HIV-1 Vpr激活细胞NF-κB信号通路分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Vpr是由人类免疫缺陷病毒Ⅰ型(HIV-1)编码的辅助蛋白。Vpr蛋白在病毒感染晚期表达,通过与Gagp6直接相互作用被包装到病毒颗粒中。Vpr在HIV-1复制及致病性等方面发挥重要作用,特别是能够在病毒感染早期改变细胞环境,使之有利于病毒复制。vpr基因的缺失会导致病毒复制能力显著下降。Vpr具有多种功能,包括可调节细胞NF-κB在内的多条信号通路,但Vpr对NF-κB信号通路的确切作用及其中的分子机制尚不明确。本文对Vpr与NF-κB信号通路的关系展开研究,获得相关实验数据如下:
     1.证实Vpr可同时激活NF-kB经典和非经典信号通路:发现在HIV-1感染早期,病毒颗粒包装的Vpr能增强IκBα的磷酸化;同时,Vpr可以促进p65磷酸化及入核并最终激活NF-κB报告基因;过表达Vpr及病毒颗粒携带的Vpr均能引起p100的磷酸化,促进p100剪切为p52,从而活化非经典通路。
     2.Vpr与NF-κB经典和非经典信号通路上游的IKKα和IKKβ存在相互作用,并调节二者的磷酸化;利用RNA干扰技术下调细胞内源p65、RelB、IKKα及IKKP的表达,发现Vpr对NF-κB信号通路的激活作用明显减弱。
     3.通过免疫共沉淀实验对IKK复合物上游关键调节因子的筛选,发现Vpr与TRAF6及TAK1在体内存在相互作用,不与TRAF2及TAB1相互作用。但Vpr并不能影响TRAF6的自身泛素化。过表达和病毒感染两个层面均证实Vpr可在多种细胞中增强TAK1第187位苏氨酸(Thr187)的磷酸化,导致底物蛋白IKKα、IKKβ及MKK7的磷酸化,进而活化下游信号通路;同时,Vpr对TAK1的磷酸化依赖于TAB1及TRAF6;此外,Vpr通过募集TAB3促进TAK1的泛素化。
     4.对Vpr活化NF-κB信号通路后对自身功能的影响进行初探:在NF-κB信号通路关键蛋白下调的细胞系中,检测Vpr对HIV-1LTR的激活作用,结果表明,Vpr介导的NF-κB活化促进了其对LTR的激活作用;进一步通过流式细胞术分析了Vpr在这些细胞系中诱导细胞周期G2/M期停滞的能力,初步证明NF-κB信号通路的激活有助于Vpr行使细胞周期停滞功能。
     综上所述,本文证实了HIV-1感染宿主细胞早期,Vpr能够激活细胞内NF-κB经典和非经典信号通路,并初步阐明其中的分子机制:Vpr一方面通过增强IKKα及IKKβ的磷酸化,另一方面通过结合并增强TAK1的活性,共同实现了“劫持”NF-κB信号通路的目的,并促进自身LTR的转录、引起细胞周期停滞在G2/M期,从而有利于病毒的复制。
Viral protein R (Vpr) is an accessory protein of human immunodeficiency virus type I (HIV-1). Vpr is expressed at the late stage of HIV-1infection and incorporated into virus particles through a direct interaction with the p6domain of Gag. Vpr plays an important role in HIV-1replication and pathogenesis, especially by conferring a favorable cellular environment for efficient replication of HIV-1. Deletion of vpr reduces viral replication. Multiple functions have been discovered for Vpr, including the regulation of cellular NF-κB signaling pathway. But the exact role of Vpr on NF-κB signaling pathway remains unclear. And the detailed mechanisms still need to be illustrated. This study focused on the relationship between Vpr and NF-κB and the main results are listed below.
     1. We confirmed that Vpr can activate canonical and non-canonical NF-κB signaling pathway. We found that at the early stage of HIV-1infection, Vpr, in the context of HIV-1virions, increased the phosphorylation of IκBα. In the meantime, Vpr elevated the phosphorylation and the nuclear transportation of p65, and stimulated the expression of NF-κB reporter gene in a dose-dependent manner. Furthermore, both ectopic expressed and virion-associated Vpr induced the phosphorylation of p100, and the processing of p100into p52, which resulted in the activation of non-canonical NF-κB pathway.
     2. Immunoprecipitation assay gave the clues that Vpr interacted with IKKa and IKKP which are the upstream kinases of the canonical and non-canonical NF-κB pathway. And Vpr regulated the phosphorylation of IKKa and IKKβ.In addition, the activation of NF-κB reporter by Vpr is severely reduced in p65, RelB, IKKa or IKKβ knockdown cell lines.
     3. With the benefit of immunoprecipitation between Vpr and the upstream signaling factors of IKK complex, we found that Vpr interacted with TRAF6and TAK1, but not TRAF2or TAB1. But Vpr didn't affect the auto-ubiquitination of TRAF6. Over-expressed and virion-associated Vpr enhanced the auto-phosphorylation-of TAK1on Thr187in various cell lines, which brought about the phosphorylation of IKKα, IKKβ, and MKK7, and the activation of downstream signal cascade. The phosphorylation of TAK1by Vpr relied on TAB1and TRAF6. Moreover, Vpr could increase the ubiquitination of TAK1by recruiting TAB3.
     4. Finally, we envisioned that NF-κB activation might affect the reported functions of Vpr. The HIV-1LTR reporter assay in NF-κB knockdown cell lines indicated that Vpr-mediated NF-κB activation promoted HIV-1LTR transcription. Additionally, preliminary results of Flow cytometry shown that NF-κB activation promoted Vpr-induced cell cycle G2/M arrest.
     Collectively, in this study, we demonstrate that Vpr activates both canonical and non-canonical NF-κB pathway at the early stage of HIV-1infection. The molecular mechanisms underlying this activation reveal that Vpr employs two patterns to hijack host NF-κB signaling pathway.(1) Vpr increases the phosphorylation of IKKa and IKKβ,(2) Vpr interacts with TAK1and elevated its activation. This results in the promotion of HIV-1LTR transcription, the cell cycle G2/M phase arrest and finally the virus replication.
引文
[1]Montagnier L. Historical essay. A history of HIV discovery. Science,2002.298 (5599): 1727-1728.
    [2]Gallo R C and Montagnier L. The discovery of HIV as the cause of AIDS. N Engl J Med, 2003.349 (24):2283-2285.
