1):79-88
    [7] Spirin A.S., Baranow V.I., Ryabova L.A., et al. A continuous cell-free translationsystem capable of producing polypeptides in high yield[J]. Science,1988,242:1162-1164
    [8] Ronald C.F.. Cytodifferentiation: Protein Synthesis in Transition[J]. The AmericanNaturalist,1959,93(868):47-80
    [9] Woodward WR., Ivey JL., Herbert E.. Protein synthesis with rabbit reticulocytepreparations[J]. Methods Enzymology,1974,30:724-731
    [10] Madin K, Sawasaki T, Ogasawara T, et al. A highly efficient and robust cell-freeprotein synthesis system prepared from wheat embryos: plants apparently contain asuidide system directed at ribosomes[J]. Proceedings of the National Academy ofSciences USA,2000,97(2):559-564
    [11] Martemyanov KA., Shirokov VA., Kurnasov OV., et al. Cell-free production ofbiologically active polypeptides: application to the synthesis of antibacterial peptidececropin[J]. Protein Expression and Purification,2001,21:456-461
    [12] Ma Y., Münch D., Schneider T., et al. Preparative scale cell-free production andquality optimization of MraY homologues in different expression modes[J]. TheJournal of Biological Chemistry,2011,286:38844-38853.
    [13] Kang TJ., Woo JH., Song HK., et al. A cell-free protein synthesis system as aninvestigational tool for the translation stop processes[J]. FEBS Letters,2002,517:211-214
    [14] Makeyev EV., Kolb VA., Spirin AS.. Cell-free immunology: construction and invitro expression of a PCR-based library encoding a single-chain antibody repertoire[J].FEBS Letters,1999,444:177-180
    [15] He M., Taussing MJ.. DiscernArrayTM technology: a cell-free method for thegeneration of protein arrays from PCR DNA[J]. Journal of Immunology Methods,2003,274:265-270
    [16] Singer SJ., G L Nicolson.. The fluid mosaic model of the structure of cellmembranes[J]. Science,1972,175(23):720-731
    [17] Cho W., Stahelin RV.. Membrane-protein interactions in cell signaling andmembrane trafficking[J]. Annual Review of Biophysics and Biomolecular Structure,2005,34:119-151
    [18]隋森芳.膜分子生物学[M].北京:高等教育出版社,2003:1-5
    [19] Rothman JE., Lenard J.. Membrane asymmetry[J]. Science,1997,195:743-753
    [20] Gao FP., Cross TA.. Recent developments in membrane-protein structuralgenomics[J]. Genome Biology,2005,6(13):244
    [21] Wallin E., Heijne GV.. Genome-wide analysis of integral membrane proteinsfrom eubacterial, archaean, and eukaryotic organisms[J]. Protein Science1998,7(4):1029-1038
    [22] Dailey MM., Hait C., Holt PA., et al. Structure-based drug design: from nucleicacid to membrane protein targets[J]. Experimental and Molecular Pathology,2009,86(3):141-150
    [23] White SH., von Heijne G.. How translocons select transmembrane helices[J].Experimental and Molecular Pathology,2008,37:23-42
    [24] Renthal R.. Buried water molecules in helical transmembrane proteins[J]. ProteinScience,2008,17(2):293-298
    [25] Faller LD.. Mechanistic studies of sodium pump[J]. Archives of Biochemistryand Biophysics,2008,476(1):12-21
    [26] Staudinger JL., Lichti K.. Cell signaling and nuclear receptors: new opportunitiesfor molecular pharmaceuticals in liver disease[J]. Molecular Pharmacology,2008,5(1):17-34
    [27] Wang K., Wong YH.. G protein signaling controls the differentiation of multiplecell lineages[J]. Biofactors,2009,35(3):232-238
    [28] Williams C., Hill SJ.. GPCR signaling: understanding the pathway to successfuldrug discovery[J]. Methods Molecular Biology,2009,552:39-50
    [29] Klammt, C., Schwarz, D., L hr, F., et al. Cell-free expression as an emergingtechnique for the large scale production of integral membrane protein[J]. FEBSJournal,2006,273:4141-4153
    [30] Berrier, C., Park, KH., Abes, S., et al. Cell-free synthesis of a functional ionchannel in the absence of a membrane and in the presence of detergent[J].Biochemistry,2004,43:12585-12591
    [31] Chen, YJ., Pornillos, O., Lieu, S., et al. X-ray structure of EmrE supports dualtopology model[J]. Proceedings of the National Academy of Sciences USA,2007,104:18999-19004
    [32] Klammt, C., Schwarz, D., Fendler, K., et al. Evaluation of detergents for thesoluble expression of alpha-helical and beta-barrel-type integral membrane proteinsby a preparative scale individual cell-free expression system[J]. FEBS Journal,2005,272:6024-6038
