用户名: 密码: 验证码:
几种重要海水养殖鱼类细胞系的建立、诱导分化及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类细胞系的建立始于上世纪60年代,由Wolf和Quimby建立了世界上第一个鱼类细胞系-虹鳟生殖腺细胞系RTG-2。随后,鱼类细胞培养工作取得了较大的进展,一些细胞系相继建立成功。鱼类细胞系因材料容易获得、成本低、重复性好、实验条件可以精确控制等优点,至今已成为一种重要的研究手段,广泛应用于鱼类病毒学等各方面研究。对鱼类细胞系进行深入研究无论在理论研究方面还是在实际应用方面都具有深远意义。
     本论文研究了半滑舌鳎(Cynoglossus semilaevis)心肌细胞系(HTHC)和圆斑星鲽(Verasper variegates)肾脏细胞系(SHKC)的建立;同时还对半滑舌鳎胚胎细胞系(HEC)和日本牙鲆(Paralichthys olivaceus )胚胎细胞系(FEC)进行了干细胞功能的诱导分化;并将大菱鲆胚胎细胞(TEC)应用于大菱鲆GRIM19基因的功能研究工作上。半滑舌鳎心肌细胞系和圆斑星鲽肾脏细胞培养在添加有20% FBS,1 mM的L-谷氨酸,50 mM的2-ME,100 UI/ml青霉素,100 ug/ml链霉素,10 ng/ml bFGF的MEM培养基中,两种细胞的形态均为成纤维样细胞。HTHC细胞至今已传代30余代;SHKC细胞至今已传代40余代。本实验检测了FBS、bFGF、温度对HTHC和SHKC细胞生长的影响。在一定范围内,细胞生长速度随FBS浓度的增高而加快,FBS浓度过高或过低都抑制细胞的增殖。bFGF对HTHC细胞生长具有刺激作用。HTHC和SHKC细胞在24-30℃之间细胞生长良好,当温度高于30℃或低于12℃时,细胞生长速度降低。HTHC细胞的二倍体核型为2n=42;SHKC细胞的的二倍体核型为2n=46,将EGFP报告基因通过脂质体(lipofectamine2000)介导的方法成功转入HTHC和SHKC细胞中并获得了表达,转化率为10-15%左右。用牙鲆淋巴囊肿病毒(LCVD)感染HTHC和SHKC细胞,观察到了细胞病变效应(CPE),透射电镜检测均在细胞内发现了大量病毒颗粒。
     半滑舌鳎胚胎细胞系(HEC)和日本牙鲆胚胎细胞系(FEC)为本实验室建立保存。HEC和FEC都具有发育上的多能性,在特定的诱导条件下,都可以诱导分化为纤维细胞、肌肉细胞、神经细胞等各种类型的细胞。全反式视黄酸(RA)、明胶、低浓度FBS均可以诱导两种胚胎细胞分化为纤维细胞;二甲基亚砜和低密度种植HEC细胞均可以诱导HEC细胞分化为树状肌肉细胞;HEC和FEC细胞在低密度条件下均分化为神经细胞、肌肉细胞、上皮细胞;HEC和FEC细胞碱性磷酸酶染色均呈阳性,这些结果初步表明HEC和FEC胚胎细胞具有干细胞的分化特征。将EGFP报告基因通过脂质体(lipofectamine2000)介导的方法成功地转入HEC和FEC中并获得了表达;用牙鲆淋巴囊肿病毒(LCDV)感染HEC和FEC细胞,观察到了细胞病变效应(CPE),通过透射电镜观察到在细胞内有大量病毒颗粒。
     我们从大菱鲆脾脏cDNA文库中鉴定出一GRIM19基因,并得到该基因的DNA全长。利用RT-PCR技术对该基因进行了在大菱鲆正常组织、不同胚胎发育阶段、鳗弧菌(Vibrio anguillaru,ATCC19019)感染组织和细胞中的表达分析,初步探讨了GRIM19基因在鱼类先天免疫系统中作用。实验结果表明:GRIM19全长cDNA含有一个17 bp的5'UTR,一个435 bp的开放阅读框(open reading frame,ORF)和一个143 bp的3'UTR,开放阅读框编码了144个氨基酸残基。通过比较cDNA序列和基因组序列发现GRIM19基因内含有5个外显子和4个内含子。基因组Southern结果表明该基因为单拷贝基因。系统发生分析表明大菱鲆能够与大西洋庸鲽聚在一起。该基因在正常大菱鲆免疫系统中表达强烈,尤其是在脾脏和头肾中;GRIM19在大菱鲆胚胎不同发育时期表达逐渐增强;在感染头肾、肝脏、脾脏三种组织中,该基因表达均有增加趋势:在感染头肾中该基因表达最强烈,在肝脏感染24 h时基因表达达到最高水平,而在脾脏中该基因表达一直增强;鳗弧菌感染大菱鲆胚胎细胞后,GRIM19基因表达上调。GRIM19基因在濒临死亡的大菱鲆成体鱼肝脏、头肾、心脏和脾脏中的表达均增强。这些结果表明GRIM19基因在大菱鲆免疫应答中起着重要作用。
The research of fish cell culture has developed rapidly since Wolf and Quimby established the first fish cell line- RTG-2 in 1960s for the first time. After then, fish cell culture has become an essential research technology which has been used extensively, ranged from virology, environmental toxicology, cytobiology, oncology, genomics, genetics and environmental protection. Cultured fish cells have more advantages than live fish as the experimental material: 1. the materials are cheap and easy to obtain; 2. the experimental condition could be controlled accurately and the experiment could be repeated.
     In the present study, two cell lines from the heart muscle of Cynoglossus semilaevis and the kidney of Verasper variegates have been established. The induced differentiation of two embryonic cell lines has also been studied. A gene of turbot (Scophthalmus maximus) GRIM19 was screened from a turbot spleen cDNA library. The expression of GRIM19 has been studied using two turbot cell lines.