    [3]Sharp P M and Hahn B H. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med,2011.1 (1):a006841.
    [4]Available from:http://faculty.utpa.edu/lmateron/4404/viro-33.html.
    [5]Cullen B R. AIDS. The positive effect of the negative factor. Nature,1991.351 (6329): 698-699.
    [6]Wilson W, Braddock M, Adams S E, et al. HFV expression strategies:ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell, 1988.55(6):1159-1169.
    [7]Swanson C M and Malim M H. SnapShot:HIV-1 proteins. Cell,2008.133 (4):742,742 e741.
    [8]Reed-Inderbitzin E and Maury W. Cellular specificity of HIV-1 replication can be controlled by LTR sequences. Virology,2003.314 (2):680-695.
    [9]Fields B N, Knipe D M, and Howley P M, Fields virology.5th ed.2007, Philadelphia; London:Wolters Kluwer Health/Lippincott Williams & Wilkins.
    [10]Marcello A, Zoppe M, and Giacca M. Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator. IUBMB Life,2001.51 (3):175-181.
    [11]South T L, Blake P R, Sowder R C,3rd, et al. The nucleocapsid protein isolated from HIV-1 particles binds zinc and forms retroviral-type zinc fingers. Biochemistry,1990.29 (34):7786-7789.
    [12]Muriaux D, Mirro J, Harvin D, et al. RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A,2001.98 (9):5246-5251.
    [13]Freed E O. HIV-1 gag proteins:diverse functions in the virus life cycle. Virology,1998. 251 (1):1-15.
    [14]Jacks T, Power M D, Masiarz F R, et al. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature,1988.331 (6153):280-283.
    [15]Chertova E, Chertov O, Coren L V, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol,2006.80 (18):9039-9052.
    [16]Zhang S, Kaplan A H, and Tropsha A. HIV-1 protease function and structure studies with the simplicial neighborhood analysis of protein packing method. Proteins,2008.73 (3): 742-753.
    [17]Bahar I, Erman B, Jernigan R L, et al. Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. J Mol Biol,1999.285 (3):1023-1037.
    [18]Chow S A, Vincent K A, Ellison V, et al. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science,1992.255 (5045): 723-726.
    [19]Freed E O, Myers D J, and Risser R. Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci U S A, 1990.87 (12):4650-4654.
    [20]Furuta R A, Wild C T, Weng Y, et al. Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol,1998.5 (4):276-279.
    [21]Stevens M, De Clercq E, and Balzarini J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med Res Rev,2006.26 (5): 595-625.
    [22]Parada C A and Roeder R G. Enhanced processivity of RNA polymerase Ⅱ triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature,1996.384 (6607): 375-378.
    [23]Taylor J P, Kundu M, and Khalili K. TAR-independent activation of HIV-1 requires the activation domain but not the RNA-binding domain of Tat. Virology,1993.195 (2): 780-785.
    [24]Demarchi F, Gutierrez M I, and Giacca M. Human immunodeficiency virus type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J Virol,1999.73 (8):7080-7086.
    [25]Peruzzi F. The multiple functions of HFV-1 Tat:proliferation versus apoptosis. Front Biosci,2006.11:708-717.
    [26]Gee K, Angel J B, Ma W, et al. Intracellular HIV-Tat expression induces IL-10 synthesis by the CREB-1 transcription factor through Ser133 phosphorylation and its regulation by the ERK1/2 MAPK in human monocytic cells. J Biol Chem,2006.281 (42): 31647-31658.
    [27]Muesing M A, Smith D H, and Capon D J. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell,1987.48 (4):691-701.
    [28]Malim M H and Cullen B R. HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE:implications for HIV-1 latency. Cell,1991.65 (2):241-248.
    [29]Rosenbluh J, Hayouka Z, Loya S, et al. Interaction between HIV-1 Rev and integrase proteins:a basis for the development of anti-HIV peptides. J Biol Chem,2007.282 (21): 15743-15753.
    [30]Garrett E D, Tiley L S, and Cullen B R. Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol,1991.65 (3): 1653-1657.
    [31]Bishop K N, Holmes R K, Sheehy A M, et al. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol,2004.14(15):1392-1396.
    [32]Lecossier D, Bouchonnet F, Clavel F, et al. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science,2003.300 (5622):1112.
    [33]Liddament M T, Brown W L, Schumacher A J, et al. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol,2004.14 (15):1385-1391.
    [34]Mangeat B, Turelli P, Caron G, et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature,2003.424 (6944):99-103.
    [35]Yu X, Yu Y, Liu B, et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science,2003.302 (5647):1056-1060.
    [36]Mehle A, Strack B, Ancuta P, et al. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem,2004.279 (9):7792-7798.
    [37]Mercenne G, Bernacchi S, Richer D, et al. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Res,2010.38 (2):633-646.
    [38]Wang J, Shackelford J M, Casella C R, et al. The Vif accessory protein alters the cell cycle of human immunodeficiency virus type 1 infected cells. Virology,2007.359 (2): 243-252.
    [39]Bour S and Strebel K. The HIV-1 Vpu protein:a multifunctional enhancer of viral particle release. Microbes Infect,2003.5 (11):1029-1039.
    [40]Margottin F, Bour S P, Durand H, et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell,1998.1 (4):565-574.
    [41]Bour S, Schubert U, and Strebel K. The human immunodeficiency virus type 1 Vpu protein specifically binds to the cytoplasmic domain of CD4:implications for the mechanism of degradation. J Virol,1995.69 (3):1510-1520.
    [42]Varthakavi V, Smith R M, Bour S P, et al. Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci U S A,2003.100 (25):15154-15159.
    [43]Van Damme N, Goff D, Katsura C, et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe,2008.3 (4):245-252.
    [44]Neil S J, Zang T, and Bieniasz P D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature,2008.451 (7177):425-430.
    [45]Goffinet C, Allespach I, Homann S, et al. HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe,2009.5 (3):285-297.
    [46]Akari H, Bour S, Kao S, et al. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor kappaB-dependent expression of antiapoptotic factors. J Exp Med,2001.194 (9):1299-1311.
    [47]Niederman T M, Hastings W R, and Ratner L. Myristoylation-enhanced binding of the HIV-1 Nef protein to T cell skeletal matrix. Virology,1993.197 (1):420-425.
    [48]Kestler H W,3rd, Ringler D J, Mori K, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell,1991.65 (4):651-662.