    [33] Keller, T., Schwarz, D., Bernhard, F., et al. Cell free expression and functionalreconstitution of eukaryotic drug transporters[J]. Biochemistry,2008,47:4552-4564
    [34] Opekarova, M., Tanner, W.. Specific lipid requirements of membraneproteins—a putative bottleneck in heterologous expression[J]. Biochimica etBiophysica Acta,2003,1610:11-22
    [35] Czerski L, Sanders CR. Functional it y of a membrane protein in bicelles[J].Analytical Biochemistry,2000,284(2):327-333
    [36] Popot, J L.. Amphipols, Nanodiscs, and Fluorinated Surfactants: ThreeNonconventional Approaches to Studying Membrane Proteins in AqueousSolutions[J]. The Annual Review of Biochemistry,2010,9:737-775
    [37] Bayburt TH., Sligar SG.. Membrane protein assembly into Nanodiscs. FEBSLetters[J].2010,584(9):1721-1727
    [38] Wuu JJ., Swartz JR.. High yield cell-free production of integral membraneproteins without refolding or detergents[J]. Biochimica et Biophysica Acta,2008,1778(5):1237-1250
    [39]周德庆.微生物学教程[M].第二版.北京:高等教育出版社,2002,38-74
    [40] Bugg TD., Braddick D., Dowson CG.. Bacterial cell wall assembly: still anattractive antibacterial target[J]. Trends in biotechnology,2011,29(4):167-173
    [41] Koch AL., Bacterial wall as target for attack: past, present and future research[J].Clinical Microbiology Reviews2003,16:673-687
    [42] Dmitriev B., Toukach F., Ehlers S.. Towards a comprehensive view of thebacterial cell wall[J]. Trends in Microbiology,2005,13(12):569-574
    [43] Rogers HJ., Perkins HR., Ward, JB.. Biosynthesis of peptidoglycan. In MicrobialCell Walls and Membranes.1980,2:239-297
    [44] Ward JB.. Biosynthesis of peptidoglycan: points of attack by wall inhibitors[J].Pharmacology and Therapeutics,1984,25(3):327-369
    [45]王岳,方金瑞.抗生素[M].北京:科学出版社,1988:4-5
    [46]张致平.抗生素科学的进展[J].中国药学杂志,1997,32(11):698
    [47] Robert C., Moellering J.. NDM-1-A Cause for Worldwide Concern[J]. NewEngland Journal of Medicine,2010,363:2377-2379
    [48] Green DW.. The bacterial cell wall as a source of antibacterial targets[J]. ExpertOpinion on Therapeutic Targets,2002,6:1-19
    [49] Barrett CT., Barrett JF.. Antibacterials: are the new entries enough to deal withthe emerging resistance problems?[J]. Current Opinion Biotechnology,2003,14:621-626
    [50] Projan SJ.. New antibacterial targets-from where and when will the novel drugscome?[J]. Current Opinion Pharmacology,2002,2:513-522
    [51] Bugg, TD.. Bacterial peptidoglycan biosynthesis and its inhibition[J]. InComprehensive Natural Products Chemistry,1999,3:241-294
    [52] Heijenoort YV.. Recent advances in the formation of the bacterial peptidoglycanmonomer unit [J]. Journal of Natural Product Reports,2001,18:503-519
    [53] Heijenoort YV., Gomez, M., Derrien, M., et al. Membrane intermediates in thepeptidoglycan metabolism of Escherichia coli: possible roles of PBP1b and PBP3[J].Journal of Bacteriology,1992,174:35-49
    [54] Boyle DS., Donachie WD.. mraY Is an Essential Gene for Cell Growth inEscherichia coli[J]. Journal of Bacteriology,1998,180(23):6429-6432
    [55] Thanassi, JA., Hartmann SL., Dougherty TJ., et al. Identification of113conserved essential genes using a high-throughput gene disruption systemin Streptococcus pneumoniae[J]. Journal of Nucleic Acids research,2002,30:31-52
    [56] Saidijam M., Psakis G., Clough J., et al. Collection and characterisation ofbacterial membrane proteins[J]. FEBS Letters,2003,555(1):170-175
    [57] Anderson MS., Eveland SS., Price NP.. Conserved cytoplasmic motifs thatdistinguish sub-groups of the polyprenol phosphate:N-acetylhexosamine-1-phosphatetransferase family[J]. FEMS Microbiology Letter,2000,191:169-175
    [58] Bouhss A., Mengin LD., Beller LD.,etal. Topological analysis of the MraYprotein catalysing the first membrane step of peptidoglycan synthesis[J]. MolecularMicrobiology,1999,34(3):576-585
    [59] Bugg TD., Brandish PE.. From peptidoglycan to glycoproteins: Commonfeatures of lipid-linked oligosaccharide biosynthesis[J]. FEMS Microbiology Letter,1994,119(3):255-262