     The two cell lines, HTHC and SHKC were cultured in minimum essential medium (MEM) supplemented with fetal bovine serum (FBS) and 10 ng ml-1 basic fibroblast growth factor (bFGF). HTHC cells were subcultured more than 30 times and SHKC cells 40 times. The effects of FBS, bFGF and temperature on the growth of HTHC and SHKC cells had been studied. FBS promotes cell growth at certain concentration and the optimum concentration of FBS was found to be 20% in the medium. bFGF enhanced cell living and propagation ability. The suitable temperature for growth was 20℃to 30℃with the optimum growth at 24℃and a reduced growth at <20℃. The double time of SHKC cells was determined to be 44.8 h. Chromosome analysis revealed that 52% cells maintained normal diploid chromosome number (n=46) in the SHKC cells and 42% in HTHC cells. The HTHC and SHKC cells have been successfully transfected with green fluorescent protein (EGFP) reporter plasmids and the expression of EGFP gene in the cells indicated the possible utility of the cells in gene expression studies. The HTHC and SHKC cells were infected by lymphosystis disease virus (LCDV) and found to be susceptible to the virus by cytopathic effect (CPE) observation. The infection was confirmed by PCR and electron microscopy experiments, which proved the existence of the viral particles in the cytoplasm of the virus-infected cells. In summary, the technology of establishing kidney and heart muscle cell lines is established. It is the first time that HTHC and SHKC were established in the world. Some researches are explored in the application of cell lines and lay foundation of using cell lines to the study in theory and application.
     Embryonic stem cells are undifferentiated permanent cell lines derived from inner cell mass or primordial germ cells of early developing embryos. In this study, two embryonic cell lines had been induced to study the multifunction of embryonic stem cells. HEC and FEC cells showed pluripotent and differentiation potential in vitro. Under the inducement of all-trans retinoic acid and low concentration of FBS, both of the ES-like cells differentiated into fibroblast-like cells; DMSO induced HEC cells into muscle cells. Under low cell concentration, both of HEC and FEC cells could also be induced into neuron-like cells, fibroblast-like cells, and muscle cells and so on. And FEC cells could also be induced into epidermic cells. Alkaline phosphate activity in HEC and FEC cells were both positive. All the results showed that both HEC and FEC cells were pluripotent embryonic cells. The HEC and FEC cells had been successfully transfected with green fluorescent protein (EGFP) reporter plasmids and the expression of EGFP gene in the cells indicated the possible utility of the cells in gene expression studies. The HEC and FEC cells were infected by lymphosystis disease virus (LCDV) and found to be susceptible to the virus by cytopathic effect (CPE) observation. The infection was confirmed electron microscopy experiments, which proved the existence of the viral particles in the cytoplasm of the virus-infected cells.