    [49]Lu X, Yu H, Liu S H, et al. Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity,1998.8 (5):647-656.
    [50]Kim Y H, Chang S H, Kwon J H, et al. HIV-1 Nef plays an essential role in two independent processes in CD4 down-regulation:dissociation of the CD4-p56(lck) complex and targeting of CD4 to lysosomes. Virology,1999.257 (1):208-219.
    [51]Simmons A, Aluvihare V, and McMichael A. Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity,2001.14 (6):763-777.
    [52]Fackler O T, Wolf D, Weber H O, et al. A natural variability in the proline-rich motif of Nef modulates HIV-1 replication in primary T cells. CurrBiol,2001.11 (16):1294-1299.
    [53]Gill G, Pascal E, Tseng Z H, et al. A glutamine-rich hydrophobic patch in transcription factor Spl contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc Natl Acad Sci U S A,1994.91(1):192-196.
    [54]Emili A, Greenblatt J, and Ingles C J. Species-specific interaction of the glutamine-rich activation domains of Spl with the TATA box-binding protein. Mol Cell Biol,1994.14 (3):1582-1593.
    [55]Chiang C M and Roeder R G. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science,1995.267 (5197):531-536.
    [56]Huang L M and Jeang K T. Increased spacing between Spl and TATAA renders human immunodeficiency virus type 1 replication defective:implication for Tat function. J Virol, 1993.67 (12):6937-6944.
    [57]Yedavalli V S, Benkirane M, and Jeang K T. Tat and trans-activation-responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 requires Spl. J Biol Chem,2003.278 (8):6404-6410.
    [58]Widlak P, Gaynor R B, and Garrard W T. In vitro chromatin assembly of the HIV-1 promoter. ATP-dependent polar repositioning of nucleosomes by Spl and NFkappaB. J Biol Chem,1997.272 (28):17654-17661.
    [59]Roulston A, Lin R, Beauparlant P, et al. Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-kappa B/Rel transcription factors. Microbiol Rev,1995.59 (3):481-505.
    [60]Phares W, Franza B R, Jr., and Herr W. The kappa B enhancer motifs in human immunodeficiency virus type 1 and simian virus 40 recognize different binding activities in human Jurkat and H9 T cells:evidence for NF-kappa B-independent activation of the kappa B motif. J Virol,1992.66 (12):7490-7498.
    [61]Nabel G and Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature,1987.326 (6114):711-713.
    [62]Griffin G E, Leung K, Folks T M, et al. Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature,1989.339 (6219):70-73.
    [63]Roulston A, Beauparlant P, Rice N, et al. Chronic human immunodeficiency virus type 1 infection stimulates distinct NF-kappa B/rel DNA binding activities in myelomonoblastic cells. J Virol,1993.67 (9):5235-5246.
    [64]Li Y, Mak G, and Franza B R, Jr. In vitro study of functional involvement of Spl, NF-kappa B/Rel, and API in phorbol 12-myristate 13-acetate-mediated HIV-1 long terminal repeat activation. J Biol Chem,1994.269 (48):30616-30619.
    [65]Perkins N D, Edwards N L, Duckett C S, et al. A cooperative interaction between NF-kappa B and Spl is required for HIV-1 enhancer activation. EMBO J,1993.12 (9): 3551-3558.
    [66]Crabtree G R and Olson E N. NFAT signaling:choreographing the social lives of cells. Cell,2002.109 Suppl:S67-79.
    [67]Hogan P G, Chen L, Nardone J, et al. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev,2003.17 (18):2205-2232.
    [68]Ranjbar S, Tsytsykova A V, Lee S K, et al. NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site. PLoS Pathog,2006.2(12):e130.
    [69]Markovitz D M, Hannibal M C, Smith M J, et al. Activation of the human immunodeficiency virus type 1 enhancer is not dependent on NFAT-1. J Virol,1992.66 (6):3961-3965.
    [70]Giffin M J, Stroud J C, Bates D L, et al. Structure of NFAT1 bound as a dimer to the HIV-1 LTR kappa B element. Nat Struct Biol,2003.10 (10):800-806.
    [71]Romanchikova N, Ivanova V, Scheller C, et al. NFAT transcription factors control HIV-1 expression through a binding site downstream of TAR region. Immunobiology,2003.208 (4):361-365.
    [72]Kilareski E M, Shah S, Nonnemacher M R, et al. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology,2009.6:118.
    [73]Tripathy M K, Abbas W, and Herbein G. Epigenetic regulation of HIV-1 transcription. Epigenomics,2011.3 (4):487-502.
    [74]Ciardi M, Sharief M K, Thompson E J, et al. High cerebrospinal fluid and serum levels of tumor necrosis factor-alpha in asymptomatic HIV-1 seropositive individuals. Correlation with interleukin-2 and soluble IL-2 receptor. J Neurol Sci,1994.125 (2):175-179.
    [75]Ownby R L, Kumar A M, Benny Fernandez J, et al. Tumor necrosis factor-alpha levels in HIV-1 seropositive injecting drug users. J Neuroimmune Pharmacol,2009.4 (3): 350-358.
    [76]Esser R, Glienke W, von Briesen H, et al. Differential regulation of proinflammatory and hematopoietic cytokines in human macrophages after infection with human immunodeficiency virus. Blood,1996.88 (9):3474-3481.
    [77]Hungness E S, Luo G J, Pritts T A, et al. Transcription factors C/EBP-beta and-delta regulate IL-6 production in IL-lbeta-stimulated human enterocytes. J Cell Physiol,2002. 192 (1):64-70.
    [78]Pope R, Mungre S, Liu H, et al. Regulation of TNF-alpha expression in normal macrophages:the role of C/EBPbeta. Cytokine,2000.12 (8):1171-1181.
    [79]Swingler S, Mann A, Jacque J, et al. HFV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med,1999.5 (9):997-103.
    [80]Ott M, Schnolzer M, Garnica J, et al. Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol,1999.9 (24):1489-1492.
    [81]Vardabasso C, Manganaro L, Lusic M, et al. The histone chaperone protein Nucleosome Assembly Protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription. Retrovirology,2008.5:8.
    [82]Hidalgo-Estevez A M, Gonzalez E, Punzon C, et al. Human immunodeficiency virus type 1 Tat increases cooperation between AP-1 and NEAT transcription factors in T cells. J Gen Virol,2006.87 (Pt 6):1603-1612.