    [60] Amer AO., Valvano MA.. Conserved amino acid residues found in a predictedcytosolic domain of the lipopolysaccharide biosynthetic protein WecA are implicatedin the recognition of UDP-N-acetylglucosamine[J]. Microbiology,2001,147(11):3015-3025
    [61] Dabbagh BA., Henry X., Ghachi ME.. Active Site Mapping of MraY, a Memberof the Polyprenyl-phosphateN-Acetylhexosamine1-Phosphate TransferaseSuperfamily, Catalyzing the First Membrane Step of Peptidoglycan Biosynthesis[J].Biochemistry,2008,47(34):8919-8928
    [62] Struve WG., Sinha, RK., Neuhaus FC.. On the Initial Stage in PeptidoglycanSynthesis. Phospho-N-acetylmuramyl-pentapeptide Translocase (UridineMonophosphate)[J]. Biochemistry,1966,5(1):82-93
    [63] Stickgold RA., Neuhaus, FC. On the Initial Stage in Peptidoglycan Synthesis[J].The Journal of Biological Chemistry,1967,242:1331-1337
    [64] Tomasz A., Borek E.. An Early Phase in the Bactericidal Action of5-Fluorouracil on E. coli K12: Osmotic Imbalance[J]. Proceedings of the NationalAcademy of Sciences USA,1959,45(7):929-932
    [65] Neuhaus FC.. Initial translocation reaction in the biosynthesis of peptidoglycanby bacterial membranes[J]. Accounts of Chemical Research,1971,4(9):297-303
    [66] Hammes WP., Neuhaus FC.. On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase[J]. The Journal of Biological Chemistry,1974,249(10):3140-3150
    [67] Anderson JS., Matsuhashi M., Haskin MA., et al. Biosynthesis of thePeptidoglycan of Bacterial Cell Walls[J]. The Journal of Biological Chemistry,1967,242:3180-3190
    [68] Ornelas SA., Lencastre H., Jonge BL., et al. Reduced methicillin resistance in anew Staphylococcus aureus transposon mutant that incorporates muramyl dipeptidesinto the cell wall peptidoglycan[J]. The Journal of Biological Chemistry,1994,269:27246-27250
    [69] Sobral RG., Ludovice AM., Gardete S., et al. Normally Functioning murF IsEssential for the Optimal Expression of Methicillin Resistance in Staphylococcusaureus[J]. Microbial Drug Resistance,2003,9(3):231-241
    [70] Ikeda M., Wachi M., Jung HK., et al. The Escherichia coli mraY gene encodingUDP-N-acetylmuramoyl-pentapeptide: undecaprenyl-phosphatephospho-N-acetylmuramoyl-pentapeptide transferase[J]. Bacteriology,1991,173(3):1021-1026
    [71] Mengin LD., Falla T., Blanot D., et al. Expression of the StaphylococcusaureusUDP-N-Acetylmuramoyl-l-Alanyl-d-Glutamate:l-Lysine Ligase in Escherichiacoli and Effects on Peptidoglycan Biosynthesis and Cell Growth[J]. Journal ofBacteriology,1999,181(19):5909-5914
    [72] Breukink E., Heusden HE., Vollmerhaus, PJ., et al. Lipid II Is an IntrinsicComponent of the Pore Induced by Nisin in Bacterial Membranes[J]. Journal ofBiological Chemistry,2003,278:19898-19903
    [73] Brandish PE., Burnham MK., Lonsdale JT., et al. Slow Binding Inhibition ofPhospho-N-acetylmuramyl-pentapeptide-translocase (Escherichia coli) byMureidomycin A [J]. Journal of Biological Chemistry,1996,271:7609-7614
    [74] Bouhss A., Crouvoisier M., Blanot D., et al. Purification and Characterization ofthe Bacterial MraY Translocase Catalyzing the First Membrane Step of PeptidoglycanBiosynthesis[J]. Journal of Biological Chemistry,2004,279:29974-29980
    [75] Heydanek MG., Linzer R., Pless DD., et al. Initial stage in peptidoglycansynthesis.5. Mechanism of activation of phospho-N-acetylmuramyl-pentapeptidetranslocase by potassium ions[J]. Biochemistry,1970,9(18):3618-3623
    [76] Struve WG., Neuhaus FC.. Evidence for an initial acceptor ofUDP-NAc-muramyl-pentapeptide in the synthesis of bacterial mucopeptide[J].Biochemical and Biophysical Research Communications,1965,18(4):6-12
    [77] Lloyd AJ., Brandish PE., Gilbey AM., et al.Phospho-N-Acetyl-Muramyl-Pentapeptide Translocase from Escherichia coli:Catalytic Role of Conserved Aspartic Acid Residues[J]. Journal of Bacteriology,2004,186(6):1747-1752
    [78] Marrero PF., Poulter CD., Edwards PA.. Effects of site-directed mutagenesis ofthe highly conserved aspartate residues in domain II of farnesyl diphosphate synthaseactivity[J]. Journal of Biological Chemistry,1992,267:21873-2178