     A turbot (Scophthalmus maximus) gene associated with retinoic/ interferon induced mortality 19 protein-GRIM19 has been screened from a turbot spleen cDNA library. The expression in turbot different tissues, the different embryonic stages had been studied by RT-PCR. The complete cDNA of the turbot GRIM19 contained a 17 bp 5' UTR, a 435 bp open reading frame (ORF) encoding 144 amino acids and a 143 bp 3' UTR. Phylogenetic analysis showed that the turbot GRIM19 clustered with Hippoglossus stenolepis. RT-PCR demonstrated that turbot GRIM19 was expressed in spleen and head kidney from uninfected adult. GRIM19 expressed during the early stages of embryo development and gradually increased. The expression of GRIM19 was also dramatically increased after challenge in turbot liver, spleen and head kidney and the expression are most strong in head kidney. The expression reached highest after infection of 24 h in liver and in spleen, the expression was always enhanced. Furthermore, the turbot GRIM19 was induced after 48 h in turbot embryonic cells (TECs) after challenge with Vibrio anguillarum. These results indicated that the turbot GRIM19 played an important role in turbot immune response. Since GRIM19 is a mortality-correlative gene, in the turbot dying tissues infected by Vibrio anguillarum, the GRIM19 expresion was increased in liver, head kidney, heart and spleen. In a word, we report GRIM19 in turbot for the first time. The studies show GRIM19 is an important gene in turbot immunity response process and more research need to be processed for the more GRIM19 functions.
引文
[1] Fryer J L, Lannon C N. Three decades of fish cell culture: a current listing of cell lines derived from fish. J. Tiss. Cult. Meth., 1994, 16: 87-94.
    [2] Bejar J, Borrego J J, Alvarez M C. A continuous cell line from the cultured marine fish gilt-head seabream (Sparus aurata). Aquaculture, 1997, 150: 143-153.
    [3]张念慈,杨广智.草鱼吻端组织细胞株2C-7901及其亚株2c-7901S1的建立和特性观察.水产学报, 1980, 5: 111-119.
    [4]司徒镇强.细胞培养.北京:兴界图书出版社, 1996. 69-70.
    [5]钱华鑫,曾勇,王凯,等.淡水鱼类细胞库的构建.中国水产科学, 1995, 2: 119-123.
    [6]楼允东,陈俊宝,杨先乐,等.鱼类育种学.北京:中国农业出版社, 1995. 241-275.
    [7] Gravell M, Malsberger R G. A permanent cell line from the fathead minnow (Pimephales promelas). Ann. N. Y. Acad. Sci., 1965, 126: 555-565.
    [8] Lee N M, Loh H H. Establishment of a continuous cell line from Caranx mate. Biochem. Pharmacol., 1975, 24: 1249-1251.
    [9] Li J, Clybume J J, Alvarez M C. A continuous cell line from the cultured marine fish gilt-head seabream (Cyclopterus lumpus). Aquaculture, 1977, 150: 143-153.
    [10] Law. Development of a tropical marine fish cell line fromAsian seabass (Ardopterus lumpusr) for virus isolation. Aquaculture, 1978, 192: 133-145.
    [11] Fryer J L, Lannon CN. Three decades of fish cell culture: a current listing of cell lines derived from fish. J. Tiss. Cult. Methods., 1994, 16: 87-94.
    [12] Bahich H, Borenfreund E. Cytotoxicity and genotoxicity assays with cultured fish cells: a review. Toxicol. Vitro., 1991, 5: 91-100.
    [13] Bols N C, Lee L E J. Technology and uses of cell culture from tissues and organs of bony fish. Cytotechnol, 1991, 6: 163-187.
    [14] Hightower L H, Renfro J L. Recent applications of fish cell culture to biomedical research. J. Exp. Zool., 1988, 248: 290-302.