    [83]Chun R F, Semmes O J, Neuveut C, et al. Modulation of Spl phosphorylation by human immunodeficiency virus type 1 Tat. J Virol,1998.72 (4):2615-2629.
    [84]Beral V, Peterman T A, Berkelman R L, et al. Kaposi's sarcoma among persons with ADDS:a sexually transmitted infection? Lancet,1990.335 (8682):123-128.
    [85]Geng Y Q, Chandran B, Josephs S F, et al. Identification and characterization of a human herpesvirus 6 gene segment that trans activates the human immunodeficiency virus type 1 promoter. J Virol,1992.66 (3):1564-1570.
    [86]Golden M P, Kim S, Hammer S M, et al. Activation of human immunodeficiency virus by herpes simplex virus. J Infect Dis,1992.166 (3):494-499.
    [87]Celum C L. The interaction between herpes simplex virus and human immunodeficiency virus. Herpes,2004.11 Suppl 1:36A-45A.
    [88]Heng M C, Heng S Y, and Allen S G. Co-infection and synergy of human immunodeficiency virus-1 and herpes simplex virus-1. Lancet,1994.343 (8892): 255-258.
    [89]Diao L, Zhang B, Fan J, et al. Herpes virus proteins ICPO and-BICPO can activate NF-kappaB by catalyzing DcappaBalpha ubiquitination. Cell Signal,2005.17 (2): 217-229.
    [90]Diao L, Zhang B, Xuan C, et al. Activation of c-Jun N-terminal kinase (JNK) pathway by HSV-1 immediate early protein ICPO. Exp Cell Res,2005.308 (1):196-210.
    [91]Bednarik D P, Mosca J D, and Raj N B. Methylation as a modulator of expression of human immunodeficiency virus. J Virol,1987.61 (4):1253-1257.
    [92]Gutekunst K A, Kashanchi F, Brady J N, et al. Transcription of the HIV-1 LTR is regulated by the density of DNA CpG methylation. J Acquir Immune Defic Syndr,1993. 6 (6):541-549.
    [93]Schulze-Forster K, Gotz F, Wagner H, et al. Transcription of HIV1 is inhibited by DNA methylation. Biochem Biophys Res Commun,1990.168 (1):141-147.
    [94]Bednarik D P, Cook J A, and Pitha P M. Inactivation of the HIV LTR by DNA CpG methylation:evidence for a role in latency. EMBO J,1990.9 (4):1157-1164.
    [95]Joel P, Shao W, and Pratt K. A nuclear protein with enhanced binding to methylated Spl sites in the AIDS virus promoter. Nucleic Acids Res,1993.21 (24):5786-5793.
    [96]Pion M, Jordan A, Biancotto A, et al. Transcriptional suppression of in vitro-integrated human immunodeficiency virus type 1 does not correlate with proviral DNA methylation. J Virol,2003.77 (7):4025-4032.
    [97]Cohen E A, Terwilliger E F, Jalinoos Y, et al. Identification of HIV-1 vpr product and function. J Acquir Immune Defic Syndr,1990.3 (1):11-18.
    [98]Yuan X, Matsuda Z, Matsuda M, et al. Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses,1990.6 (11):1265-1271.
    [99]Ogawa K, Shibata R, Kiyomasu T, et al. Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol,1989.63 (9):4110-4114.
    [100]Wong-Staal F, Chanda P K, and Ghrayeb J. Human immunodeficiency virus:the eighth gene. AIDS Res Hum Retroviruses,1987.3(1):33-39.
    [101]Tristem M, Marshall C, Karpas A, et al. Evolution of the primate lentiviruses:evidence from vpx and vpr. EMBO J,1992.11 (9):3405-3412.
    [102]Tristem M, Purvis A, and Quicke D L. Complex evolutionary history of primate lenti viral vpr genes. Virology,1998.240 (2):232-237.
    [103]Cohen E A, Dehni G, Sodroski J G, et al. Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol,1990.64 (6):3097-3099.
    [104]Paxton W, Connor R I, and Landau N R. Incorporation of Vpr into human immunodeficiency virus type 1 virions:requirement for.the p6 region of gag and mutational analysis. J Virol,1993.67 (12):7229-7237.
    [105]Schwartz S, Felber B K, and Pavlakis G N. Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev-dependent and regulated by splicing. Virology, 1991.183 (2):677-686.
    [106]Sherman M P, de Noronha C M, Eckstein L A, et al. Nuclear export of Vpr is required for efficient replication of human immunodeficiency virus type 1 in tissue macrophages. J Virol,2003.77 (13):7582-7589.
    [107]Jacquot G, Le Rouzic E, David A, et al. Localization of HIV-1 Vpr to the nuclear envelope:impact on Vpr functions and virus replication in macrophages. Retrovirology, 2007.4:84.
    [108]Lu Y L, Speannan P, and Ratner L. Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol,1993.67 (11):6542-6550.
    [109]Hoshino S, Konishi M, Mori M, et al. HIV-1 Vpr induces TLR4/MyD88-mediated IL-6 production and reactivates viral production from latency. J Leukoc Biol,2010.87 (6): 1133-1143.
    [110]Schuler W, Wecker K, de Rocquigny H, et al. NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr:molecular insights into its biological functions. J Mol Biol,1999.285 (5):2105-2117.
    [111]Wecker K and Roques B P. NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr. Eur J Biochem,1999.266 (2):359-369.
    [112]Morellet N, Bouaziz S, Petitjean P, et al. NMR structure of the HIV-1 regulatory protein VPR. J Mol Biol,2003.327 (1):215-227.
    [113]Coeytaux E, Coulaud D, Le Cam E, et al. The cationic amphipathic alpha-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells. J Biol Chem,2003.278 (20):18110-18116.
    [114]Fritz J V, Didier P, Clamme J P, et al. Direct Vpr-Vpr interaction in cells monitored by two photon fluorescence correlation spectroscopy and fluorescence lifetime imaging. Retrovirology,2008.5:87.
    [115]Kichler A, Pages J C, Leborgne C, et al. Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R. J Virol, 2000.74(12):5424-5431.
    [116]Sherman M P, Schubert U, Williams S A, et al. HIV-1 Vpr displays natural protein-transducing properties:implications for viral pathogenesis. Virology,2002.302 (1):95-105.