    [79] Amer AO., Valvano MA.. Conserved aspartic acids are essential for the enzymicactivity of the WecA protein initiating the biosynthesis of O-specificlipopolysaccharide and enterobacterial common antigen in Escherichia coli [J].Microbiology,2002,148(2):571-528
    [80] Anderson JS., Meadom PM., Haskin MA., et al. Biosynthesis of thepeptidoglycan of bacterial cell walls: I. Utilization of uridine diphosphateacetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine forpeptidoglycan synthesis by particulate enzymes from Staphylococcusaureusand Micrococcus lysodeikticus[J]. Archives of Biochemistry and Biophysics,1966,116:487-515
    [81] Heydanek MG., Struve WG., Neuhaus FC.. Initial state in peptidoglycansynthesis. III. Kinetics and uncoupling of phospho-N-acetylmuramyl-pentapeptidetranslocase (uridine5'-phosphate)[J]. Biochemistry,1969,8(3):1214-1221
    [82] Pless DD., Neuhaus FC.. Initial membrane reaction in peptidoglycan synthesis.Lipid dependence of phospho-n-acetylmuramyl-pentapeptide translocase (exchangereaction)[J]. Journal of Biological Chemistry,1973,248:1568-1576
    [83] Umbreit JN., Strominger JL.. Complex lipid requirements fordetergent-solubilized phosphoacetylmuramyl-pentapeptide translocase fromMicrococcus luteus[J]. Proceedings of the National Academy of Sciences USA,1972,69(7):1972-1974
    [84] Isono F., Inukai M., Takahashi S.. Mureidomycins A-D, novelpeptidylnucleoside antibiotics with spheroplast forming activity. III. Biologicalproperties[J]. Journal of Antibiotics,1989,42(5):674-679
    [85] Karwowski JP., Jackson M., Theriault RJ., et al. Pacidamycins, a novel series ofantibiotics with anti-Pseudomonas aeruginosa activity. I. Taxonomy of the producingorganism and fermentation[J]. Journal of Antibiotics,1989,42(4):506-511
    [86] Chatterjee S.; Nadkami SR., Vijayakumar EK., et al. Napsamycins, newPseudomonas active antibiotics of the mureidomycin family from Streptomyces sp.HIL Y-82,11372[J]. Journal of Antibiotics,1994,47(5):595-598
    [87] Dini C., Collette P., Drochon N., et al. Synthesis of the Nucleoside Moiety ofLiposidomycins: Elucidation of the Pharmacophore of this Family of MraYInhibitors[J]. Bioorganic and Medicinal Chemistry Letters,2000,10(16):1839-1843
    [88] Takatsuki A., Arima K., Tamura G.. Tunicamycin, a new antibiotic. I. Isolationand characterization of tunicamycin[J]. Journal of Antibiotics,1971,24(4):215-223
    [89] McDonald LA., Barbieri LR., Carter GT., et al. Structures of the Muraymycins,Novel Peptidoglycan Biosynthesis Inhibitors[J]. Journal of the American ChemicalSociety,2002,124(35):10260-10261
    [90] Kimura K., Bugg TD.. Recent advances in antimicrobial nucleoside antibioticstargeting cell wall biosynthesis[J]. Natural Product Reports,2003,20:252-273
    [91] Muramatsu Y., Miyakoshi S., Ogawa Y., et al. Studies on novel bacterialtranslocase I inhibitors, A-500359s. III. Deaminocaprolactam derivatives ofcapuramycin: A-500359E, F, H; M-1and M-2[J]. Journal of Antibiotics,2003,56(3):259-267
    [92] Tanaka H., Iwai Y., Oiwa R., et al. Studies on bacterial cell wall inhibitors: II.Inhibition of peptidoglycan synthesis in vivo and in vitro by amphomycin[J].Biochimica et Biophysica Acta,1977,497(3):633-640
    [93] Tanaka H., Oiwa R., Matsukura S., et al. Amphomycin inhibits phospho-N-acetylmuramyl-pentapeptide translocase in peptidoglycan synthesis of Bacillus[J].Biochemical and Biophysical Research Communications,1979,86(3):902-908
    [94] Bernhardt TG., Struck DK., Young R.. The Lysis Protein E of φX174Is aSpecific Inhibitor of the MraY-catalyzed Step in Peptidoglycan Synthesis[J]. Journalof Biological Chemistry,2001,276:6093-6097
    [95] Brandish PE., Kimura K., Inukai M., et al. Modes of action of tunicamycin,liposidomycin B, and mureidomycin A: inhibition ofphospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli[J].Antimicrobial Agents and Chemotherapy,1996,40(7):1640-1644
    [96] Heifetz A., Keenanm RW., Elbein AD.. Mechanism of action of tunicamycin onthe UDP-GlcNAc:dolichyl-phosphate GlcNAc-1-phosphate transferase[J].Biochemistry,1979,18(11):2186-2192
    [97] Wolf E., Vassilev A., Makino Y., et al. Crystal structure of aGCNS-relatedN-acetyltransferase: Serratia marcescens aminoglycoside3-N-acetyltransferase[J].Cell,1998,94(4):439-449.