    [15]童裳亮,李宏,苗宏志.牙鲆、鲈鱼和真鲷的四个永生性细胞系建立.生物工程进, 1997, 1: 3-4.
    [16]孟凡华,尹洪滨,孙中武,等.鲤鱼(Cyprinus carpio).实验生物学报, 2005, 38: 80-84.
    [17]张铭,陈荪红,赵小立.淡水白鲳细胞建系及其生长温度特性的研究.生物工程学报, 2001, 17: 105-108.
    [18]樊廷俊,耿晓芬,丛日山,等.大菱鲆鳍细胞系的建立.中国海洋大学学报, 2007, 37: 759-766.
    [19] Ye H Q, Chen S L, Sha Z X, et al. Development and characterization of cell lines from heart, liver, spleen and head kidney of sea perch Lateolabrax japonicus. J. fish biol.,2006, 69: 115-126.
    [20]任国诚,陈松林,沙珍霞.半滑舌鳎肝脏细胞系的建立与鉴定。高技术通讯, 2008, 18: 657-660.
    [21] Zhou G Z, Li Z Q, Yuan X P, et al. Establishment, characterization, and virus susceptibility of a new marine cell line from red spotted grouper (Epinephelus akaara). Mar. biotechnol., 2007, 9: 370-376.
    [22] Parameswaran V, Ahmed1 V P I, Shukla R, et al. Development and Characterization of Two New Cell Lines from Milkfish (Chanos chanos) and Grouper (Epinephelus coioides) for Virus Isolation. Mar. biotechnol., 2007, 9: 281-291.
    [23]陈怀青.鱼类病毒研究评述.国外水产, 1990, 3: 30-32.
    [24]于淼,管华诗,郭华荣,等.鱼类细胞培养及其应用.海洋科学, 2003, 27: 4-8.
    [25]钱华鑫,张四明.鱼类细胞培养在渔业科学上的应用.淡水渔业, 1991, 5: 40-42.
    [26] Zhang Q Y. Studies on morphogenesis and cellular interactions of rana grylio virus in an infected fish cell line. Aquaculture, 1999, 175: 185-197.
    [27] Chang S F. Development of a tropical marine fish cell line from Asian seabass (Lates calcarifer) for virus isolation. Aquaculture, 2001, 192: 133-145.
    [28]孙修勤,洪旭光,张进兴,等.牙鲆淋巴囊肿病毒在牙鲆鳃细胞系FG2-9307中的增殖.高技术通讯, 2002, 12: 94-96.
    [29] Kristin S, Denise J. Ability of fractionated petroleum refinery effluent to elicit cyto- and photocytotoxic responsesand to induce ethoxyresorufin deethylase activity in fish cell lines. Sci. Total Environ., 2001, 271: 61-78.
    [30] Magda M, Helmut S. Cytotoxicity of metals in isolated fish cells: Importance of the cellular glutathione status. Comp. Biochem. Physiol., 1998, 120: 83-88.
    [31] Araujo C S A, Marques S A F, Carrondo M J T, et al. In vitro response of the brown bullheadcatfish (BB) and rainbow trout (RTG-2) cell lines to benzopyrene. Sci. Total Environ., 2000, 247: 127-135.
    [32] Fent K. Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P450A inductionpotential and estrogenic activity of chemicals and environmental samples. Toxicol. Vitro., 2001, 15: 477-488.
    [33] Paloma S. Flow cytometric detection of micronuclei and cell cycle alterations in fish derived cells after exposure to three model genotoxic agents: mitomycin C, Vincristine sulfate and benzopyrene. Mut. Res., 2000, 465: 113 -122.
    [34] Kohlpoth M, Rusche B. Flowcytometric measurement of micronuclei induced in a permanent fish cell line as a possible screening test for the genotoxicity of industrial wastewater. Mutagenesis, 1999, 14: 397-402.
    [35] Norman F. Production of a macrophage growth factors by a goldfish macrophagecell line and macrophages derived from goldfish kidney leukocytes. Dev. Com. Immunol., 1998, 22: 417-432.
    [36] Tomonori S. Specific cell mediated cytotoxicity against a virus infected syngeneic cell line in isogeneic ginbuna crucian carp. Dev. Com. Immunol., 2000: 633-640.