    [117]Planelles V and Barker E. Roles of Vpr and Vpx in modulating the virus-host cell relationship. Mol Aspects Med,2010.31 (5):398-406.
    [118]Lum J J, Cohen O J, Nie Z, et al. Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest,2003.111 (10): 1547-1554.
    [119]Caly L, Saksena N K, Piller S C, et al. Impaired nuclear import and viral incorporation of Vpr derived from a HIV long-term non-progressor. Retrovirology,2008.5:67.
    [120]Kogan M and Rappaport J. HIV-1 accessory protein Vpr:relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology,2011.8:25.
    [121]Roshal M, Kim B, Zhu Y, et al. Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem,2003.278 (28):25879-25886.
    [122]Brasey A, Lopez-Lastra M, Ohlmann T, et al. The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol,2003.77 (7):3939-3949.
    [123]Masuda M, Nagai Y, Oshima N, et al. Genetic studies with the fission yeast Schizosaccharomyces pombe suggest involvement of wee 1, ppa2, and rad24 in induction of cell cycle arrest by human immunodeficiency virus type 1 Vpr. J Virol,2000.74 (6): 2636-2646.
    [124]Zhao R Y and Elder R T. Viral infections and cell cycle G2/M regulation. Cell Res,2005. 15(3):143-149.
    [125]Zhou Y and Ratner L. Phosphorylation of human immunodeficiency virus type 1 Vpr regulates cell cycle arrest. J Virol,2000.74 (14):6520-6527.
    [126]Barnitz R A, Wan F, Tripuraneni V, et al. Protein kinase A phosphorylation activates Vpr-induced cell cycle arrest during human immunodeficiency virus type 1 infection. J Virol,2010.84 (13):6410-6424.
    [127]He J, Choe S, Walker R, et al. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol, 1995.69 (11):6705-6711.
    [128]Re F, Braaten D, Franke E K, et al. Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol,1995.69 (11):6859-6864.
    [129]Goh W C, Manel N, and Emerman M. The human immunodeficiency virus Vpr protein binds Cdc25C:implications for G2 arrest. Virology,2004.318 (1):337-349.
    [130]Jowett J B, Planelles V, Poon B, et al. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2+M phase of the cell cycle. J Virol,1995.69 (10): 6304-6313.
    [131]Kino T, Gragerov A, Valentin A, et al. Vpr protein of human immunodeficiency virus type 1 binds to 14-3-3 proteins and facilitates complex formation with Cdc25C: implications for cell cycle arrest. J Virol,2005.79 (5):2780-2787.
    [132]Romani B and Engelbrecht S. Human immunodeficiency virus type 1 Vpr:functions and molecular interactions. J Gen Virol,2009.90 (Pt 8):1795-1805.
    [133]Angers S, Li T, Yi X, et al. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature,2006.443 (7111):590-593.
    [134]He Y J, McCall C M, Hu J, et al. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev,2006.20 (21):2949-2954.
    [135]Higa L A, Wu M, Ye T, et al. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol,2006.8 (11): 1277-1283.
    [136]Jin J, Arias E E, Chen J, et al. A family of diverse Cul4-Ddbl-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell,2006.23 (5):709-721.
    [137]Wen X, Duus K M, Friedrich T D, et al. The HIV1 protein Vpr acts to promote G2 cell cycle arrest by engaging a DDB1 and Cullin4A-containing ubiquitin ligase complex using VprBP/DCAF1 as an adaptor. J Biol Chem,2007.282 (37):27046-27057.
    [138]Higa L A and Zhang H. Stealing the spotlight:CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div,2007.2:5.
    [139]Li G, Elder R T, Dubrovsky L, et al. HIV-1 replication through hHR23A-mediated interaction of Vpr with 26S proteasome. PLoS One,2010.5 (6):e11371.
    [140]Sawaya B E, Khalili K, Gordon J, et al. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J Biol Chem, 2000.275 (45):35209-35214.
    [141]Zhu Y, Gelbard H A, Roshal M, et al. Comparison of cell cycle arrest, transactivation, and apoptosis induced by the simian immunodeficiency virus SIVagm and human immunodeficiency virus type 1 vpr genes. J Virol,2001.75 (8):3791-3801.
    [142]Zhang S, Pointer D, Singer G, et al. Direct binding to nucleic acids by Vpr of human immunodeficiency virus type 1. Gene,1998.212 (2):157-166.
    [143]Wang L, Mukherjee S, Jia F, et al. Interaction of virion protein Vpr of human immunodeficiency virus type 1 with cellular transcription factor Sp1 and trans-activation of viral long terminal repeat. J Biol Chem,1995.270 (43):25564-25569.
    [144]Agostini I, Navarro J M, Bouhamdan M, et al. The HIV-1 Vpr co-activator induces a conformational change in TFIIB. FEBS Lett,1999.450 (3):235-239.
    [145]Agostini I, Navarro J M, Rey F, et al. The human immunodeficiency virus type 1 Vpr transactivator:cooperation with promoter-bound activator domains and binding to TFIIB. J Mol Biol,1996.261 (5):599-606.
    [146]Felzien L K, Woffendin C, Hottiger M O, et al. HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc Natl Acad Sci USA, 1998.95 (9):5281-5286.
    [147]Burdo T H, Nonnemacher M, Irish B P, et al. High-affinity interaction between HIV-1 Vpr and specific sequences that span the C/EBP and adjacent NF-kappaB sites within the HIV-1 LTR correlate with HIV-1-associated dementia. DNA Cell Biol,2004.23 (4): 261-269.
    [148]Ramanathan M P, Curley E,3rd, Su M, et al. Carboxyl terminus of hVIP/mov34 is critical for HIV-1-Vpr interaction and glucocorticoid-mediated signaling. J Biol Chem, 2002.277 (49):47854-47860.
    [149]Kondo E and Gottlinger H G. A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol,1996.70(1):159-164.
    [150]Gallay P, Stitt V, Mundy C, et al. Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol,1996.70 (2):1027-1032.
    [151]Liu H, Wu X, Xiao H, et al. Targeting human immunodeficiency virus (HIV) type 2 integrase protein into HIV type 1. J Virol,1999.73 (10):8831-8836.
    [152]Hogan T H, Nonnemacher M R, Krebs F C, et al. HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions is sequence-specific. Biomed Pharmacother,2003.57 (1):41-48.
    [153]Varin A, Decrion A Z, Sabbah E, et al. Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-kappaB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J Biol Chem,2005.280 (52): 42557-42567.