    [98] Wybenga-Groot LE., Draker K., Wright GD., et al. Crystal structure of anaminoglycoside6'-N-acetyltransferase: defining the GCNS-relatedN-acetyltransferase superfamily fold[J]. Structure,1999,7(5):497-507.
    [99] Hickman AB., Namboodiri MA., Klein DC., et al. The structural basis of orderedsubstrate binding by serotonin N-acetyltransferase: enzyme complex at1.8Aresolution with a bisubstrate analog[J]. Cell,1999,97(3):361-369
    [100] Gautier-Lefebvre I., Behr JB., Guillerm G., et al. Iminosugars asglycosyltransferase inhibitors: synthesis of polyhydroxypyrrolidines and theirevaluation on chitin synthase activity[J]. European Journal of Medicinal Chemistry,2005,40(12):1255-1261
    [101] Barreras M., Abdian PL., Ielpi L.. Functional characterization of GumK, amembrane-associated beta-glucuronosyltransferase from Xanthomonas campestrisrequired for xanthan polysaccharide synthesis[J]. Glycobiology,2004,14(3):233-241
    [102] Clements A., Rojas JR., Trievel RC., et al. Crystal structure of the histoneacetyltransferase domain of the human PCAF transcriptional regulator bound tocoenzyme A[J]. EMBO Journal,1999,18(13):3521-3532
    [103] Dutnall RN., Tafrov ST., Sternglanz R., et al. Structure of the histoneacetyltransferase Hat1:a paradigm for the GCNS-related N-acetyltransferasesuperfamily[J]. Cell,1998,94(4):427-438
    [104] Sareen D., Newton GL., Fahey RC., et al. Mycothiol is essential for growth ofMycobacterium tuberculosis Erdman[J]. Journal of Bacteriology,2003,185(22):6736-6740
    [105] Towler DA., Adams SP., Eubanks SR., et al. Purification and characterizationof yeast myristoyl CoA: protein N-myristoyltransferase[J]. Proceedings of theNational Academy of Sciences USA,1987,84(9):2708-2712
    [106] Hegde SS., Shrader TE.. FemABX family members are novel nonribosomalpeptidyltransferases and important pathogen-specific drug targets[J]. Journal ofBiological Chemistry,2001,276(10):6998-7003
    [107] Davies J., Wright GD.. Bacterial resistance to aminoglycoside antibiotics[J].Trends in Microbiology,1997,5(6):234-240
    [108] Vetting MW., Lp SdC., Yu M., et al. Structure and functions of the GNATsuperfamily of acetyltransferases[J]. Archives of Biochemistry and Biophysics,2005,433(1):212-226
    [109] Bunkenborg J., Pilch BJ., Podtelejnikov AV., et al. Screeningfor N-glycosylated proteins by liquid chromatography mass spectrometry[J].Proteomics,2004,4(2):454-465
    [110] Steen PV., Rudd PM., Dwek RA., et al. Concepts and Principles of O-LinkedGlycosylation[J]. Critical Reviews in Biochemistry and Molecular Biology,1998,33(3):151-208
    [111] Rudd PM., Elliott T, Cresswell P, et al. Glycosylation and the immunesystem[J]. Scinece,2001,291(5512):2370-2376
    [112] Roth J.. Protein N-glycosylation along the secretory pathway: relationship toorganelle topography and function, protein quality control, and cell interactions[J].Chemical Reviews,2002,102(2):285-304
    [113] Wells L., Vosseller K., Hart GW.. Glycosylation of nucleocytoplasmic proteins:signal transduction and O-GlcNAc[J]. Science,2001,291(5512):2376-2378
    [114] Shepard HM., Lewis GD., Sarup JC, et al. Monoclonal antibody therapy ofhuman cancer: taking the HER2protooncogene to the clinic[J]. Journal of ClinicalImmunology,1991,11(3):117-127
    [115] Seta DG.. Protein glycosylation and diseases: blood and urinaryoligosaccharides as markers for diagnosis and therapeutic monitoring[J]. ClinicalChemistry,2000,46(6):795-805
    [116] Takeda J., Kinoshita T.. GPI-anchor biosynthesis[J]. Trends in BiochemicalSciences,1995,20(9):367-371
    [117] Katz D., Rosenberger RF.. A mutation in Aspergillus nidulans producinghyphal walls which lack chitin[J]. Biochimica et Biophysica Acta,1970,208(3):452-460
    [118] Hakomori S.. Possible functions of tumor-associated carbohydrate antigens[J].Current Opinion in Immunology,1991,3(5):646-653
    [119] Boehmelt G., Fialka I., Brothers G., et al. Cloning and characterization of themurine glucosamine-6-phosphate acetyltransferase EMeg32[J]. Journal of BiologicalChemistry,2000,275(17):12821-12832