    [37] Shen L L. Channel catfish cytotoxic cells: a mini review. Dev. Com. Immunol., 2001: 141-149.
    [38] Nakanishi T. Cytotoxic T cell function in fish. Dev. Com. Immunol.,2001: 131-139.
    [39]王铁辉,张义兵,李戈强,等.鱼类培养细胞干扰素的诱导.病毒学报, 1999, 25: 43-49.
    [40] Huang Y S. Opposite effects of insulin-like growth factors (IGFs) on gonadoropin (GtHⅡ) and growth hormone (GH) production by primary culture of European (Anguella anguilla) pituitary cells. Aquaculture, 1999, 177: 73-83.
    [41] Alok D, Sampath K R. Recombinant perciform GnRH-R activates different signaling pathways in fish and mammalian heterologous cell lines. Com. Biochem. Physiol., 2001, 129: 375-380.
    [42]童第周,叶毓芬,杜淼等.鲤鲫体细胞核移植的初步研究.中国科学(B辑), 1980, 4: 378-380.
    [43]严绍颐,陆德裕,杜淼等.鲫鲤体细胞核移植的初步研究.中国科学(B辑), 1984 8: 729-732.
    [44]严绍颐,陆德裕,杜淼等.草团鱼体细胞核移植的初步研究.生物工程进展, 1985, 1: 15-26.
    [45]林礼堂,夏仕玲,朱新平.罗非鱼体细胞核移植的初步研究.动物学研究, 1996, 17: 9-11.
    [46]尹洪滨,孟凡华,孙中武,等.鲤鱼(cyprinus carpio)体细胞核移植的初步研究.分子科学学报, 2006, 22: 127-131.
    [47]张义兵等.白暨豚组织培养的初步研究.水生生物学报, 2000, 24: 193- 195.
    [48] Balebona M C. Neurotoxic effect on two fish species and a PC12 cell line of the supernate of Vibrio alginolyticus and Vibrio anguillarum. Vet. Microbiol., 1998, 63: 61-69.
    [49]徐军,杨春荣,高志敏,等.小鼠胚胎干细胞的分离和克隆. In:叶鑫等.干细胞和发育生物学,军事医学科学出版社, 2000. 4.
    [50] Thomsom J A, Irskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282: 1145-1147.
    [51] Mansour S L, Tomas K R, Capechi M R. Disruption of the proto-oncogene in mouse embryoderived stem cells: a general strategy for targeting mutatuions to non-selectable genes. Nature, 1988, 336: 348-352.
    [52]丛笑倩,姚鑫.小鼠胚胎干细胞(ES-8501细胞)建系过程的核型及特性分析.实验生物学报, 1987,20: 237-251.
    [53]李松,窦中英,华进联等.从原始生殖细胞分离克隆牛胚胎干细胞. In:叶鑫生.干细胞和发育生物学,军事医学科学出版社, 2000. 4.
    [54]赖良学,郑瑞珍.兔胚胎的一些与分离胚胎干细胞有关的生物学特征.中国兽医学报, 1998, 18: 351-354.
    [55] Faloon P, Arentson E, Choi K, et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development, 2000, 127: 1933-1941.
    [56] Era T, Witte CN. Regulated expression of P210 Bcl-Abl during embryonic stem cell differentiation stimulates multipotential progenitor espansion expansion and myeloid cell fate. Proc Natl Acad Sci USA, 2000, 97: 1737-1742.
    [57]丛笑倩,姚鑫. ES细胞分化为血管样结构的机理探讨-TGF-β1在血管形成中作用.实验生物学报, 1996, 29: 273-285.
    [58]唐仕波,邱观婷,黄冰.胚胎干细胞向神经细胞诱导分化的实验研究.中华医学杂志,2000, 80: 936-938.
    [59]蔡斌,侯铁胜,刘少君.诱导胚胎干细胞向神经元分化及其在中枢神经系统损伤中的应用.中国神经科学杂志, 2001, 17: 153-157.
    [60] Gretchen, Vogel. The hottest stem cells are also the toughest. Science, 2001, 292: 429-435.