    [154]Zhu Y, Roshal M, Li F, et al. Upregulation of survivin by HIV-1 Vpr. Apoptosis,2003.8 (1):71-79.
    [155]Conti L, Matarrese P, Varano B, et al. Dual role of the HIV-1 vpr protein in the modulation of the apoptotic response of T cells. J Immunol,2000.165 (6):3293-3300.
    [156]Muthumani K, Hwang D S, Desai B M, et al. HIV-1 Vpr induces apoptosis through caspase 9 in T cells and peripheral blood mononuclear cells. J Biol Chem,2002.277 (40): 37820-37831.
    [157]Yedavalli V S, Shih H M, Chiang Y P, et al. Human immunodeficiency virus type 1 Vpr interacts with antiapoptotic mitochondrial protein HAX-1. J Virol,2005.79 (21): 13735-13746.
    [158]Snyder A, Alsauskas Z C, Leventhal J S, et al. HIV-1 viral protein r induces ERK and caspase-8-dependent apoptosis in renal tubular epithelial cells. AIDS,2010.24 (8): 1107-1119.
    [159]Li Y, Zhang Z, Wakefield J K, et al. Nucleotide substitutions within U5 are critical for efficient reverse transcription of human immunodeficiency virus type 1 with a primer binding site complementary to tRNA(His). J Virol,1997.71 (9):6315-6322.
    [160]Yoshikawa T, Matsuo K, Suzuki Y, et al. Total viral genome copies and virus-Ig complexes after infection with influenza virus in the nasal secretions of immunized mice. J Gen Virol,2004.85 (Pt 8):2339-2346.
    [161]Stark L A and Hay R T. Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) interacts with Lys-tRNA synthetase:implications for priming of HIV-1 reverse transcription. J Virol,1998.72 (4):3037-3044.
    [162]Jenkins Y, McEntee M, Weis K, et al. Characterization of HIV-1 vpr nuclear import: analysis of signals and pathways. J Cell Biol,1998.143 (4):875-885.
    [163]Le Rouzic E, Mousnier A, Rustum C, et al. Docking of HFV-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCGl. J Biol Chem,2002. 277 (47):45091-45098.
    [164]Agostini I, Popov S, Li J, et al. Heat-shock protein 70 can replace viral protein R of HIV-1 during nuclear import of the viral preintegration complex. Exp Cell Res,2000.259 (2):398-403.
    [165]Nitahara-Kasahara Y, Kamata M, Yamamoto T, et al. Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages. J Virol,2007.81 (10):5284-5293.
    [166]Sen R and Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell,1986.47 (6):921-928.
    [167]Oeckinghaus A and Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol,2009.1 (4):a000034.
    [168]Hayden M S and Ghosh S. Signaling to NF-kappaB. Genes Dev,2004.18 (18): 2195-2224.
    [169]Regnier C H, Song H Y, Gao X, et al. Identification and characterization of an IkappaB kinase. Cell,1997.90 (2):373-383.
    [170]Zandi E, Chen Y, and Karin M. Direct phosphorylation of IkappaB by IKKalpha and IKKbeta:discrimination between free and NF-kappaB-bound substrate. Science,1998. 281 (5381):1360-1363.
    [171]Ghosh G, Wang V Y, Huang D B, et al. NF-kappaB regulation:lessons from structures. Immunol Rev,2012.246 (1):36-58.
    [172]Tegethoff S, Behlke J, and Scheidereit C. Tetrameric oligomerization of IkappaB kinase gamma (IKKgamma) is obligatory for IKK complex activity and NF-kappaB activation. Mol Cell Biol,2003.23 (6):2029-2041.
    [173]Hayden M S and Ghosh S. Shared principles in NF-kappaB signaling. Cell,2008.132 (3): 344-362.
    [174]Scheidereit C. IkappaB kinase complexes:gateways to NF-kappaB activation and transcription. Oncogene,2006.25 (51):6685-6705.
    [175]Hacker H and Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE,2006.2006 (357):rel3.
    [176]Ducut Sigala J L, Bottero V, Young D B, et al. Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science,2004.304 (5679):1963-1967.
    [177]Chen G, Cao P, and Goeddel D V. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell,2002.9 (2):401-410.
    [178]Ran R, Lu A, Zhang L, et al. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev,2004.18 (12): 1466-1481.
    [179]Hu Y, Baud V, Oga T, et al. IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature,2001.410 (6829):710-714.
    [180]Yamamoto Y, Verma U N, Prajapati S, et al. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature,2003.423 (6940):655-659.
    [181]Lawrence T, Bebien M, Liu G Y, et al. IKKalpha limits macrophage'NF-kappaB activation and contributes to the resolution of inflammation. Nature,2005:434 (7037): 1138-1143.
    [182]Rahman M M and McFadden G. Modulation of NF-kappaB signalling by microbial pathogens. Nat Rev Microbiol,2011.9 (4):291-306.
    [183]Xiao G, Rabson A B, Young W, et al. Alternative pathways of NF-kappaB activation:a double-edged sword in health and disease. Cytokine Growth Factor Rev,2006.17 (4): 281-293.
    [184]Bakkar N and Guttridge D C. NF-kappaB signaling:a tale of two pathways in skeletal myogenesis. Physiol Rev,2010.90 (2):495-511.
    [185]Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology:pitfalls and promises for future drug development. Biochem Pharmacol,2006.72 (9):1161-1179.
    [186]Sun S C. Non-canonical NF-kappaB signaling pathway. Cell Res,2011.21 (1):71-85.
    [187]Fong A, Zhang M, Neely J, et al. S9, a 19 S proteasome subunit interacting with ubiquitinated NF-kappaB2/p100. J Biol Chem,2002.277 (43):40697-40702.
    [188]Vatsyayan J, Qing G, Xiao G, et al. SUMO1 modification of NF-kappaB2/p100 is essential for stimuli-induced p100 phosphorylation and processing. EMBO Rep,2008.9 (9):885-890.
    [189]Razani B, Reichardt A D, and Cheng G. Non-canonical NF-kappaB signaling activation and regulation:principles and perspectives. Immunol Rev,2011.244 (1):44-54.
    [190]Briand G, Barbeau B, and Tremblay M. Binding of HIV-1 to its receptor induces tyrosine phosphorylation of several CD4-associated proteins, including the phosphatidylinositol 3-kinase. Virology,1997.228 (2):171-179.