    [120] Dennis JW., Granovsky M., Warren CE.. Glycoprotein glycosylation and cancerprogression[J]. Biochimica et Biophysica Acta,1999,1473(1):21-34
    [121] Selitrennikoff CP., Sonneborn DR.. The last two pathway-specific enzymeactivities of hexosamine biosynthesis are present in Blastocladiella emersoniizoospores prior to germination[J]. Biochimica et Biophysica Acta,1976,451(2):408-416
    [122] Mio T., Yamada-Okabe T., Arisawa M., et al. Saccharomyces cerevisiae GNA1,an essential gene encoding a novel acetyltransferase involved inUDP-N-acetylglucosamine synthesis[J]. Journal of Biological Chemistry,1999,274(1):424-429
    [123] Boehmelt G., Wakeham A., Elia A., et al. Decreased UDP-G1cNAc levelsabrogate proliferation control in EMeg32-deficient cells[J]. EMBO Journal,2000,19(19):5092-5104
    [124] Peneff C., Mengin-Lecreulx D., Bourne Y.. The crystal structures of ApoSaccharomyces cerevisiae GNA1shed light on the catalytic mechanism ofN-acetyltransferase[J]. Journal of Biological Chemistry,2001,276(19):16328-16334
    [125] Hurtado-Guerrero R., Raimi OG., Min J., et al. Structural and kineticdifferences between human and Aspergillus fumigatus D-glucosamine-6-phosphateN-acetyltransferase[J]. Biochemical Journal,2008,415(2):217-223
    [126] Wang J., Liu X., Liang YH., et al. Acceptor substrate binding revealed bycrystal structure of human glucosamine-6-phosphate N-acetyltransferase1[J]. FEBSLetters,2008,582(20):2973-2978
    [127] Chalfie M., Tu Y., EuKivchen G., et al. Green fluorescent protein as a markerfor gene expression[J]. Science,1994,263:802-805
    [128] Ikawa M. Green fluorescent protein as a marker in transgenic mice[J]. Develope.Growth Differentiation,1995,37:455-459
    [129] Inouye S., Tsuji FI.. Aequorea victornia fluorescent protein: expression of thegreen and fluorescence characteristics of the recombinant protein[J]. FEBS Letters,1994,35:271-280
    [130] Hack NJ., Billups B., Guthrie PB., et a1. Green fluorescent protein as aquantitative tool[J]. Journal of Neruoscience Methods,2000,95(2):177-l84
    [131] Prasher D., Eckenrode V., Ward W., et al. Primary structure of the Aequoreavictoria green-fluorescent protein[J]. Gene,1992,111:229-233
    [132] Cubitt AB., Heim R., Adams SR., et al. Understanding, improving and usinggreen fluorescent proteins[J]. Trends in Biochemical Science,1995,20(11):448-455
    [133] Ward WW., Bokman SH.. Reversible denaturation of Aequoreagreen-fluorescent protein: physical separation and characterization of the renaturedprotein[J]. Biochemistry,1982,21(19):4535-4540
    [134] Cody CW., Prasherd C., Weslerw M., et a1. Chemical structure of thehexapeptide chromophore of the Aequorea green fluorescent protein[J]. Biochemistry,1993,32(5):1212-1218
    [135] Hiem R., Cubitt AB., Tsien RY.. Improved green fluorescence[J]. Nature,1995,373:663-664
    [136]罗文新,夏宁邵(译).绿色荧光蛋白的发现、表达和发展[J].生物物理学报,2008,24(6):422-429
    [137] Cormack BP., Valdivia RH., Falkow S.. FACS-optimized mutants of the greenfluorescent protein[J]. Gene,1996,173(1):33-38
    [138] HE R., PRASHE RD., TSIEN RY..Wavelength mutations and post translationalautoxidation of green fluorescent protein[J]. Proceedings of the National Academy ofSciences USA,1994,91(26):12501-12504
    [139] Roda A.. Discovery and development of the green fluorescent protein, GFP: the2008Nobel Prize[J]. Analytical and Bioanalytical Chemistry2010,396(5):1619-1622
    [140] Delagrave S., RE Hawtin., Silva CM., et al. Red-Shifted Excitation Mutants ofthe Green Fluorescent Protein[J]. Nature Biotechnology,1995,13:151-154
    [141] Mitra RD., Silva CM., Youvan DC.. Fluorescence resonance energy transferbetween blue-emitting and red-shifted excitation derivatives of the green fluorescentprotein[J]. Gene,1996,173(1):13-17
    [142] Sawasaki T., Hasegawa Y., Tsuchimochi M., et al. A bilayer cell-free proteinsynthesis system for high-throughput screening of gene products[J]. FEBS Letters,2002,514(1):102-105
    [143] Xu ZN, Chen HQ, Yin XF., et al. High-level expression of soluble humanβ-defensin-2fused with green fluorescent protein in Escherichia coli cell-freesystem[J]. Applied Biochemistry and Biotechnology,2005,127(1):53-62