    [61]刘兰英,杨锟,朱振宇,等.胚胎干细胞体外分化为心肌细胞诱导因素的探讨.中国病理生理杂志, 2000, 16: 389-392.
    [62] Michael G, Klug, Mark H, et al. Genatically selected cardiomyocytes from differentiating cmbryonic stem cells from stable intracardiac grafts. Clin. Invest., 1996, 98: 216-218.
    [63] Schuldiner M, Yanuka O, Itskovitz-Eldor J, et al. From the cover: effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA, 2000, 97: 11307-11312.
    [64]徐洁.用视黄酸与双丁酰基环腺苷磷酸诱导小鼠胚胎干细胞分化.实验生物学报, 29: 273-285.
    [65] Jose C, Cutierre Z, Round palacios, et al. In vitro differentiation of embryonic stem cell into lymphocyte precurose able to generate T and B lymphocyte. Proc Natl Acad Sci USA, 1992, 89: 915-917.
    [66]李永平,葛坚,李树浓,等.胚胎干细胞裸鼠眼内诱导形成髓上皮瘤.中国病理生理杂志, 2000, 16: 1182-1184.
    [67] Tokunaga T, Sunoda T. Effections production of viable germ line chimeras between embryonic stem (ES) cells and B-cell embryos. Develop. Growth & Differ., 1991, 34: 561-566.
    [68] Bradley A. Embryo-derived stem cells: A tool for elucidating the developmental genetics of the mouse. Nature, 1984, 309: 255-256.
    [69] Brehm A, Ovitt C E, Scholer H R. Oct-4: more than just a pouful marker of the mammalian germline. APMIS., 1998, 106: 114-126.
    [70] Pease M, Anastassiadis K, Scholer H R. Oct-4: lessons of totipotency from embryonic stem cells. Cells Tissues Organs., 1999, 165: 144-152.
    [71] Pesce M, Sholer H R. Oct-4: control of totipotency and germline determination. Mol. Repro. Dev, 2000, 55: 452-457.
    [72]杜忠伟,丛笑倩,姚鑫.维持Oct-4基因表达对小鼠胚胎干细胞分化的影响.科学通报,2001, 46: 730-734.
    [73] Vans M, Kaufman M H. Establishment in culture of pluripotental cells from mouse embryos. Nature, 1981, 292: 154-156.
    [74] Wise J P, Winn R N, Renfro J L. Generating new marine cell lines and transgenic species. J. Exp. Zool., 2002, 15: 292-295.
    [75] Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78: 7634-7638.
    [76] Brook F A, Gardner R L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA, 1997, 94: 5709-5712.
    [77] Suda Y, Suzuki M, Ikawa Y. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell Physiol., 1987, 133: 197- 201.
    [78] Piedrahita J A, Anderson G B, BonDurant R H. Influence of feeder layer type on the efficiency of isolation of porcine embryo derived cell lines. Theriogenology, 1990, 34: 865-877.
    [79] Evans M J. Derivation and preliminary characterization of pluripotent cell lines from procine and bovine blastocysts. Theriogenology, 1990, 33: 125-128.
    [80] Wheeler M B. Development and validation of swine embryonic stem cells: a review. Reprod. Fertil. Dev., 1994, 6: 563-568.
    [81]李松,窦忠英,苘增民,等.牛胚胎干细胞分离克隆及定向分化研究.医学研究杂志, 2007, 36: 79-80.
    [82]冯秀亮,高志敏,杨春荣,等.由猪囊胚内细胞分离胚胎干细胞的研究.西北农林科技大学学报(自然科学版), 2003, 31: 5-10.
    [83]冯书堂,丛笑倩,刘立新,等.五指山近交猪胚胎生殖细胞嵌合体在我国移植产仔.畜牧兽医学报, 2005, 36: 311-312.
    [84] Saito S. Amniotic fluid granulocyte colony-stimulating factor in preterm and term labor. Clin. Chim. Acta., 1992, 208: 105-109.
    [85] Stice S L, Strelchenko N S, Keefer C L, et al. Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod., 1996, 54: 100-107.
    [86]李松,窦忠英,苘增民,等.牛胚胎干细胞分离克隆及定向分化研究.医学研究杂志,2007, 36: 79-80.