    [191]Flory E, Weber C K, Chen P, et al. Plasma membrane-targeted Raf kinase activates NF-kappaB and human immunodeficiency virus type 1 replication in T lymphocytes. J Virol,1998.72 (4):2788-2794.
    [192]Popik W and Pitha P M. Binding of human immunodeficiency virus type 1 to CD4 induces association of Lck and Raf-1 and activates Raf-1 by a Ras-independent pathway. Mol Cell Biol,1996.16 (11):6532-6541.
    [193]Postler T S and Desrosiers R C. The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-kappaB activation through TGF-beta-activated kinase 1. Cell Host Microbe, 2012.11(2):181-193.
    [194]Varin A, Manna S K, Quivy V, et al. Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. J Biol Chem,2003.278 (4):2219-2227.
    [195]Conant K, Ma M, Nath A, et al. Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF-kappa B binding and protein kinase C activity in primary human astrocytes. J Virol,1996.70 (3):1384-1389.
    [196]Fiume G, Vecchio E, De Laurentiis A, et al. Human immunodeficiency virus-1 Tat .activates NF-kappaB via physical interaction with IkappaB-alpha and p65. Nucleic Acids Res,2012.40 (8):3548-3562.
    [197]Furia B, Deng L, Wu K, et al. Enhancement of nuclear factor-kappa B acetylation by coactivator p300 and HIV-1 Tat proteins. J Biol Chem,2002.277 (7):4973-4980.
    [198]Roux P, Alfieri C, Hrimech M, et al. Activation of transcription factors NF-kappaB and NF-IL-6 by human immunodeficiency virus type 1 protein R (Vpr) induces interleukin-8 expression. J Virol,2000.74 (10):4658-4665.
    [199]Ayyavoo V, Mahboubi A, Mahalingam S, et al. HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor kappa B. Nat Med,1997.3 (10): 1117-1123.
    [200]Kogan M, Deshmane S, Sawaya B, et al. Inhibition of NF-kappaB activity by HIV-1 Vpr is dependent on Vpr binding protein. J Cell Physiol,2013.288 (4):781-790.
    [201]Huang J, Ren T, Guan H, et al. HTLV-1 Tax is a critical lipid raft modulator that hijacks DcappaB kinases to the microdomains for persistent activation of NF-kappaB. J Biol Chem,2009.284 (10):6208-6217.
    [202]Wu X and Sun S C. Retroviral oncoprotein Tax deregulates NF-kappaB by activating Takl and mediating the physical association of Takl-IKK. EMBO Rep,2007.8 (5): 510-515.
    [203]Xiao G, Cvijic M E, Fong A, et al. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells:evidence for the involvement of IKKalpha. EMBO J,2001. 20 (23):6805-6815.
    [204]Fu D X, Kuo Y L, Liu B Y, et al. Human T-lymphotropic virus type I tax activates I-kappa B kinase by inhibiting I-kappa B kinase-associated serine/threonine protein phosphatase 2A. J Biol Chem,2003.278 (3):1487-1493.
    [205]Mosialos G, Birkenbach M, Yalamanchili R, et al. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell,1995.80 (3):389-399.
    [206]Huen D S, Henderson S A, Croom-Carter D, et al. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene,1995.10 (3):549-560.
    [207]Sciortino M T, Medici M A, Marino-Merlo F, et al. Involvement of HVEM receptor in activation of nuclear factor kappaB by herpes simplex virus 1 glycoprotein D. Cell Microbiol,2008.10 (11):2297-2311.
    [208]Hargett D, Rice S, and Bachenheimer S L. Herpes simplex virus type 1 ICP27-dependent activation of NF-kappaB. J Virol,2006.80 (21):10565-10578.
    [209]Santoro M G, Rossi A, and Amici C. NF-kappaB and virus infection:who controls whom. EMBO J,2003.22 (11):2552-2560.
    [210]Bour S, Perrin C, Akari H, et al. The human immunodeficiency virus type 1 Vpu protein inhibits NF-kappa B activation by interfering with beta TrCP-mediated degradation of Dcappa B. J Biol Chem,2001.276 (19):15920-15928.
    [211]Yim H C, Li J C, Lau J S, et al. HIV-1 Tat dysregulation of lipopolysaccharide-induced cytokine responses:microbial interactions in HIV infection. AIDS,2009.23 (12): 1473-1484.
    [212]Graff J W, Ettayebi K, and Hardy M E. Rotavirus NSP1 inhibits NFkappaB activation by inducing proteasome-dependent degradation of beta-TrCP:a novel mechanism of IFN antagonism. PLoS Pathog,2009.5 (1):e1000280.
    [213]Tait S W, Reid E B, Greaves D R, et al. Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa b alpha. Signal-induced release of i kappa b alpha results in binding of the viral homologue to NF-kappa B. J Biol Chem,2000.275 (44): 34656-34664.
    [214]Zaragoza C, Saura M, Padalko E Y, et al. Viral protease cleavage of inhibitor of kappaBalpha triggers host cell apoptosis. Proc Natl Acad Sci U S A,2006.103 (50): 19051-19056.
    [215]Eferl R and Wagner E F. AP-1:a double-edged sword in tumorigenesis. Nat Rev Cancer, 2003.3 (11):859-868.
    [216]Shaulian E and Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol,2002.4 (5):E131-136.
    [217]Whitmarsh A J. Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta,2007.1773 (8):1285-1298.
    [218]Gehart H, Kumpf S, Ittner A, et al. MAPK signalling in cellular metabolism:stress or wellness? EMBO Rep,2010.11 (11):834-840.
    [219]Keshet Y and Seger R. The MAP kinase signaling cascades:a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol,2010. 661:3-38.
    [220]Diao J, Garces R, and Richardson C D. X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev,2001.12 (2-3): 189-205.
    [221]Farrell P J. Signal transduction from the Epstein-Barr virus LMP-1 transforming protein. Trends Microbiol,1998.6 (5):175-177; discussion 177-178.
    [222]Kim S, Yu S S, Lee I S, et al. Human cytomegalovirus IE1 protein activates AP-1 through a cellular protein kinase(s). J Gen Virol,1999.80 (Pt 4):961-969.
    [223]Smith C C, Nelson J, Aurelian L, et al. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol,2000.74 (22): 10417-10429.
    [224]He R, Leeson A, Andonov A, et al. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun,2003.311 (4): 870-876.