    [144] Dittrich PS., Jahnz M., Schwill P.. A New Embedded Process forCompartmentalized Cell-Free Protein Expression and On-line Detection inMicrofluidic Devices[J]. Biochemistry,2005,6(5):811-814
    [145]张敏,任慧霞.绿色荧光蛋白在药学研究中的应用[J].中南药学,2008,6(1):79-82
    [146] Kolb VA., Makeyev EV., Ward WW., et al. Synthesis and maturation of greenfluorescent protein in a cell-free translation system[J]. Biotechnology Letters,1996,18(12):1447-1452
    [147] Bugg TD., Lloyd A J., Roper D I.. Phospho-MurNAc-pentapeptide translocase(MraY) as a target for antibacterial agents and antibacterial proteins[J]. Infectiousdisorders drug targets,2006,6(2):85-106
    [148] Schneider T., Sahl HG.. An oldie but a goodie-cell wall biosynthesis asantibiotic target pathway[J]. International Journal of Medical Microbiology,2010,300(2):161-169
    [149] Heijenoort JV.. Lipid Intermediates in the Biosynthesis of BacterialPeptidoglycan[J]. Microbiology and molecular biology reviews,2007,71(4):620-635
    [150] Henrichfreise B., Schiefer A., Schneider T., et al. Functional conservation of thelipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia:why is lipid II needed[J]. Molecular Microbiology,2009,73(5):913-923
    [151] Bouhss A., Trunkfield AE., Bugg TD., et al. The biosynthesis of peptidoglycanlipid-linked intermediates[J]. FEMS Microbiology Review,2008,32(2):208-233
    [152] Lecerclé D., Clouet A., Al-Dabbagh B., et al. Bacterial transferase MraYinhibitors: Synthesis and biological evaluation[J]. Bioorganic&Medicinal Chemistry,2010,18(12):4560-4569
    [153] Mravljak J., Monasson O., Al-Dabbagh B., et al. Synthesis and biologicalevaluation of a diazepanone-based library of liposidomycins analogs as MraYinhibitors[J]. European Journal of Medicinal Chemistry,2011,46(5):1582-1592
    [154] Stachyra T., Dini C., Ferrari P., et al. Fluorescence Detection-Based FunctionalAssay for High-Throughput Screening for MraY[J]. Antimicrobial Agents andChemotherapy,2004,48(3):897-902
    [155] Hyland SA., Anderson MS.. A high-throughput solid-phase extraction assaycapable of measuring diverse polyprenyl phosphate: sugar-1-phosphate transferases asexemplified by the WecA, MraY, and MurG proteins[J]. Analytical Biochemistry.2003,317(2):156-165
    [156] Zawadzke LE., Wu P., Cook L., et al. Targeting the MraY and MurG bacterialenzymes for antimicrobial therapeutic intervention[J]. Analytical Biochemistry,2003,314(2):243-252
    [157] Denisov I., Grinkova Y., Lazarides A., et al., Directed Self-Assembly ofMonodisperse Phospholipid Bilayer Nanodiscs with Controlled Size[J]. Journal of theAmerican Chemical Society,2004,126(11):3477-3487
    [158] Grinkova Y., Denisov I. and Sligar G.. Engineering extended membranescaffold proteins for self-assembly of soluble nanoscale lipid bilayers[J]. ProteinEngineering, Design&Selection,2010,23(11):843-848
    [159] Schwarz D., Klammt C., Koglin A., et al. Preparative scale cell-free expressionsystems: new tools for the large scale preparation of integral membrane proteins forfunctional and structural studies[J]. Methods,2007,41(4):355-369
    [160] Liguori L., Marques B., Villegas-Mendez A., et al. Production of membraneproteins using cell-free expression systems[J]. Expert Review of Proteomics,2007,4(1):79-90
    [160] Endo Y., Sawasaki T.. Cell-free expression systems for eukaryotic proteinproduction[J]. Current Opinion in Biotechnology,2006,17(4):373-380
    [160] Yin G., Swartz JR.. Enhancing multiple disulfide bonded protein folding in acell-free system[J]. Biotechnology and Bioengineering,2004,86(2):188-195
    [161] Goerke AR., Swartz JR.. Development of cell-free protein synthesis platformsfor disulfide bonded proteins[J]. Biotechnology and Bioengineering,2008,99(2):351-367
    [162] Klammt C., Lohr F., Schafer B., et al. High level cell-free expression andspecific labeling of integral membrane proteins. European Journal of Biochemistry,2004,271(3):568-580
    [163] Goerke AR., Swartz JR. High-level cell-free synthesis yields of proteinscontaining site-specific non-natural amino acids[J]. Biotechnology andBioengineering,2009,102(2):400-416