    [87]安立龙,杨奇,窦忠英,等.某些因素对牛和小鼠类胚胎干细胞分离子培养的影响.中国兽医学报, 2002, 22: 187-190.
    [88] Tillman J B. Dietary calorie restriction in mice induces carbamyl phosphate synthetase I gene transcription tissue specifically. J. Biol. Chem., 1996, 271: 3500-3506.
    [89] Modinski J A, Red M A, Nagner J E. Embryonic stem cells: developmental capabilities and their possible use in mammalian embryo cloning in stone GM. Animal Reproductial: research and pratice. Elsevier, 1996, 437-446.
    [90] Campbell K H S, J Mewhir. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380: 64-66.
    [91] Doetschman T C, Eistetter H, Katz M, et al. The invitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol., 1985, 87: 27-45.
    [92]徐令,乔春平,黄绍良,等.体外定向诱导胚胎干细胞为造血细胞.科学通报, 2000, 45: 815-820.
    [93] Auerbach R, Huang H, Lu. Hematopoietic stem cells in the mouse embryonic yolk sac. Stem Cell, 1996, 14: 269-80.
    [94] Bain G, Kitchens D, Yao M, et al. Embryonic stem cells express neuronal properties in vitro. Dev. Biol., 1995, 168: 342-57.
    [95] Okabe S, Forsberg-Nilsson K, Spiro A C, et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev., 1996, 59: 89-102.
    [96] Struebing V L. Differential diagnosis of malignant hyperthermia: a case report. J. AANA., 1995, 63: 455-460.
    [97] Dinsmore J, Ratliff J, Deacon T, et al. Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant., 1996, 5: 131-143.
    [98] Doetschman T, Gossler A, Serfling E, et al. Introduction of genes into mouse embryonic stem cells. Prog. Clin. Biol. Res., 1986, 217: 47-50.
    [99] Klug M G, Soonpaa M H, Koh G Y, et al. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest., 1996, 98: 216-224.
    [100]刘兰英.胚胎干细胞体外分化为心肌细胞诱导因素的探讨.中国病理生理杂志, 2000, 16: 389-392.
    [101]楼宜嘉.药物介导小鼠胚胎干细胞体外定向分化为心肌细胞.浙江大学学报, 2002, 31: 5-9.
    [102]丛笑倩,夏顺汉,徐露霞,等.外源TGF-β1基因在小鼠ES细胞中的表达及其对细胞分化的影响.实验生物学报, 1995, 28: 173-183.
    [103]Hong Y, Schartl M. Establishment and growth responses of early medakafish (Oryzias latipes) embryonic cells in feeder layer-free cultures. Mol. Mar. Biol. Biotechnol., 1996, 5, 93-104.
    [104]Wakamatsu Y, Ozato K, Sasado T. Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryo. Mol. Mar. Biol. Biotechnol., 1994, 3: 185-191.
    [105]Chen S L, Sha Z X, Ye HQ. Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus ) blastula embryos. Aquaculture, 2003, 218: 241-251.
    [106]Hong Y, Winkler, Schartl M. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech. Dev., 1996, 60: 33-34.
    [107] Chen S L, Ren G C, Sha Z X, et al. Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus). Aquaculture, 2005, 249: 63–68.
    [108] Chen S L, Ren G C, Sha Z X, et al. Establishment of a continuous embryonic cell line from Japanese flounder for virus isolation. Dis. Aqu. Org., 2004, 60:241-246
    [109] Chen S L, Sha Z X, Ye H Q. Establishment of a pluripotent embryonic cell line from sea perch blastula embryo. Aquaculture, 2003, 218:141-151
    [110] Chen S L, Ye H Q, Sha Z X. Derivation of a pluripotent embryonic cell line from red sea bream blastulas. J. Fish Biol., 2003, 63: 795–805.
    [111]Chen S L, Sha Z X, Ye H Q, et al. Pluripotency and Chimera Competence of an Embryonic Stem Cell Line from the Sea Perch (Lateolabrax japonicus) Mar. Biotechnol., 2007, 9: 82–91.
    [112]Chambers I, Colby D, Robert son M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 13: 643-655.