    [225]Kumar A, Manna S K, Dhawan S, et al. HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1. J Immunol,1998.161 (2):776-781.
    [226]Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science,1995. 270 (5244):2008-2011.
    [227]Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci,2012.33 (10):522-530.
    [228]Shibuya H, Yamaguchi K, Shirakabe K, et al. TAB 1:an activator of the TAK1 MAPKKK inTGF-beta signal transduction. Science,1996.272 (5265):1179-1182.
    [229]Takaesu G, Kishida S, Hiyama A, et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell,2000.5 (4):649-658.
    [230]Shim J H, Xiao C, Paschal A E, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev,2005.19 (22):2668-2681.
    [231]Komatsu Y, Shibuya H, Takeda N, et al. Targeted disruption of the Tabl gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech Dev, 2002.119 (2):239-249.
    [232]Sanjo H, Takeda K, Tsujimura T, et al. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol,2003.23 (4):1231-1238.
    [233]Sakurai H, Nishi A, Sato N, et al. TAK1-TAB1 fusion protein:a novel constirutively active mitogen-activated protein kinase kinase kinase that stimulates AP-1 and NF-kappaB signaling pathways. Biochem Biophys Res Commun,2002.297 (5): 1277-1281.
    [234]Yu Y, Ge N, Xie M, et al. Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-1-mediated optimal NFkappaB and AP-1 activation as well as IL-6 gene expression. J Biol Chem,2008.283 (36):24497-24505.
    [235]Kishimoto K, Matsumoto K, and Ninomiya-Tsuji J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J Biol Chem,2000.275 (10):7359-7364.
    [236]Singhirunnusorn P, Suzuki S, Kawasaki N, et al. Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem,2005.280 (8):7359-7368.
    [237]Yamazaki K, Gohda J, Kanayama A, et al. Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling. Sci Signal,2009.2 (93):ra66.
    [238]Fan Y, Yu Y, Shi Y, et al. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha-and interleukin-1 beta-induced IKK/NF-kappaB and JNK/AP-1 activation. J Biol Chem,2010.285 (8):5347-5360.
    [239]Kulathu Y, Akutsu M, Bremm A, et al. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat Struct Mol Biol,2009.16 (12):1328-1330.
    [240]Xia Z P, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature,2009.461 (7260):114-119.
    [241]Kajino T, Ren H, Iemura S, et al. Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J Biol Chem,2006.281 (52):39891-39896.
    [242]Kim S I, Kwak J H, Wang L, et al. Protein phosphatase 2A is a negative regulator of transforming growth factor-beta 1-induced TAK1 activation in mesangial cells. J Biol Chem,2008.283 (16):10753-10763.
    [243]Cheung P C, Campbell D G, Nebreda A R, et al. Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J,2003.22 (21):5793-5805.
    [244]Ahmed N, Zeng M, Sinha I, et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Takl and inflammation. Nat Immunol,2011.12(12):1176-1183.
    [245]Fan Y, Shi Y, Liu S, et al. Lys48-linked TAK1 polyubiquitination at lysine-72 downregulates TNFalpha-induced NF-kappaB activation via mediating TAK1 degradation. Cell Signal,2012.24 (7):1381-1389.
    [246]Bottero V, Kerur N, Sadagopan S, et al. Phosphorylation and polyubiquitination of transforming growth factor beta-activated kinase 1 are necessary for activation of NF-kappaB by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. J Virol,2011.85 (5):1980-1993.
    [247]Soni V, Cahir-McFarland E, and Kieff E. LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol,2007.597:173-187.
    [248]Dey N, Liu T, Garofalo R P, et al. TAK1 regulates NF-KappaB and AP-1 activation in airway epithelial cells following RSV infection. Virology,2011.418 (2):93-101.
    [249]Zhou Y, Wang S, Ma J W, et al. Hepatitis B virus protein X-induced expression of the CXC chemokine IP-10 is mediated through activation of NF-kappaB and increases migration of leukocytes. J Biol Chem,2010.285 (16):12159-12168.
    [250]Pertel T, Hausmann S, Morger D, et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature,2011.472 (7343):361-365.
    [251]Wang J, Tan J, Guo H, et al. Bovine foamy virus transactivator BTas interacts with cellular RelB to enhance viral transcription. J Virol,2010.84 (22):11888-11897.
    [252]Wang J, Tan J, Zhang X, et al. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription. Virology,2010.400 (2):215-223.
    [253]Sambrook J and Russell D W, Molecular cloning:a laboratory manual.3rd ed.2001, Cold Spring Harbor, N.Y.:Cold Spring Harbor Laboratory Press.
    [254]Sakurai H, Suzuki S, Kawasaki N, et al. Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem,2003.278 (38):36916-36923.
    [255]Xiao G, Fong A, and Sun S C. Induction of p100 processing by NF-kappaB-inducing kinase involves docking' IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem,2004.279 (29):30099-30105.
    [256]Liang C, Zhang M, and Sun S C. beta-TrCP binding and processing of NF-kappaB2/p100 involve its phosphorylation at serines 866 and 870. Cell Signal,2006.18 (8):1309-1317.
    [257]Kwak Y T, Li R, Becerra C R, et al. IkappaB kinase alpha regulates subcellular distribution and turnover of cyclin Dl by phosphorylation. J Biol Chem,2005.280 (40): 33945-33952.
    [258]Wuerzberger-Davis S M, Chang P Y, Berchtold C, et al. Enhanced G2-M arrest by nuclear factor-{kappa}B-dependent p21wafl/cipl induction. Mol Cancer Res,2005.3 (6): 345-353.
    [259]Chowdhury I H, Wang X F, Landau N R, et al. HIV-1 Vpr activates cell cycle inhibitor p21/Wafl/Cipl:a potential mechanism of G2/M cell cycle arrest. Virology,2003.305 (2): 371-377.
    [260]Vazquez N, Greenwell-Wild T, Marinos N J, et al. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol,2005.79 (7):4479-4491.
    [261]Manches O, Fernandez M V, Plumas J, et al. Activation of the noncanonical NF-kappaB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proc Natl Acad SciUSA,2012.109 (35):14122-14127.
    [262]Asin S, Bren G D, Carmona E M, et al. NF-kappaB cis-acting motifs of the human immunodeficiency virus (HIV) long terminal repeat regulate HIV transcription in human macrophages. J Virol,2001.75 (23):11408-11416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700