    [164] Rungpragayphan S., Nakano H., Yamane T.. PCR-linked in vitro expression: anovel system for high-throughput construction and screening of protein libraries[J].FEBS Letters,2003,540(1):147-150
    [165] Rath A., Glibowicka M., Nadeau VG., et al. Detergent binding explainsanomalous SDS-PAGE migration of membrane proteins[J]. Proceedings of theNational Academy of Sciences USA,2009,106(6):1760-1765
    [166] Philo JS.. A critical review of methods for size characterization ofnon-particulate protein aggregates[J]. Current pharmaceutical biotechnology,2009,10(6):359-372
    [167] Junge F., Luh LM., Proverbio D., et al. Modulation of G-protein coupledreceptor sample quality by modified cell-free expression protocols: a case study of thehuman endothelin A receptor[J]. Journal of Structural Biology,2010,172(1):94-106
    [168] Newton AC.. Lipid activation of protein kinases[J]. Journal of Lipid Research,2009,50: S266-S271
    [169] Contreras FX., Ernst AM., Wieland F., et al. Specificity of intramembraneprotein–lipid interactions[J]. Cold Spring Harbor Perspectives in Biology,2011,3:a004705
    [170] Geis A., Plapp R.. Phospho-N-acetylmuramoyl-pentapeptide-transferase ofEscherichia coli K12Properties of the membrane-bound and the extracted andpartially purified enzyme[J]. Biochimica et Biophysica Acta-Enzymology,1978,527(2):414-424
    [171] Yang JP., Cirico T., Katzen F., et al. Cell-free synthesis of a functional Gprotein-coupled receptor complexed with nanometer scale bilayer discs[J]. BMCBiotechnology,2011,11:57
    [172] Lyukmanova EN., Shenkarev ZO., Khabibullina NF., et al. Lipid-proteinnanodiscs for cell-free production of integral membrane proteins in a soluble andfolded state: Comparison with detergent micelles, bicelles and liposomes. Biochimicaet Biophysica Acta-Biomembranes,2012.1818(3):349-358
    [173] Katzen F., Fletcher JE., Yang JP., et al. Insertion of membrane proteins intodiscoidal membranes using a cell-free protein expression approach[J]. Journal ofProteome Research,2008,7(8):3535-3542.
    [174] Dowhan W.. Molecular basis for membrane phospholipid diversity: why arethere so many lipids?[J]. Annual Review of Biochemistry,1997,66:199-232.
    [175]Huijbregts RP., Kroon AI., and Kruijff B.. Topology and transport of membranelipids in bacteria[J]. Biochimica et Biophysica Acta-Biomembranes,2000,1469(1):43-61
    [176] Vanden EF., L we J.. RF cloning: a restriction-free method for inserting targetgenes into plasmids[J]. Journal of Biochemical and Biophysical Methods,2006,67(1):67-74
    [177] Liu HT., Naismith JH.. An efficient one-step site-directed deletion, insertion,single and multiple-site plasmid mutagenesis protocol[J]. BMC Biotechnology,2008,91(8):1-10
    [178] Bradford MM.. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding[J]. AnalyticalBiochemistry,1976,72(7):248-254
    [179]李建武,余瑞元,陈丽蓉等.生物化学实验原理和方法.北京:北京大学出版社,1994:168
    [180] Chekulayeva MN., Kurnasov OV., Shirokov VA., et al. Continuous-ExchangeCell-Free Protein-Synthesizing System: Synthesis of HIV-1Antigen Nef[J].Biochemical and Biophysical Research Community,2001,280:914-917
    [181] Busso D., Kim R., Kim SH.. Expression of soluble recombinant proteins in acell-free system using a96-well format[J]. Journal of Biochemical and BiophysicalMethods,2003,55:233-240
    [182] Katanaev VL., Spirin AS., Reuss M., et al. Formation of bacteriophage MS2infectious units in a cell-free translation system[J]. FEBS Letters,1996,397:143-148
    [183] Jiang X., Ookubo Y., Fujii I., et al. Expression of Fab fragment of catalyticantibody6D9in an Escherichia coli in vitro coupled transcription/translationsystem[J]. FEBS Letters,2002,514:290-294
    [184] Lehrer RI., Ganz T.. Antimicrobial peptides in mammalian and insect hostdefence[J]. Current Opinion in Immunology,1999,11:23-27
    [185] He M., Taussing MJ.. Discern Array TM technology: a cell-free method for thegeneration of protein arrays from PCR DNA[J]. Journal of Immunological Methods,2003,274:265-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700