    [113] Monica E K, Soderdahl T, Küppers M B, et al. Expression of drug metabolizing enzymes in hepatocyte-like cells derived from human embryonic stem cells. Biochem. Pharmaco., 2007, 74: 496-503.
    [114] Yamashita J, Itoh H, Hirashina M, et al. FIKI-positive cells derived from embryonic stem cells serve as vascular progenitors, Nature, 2000, 408:92-96.
    [115] Lee S H, Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol., 2000, 18: 675-679.
    [116] Lumelsky n, Blondel O, Laeng P, et al. Didfferentiation of embryonic stem cells to insulin secteting structures similar to pancreatic islets. Science, 2001, 292: 1389-1394.
    [117] Sun L, Bradford CS, Ghosh Cet al. ES like cell cultures derived from early zebrafish embryos. Mol. Mar. Biol. Biotechnol., 1995, 4: 193-199.
    [118] Angell J E, Lindner D J, Shapiro P S, et al. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J. Biol. Chem., 2000, 275: 33416-33426.
    [119] Schilling B, Srinivas B M, Richard H R, et al. Rapid purification and mass spectrometric characterization of mitochondrial NADH dehydrogenase (complex) from rodent brain and a dppaminergic neuronal cell line. Mol. & Cell. Proteom., 2006, 4: 84-96.
    [120] Murray J, Zhang B, Taylor S W, et al. The subnit composition of human NADH hydrogenase obtained by rapid one step immuopurification. J. Biol. Chem., 2003, 278: 13619-13622.
    [121] Fearnley I M, Carroll J, Shannon R J, et al. GRIM19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH: ubiquinone oxidoreductase (complex I). J. Biol. Chem., 2001, 276: 38345-38348.
    [122] Huang G, Lu H, Hao A, et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol. Cell Biol., 2004, 24: 8447-8456.
    [123] Zhang J, Yang J, Roy S K, et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci USA, 2003, 100: 9342-9347.
    [124] chen C, Lu F, Ma J, et al.GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. J. EMBO., 2003, 22: 1325-1335.
    [125] Nicolas B, Tadakazu H Jose E A, et al. GRIM-19 Interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J. Biol. Chem., 280, 2005: 19021-19026.
    [126] Kumar S, Tamura K, Nei M. MEGA3.0: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinformat., 2004, 5: 150-163.
    [127] Dayhoff M O, Schwartz R M, Orcutt B C. A model of evolutionary change. In: Dayhoff M O, editor. Atlas of protein sequence and structure, 1978, vol. 5. suppl. 3. Washington, D C: National Biomedical Research Foundation. 345-538.
    [128] Chen S L, Li W, Meng L, et al. Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus). Fish & Shell. Immunol., 2006, 22:172-181.
    [129] Chen S L, Ren G C, Sha Z X, et al. Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus). Aquaculture, 2005, 249:63-68.
    [130] Kalv kolanu D V. The GRIMs: a new interface between cell death regulation and interferon/ retinoid induced growth suppression. Cytok. & Growth Fac. Rev., 2004, 15: 169– 194.
    [131] Zhou Q D, Amar S. Identification of proteins differentially expressed in human monocytes exposed to Porphyromonas gingivalis and its purified components by high-throughput immunoblotting. Infec. & Immun., 2006, 74: 4–1214.
    [132] Teshima S, Rokutan, K. Helicobacter pylori lipopolysaccharide enhances the expression of NADPH oxidase components in cultured guinea pig gastric mucosal cells. FEBS Lett., 1999, 452: 243–246.
    [133] Seo T, Lee D, Shim Y S, et al. Viral interferon regulatory factor 1 of Kaposi’s sarcoma associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/ retinoic acid-induced cell death. J. Virol., 2002, 76: 8797–8807.
    [134] Peter L. Hordijk. Regulation of NADPH oxidases. Circul. Res., 2006, 98: 453.
    [135] Kawahara T, Teshima S, Oka A, et al. Type I Helicobacter pylori Lipopolysaccharide Stimulates Toll-Like Receptor 4 and Activates Mitogen Oxidase 1 in Gastric Pit Cells. Infect. Immun., 2001, 69: 4382–4389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700