弱信号条件下GPS接收机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着基于位置服务(Location Based Service, LBS)应用需求的增加,弱信号环境下的定位技术引起了全世界的关注。高灵敏度GPS和辅助GPS (Assisted GPS, A-GPS)定位技术已成为许多国家科研机构及相关单位的重点研究对象。本课题正是在这样一种背景下对没有外部辅助源的接收机核心功能——基带信号处理展开深入研究。
     (1)接收机研究平台设计。采用软件方式直接模拟数字中频GPS信号,深入研究了GPS中频信号功率控制技术、误差源仿真技术和信号传播延迟等相关技术,利用实测星历和输入参数将正常导航解算时各种信号传播误差的修正方法应用于由真距至伪距的反向推算;开发了常规GPS接收机信号捕获和跟踪模块,为新技术的研究测试提供了开发平台。实现了基于FPGA/ARM硬件平台的GPS接收机,利用信号处理模块对实测信号和模拟信号的处理验证了研究平台的有效性。
     (2)系统地研究了微弱信号捕获中相干积分操作在多种非理想环境下的性能。分析推导了由任意位数A/D转换导致的功率损失通用公式及最优增益设置方法;从等效噪声功率的角度研究了互相关干扰的影响;由相干积分检测量的幅度变化对残余多普勒频率误差、导航电文数据调制的影响进行了深入分析,为弱信号捕获方案的设计提供了理论依据。
     (3)对微弱GPS信号捕获技术进行深入研究。从理论上证明并经试验验证了当积分时间增加时,差分相干检测的输出序列服从高斯分布。为提高接收机对微弱信号的检测能力和参数估计精度,设计了频率误差自主实时修正的差分相干弱信号捕获方案,理论分析和测试表明该方法能够提高信号检测概率、减小频率估计误差的不确定性,满足弱信号跟踪需求。
     (4)深入研究接收机处于弱信号环境,环路未锁定时无法实现信号跟踪的问题。针对传统PLL载波环估计误差较大和EKF (Extented Kalman Filtering)算法需要对非线性方程进行近似处理的缺点,利用SRUKF (Square Root Unscented Kalman Filtering)实现载波环参数估计,将最优路径动态规划技术应用于GPS位同步,取得了比目前广泛应用的直方图法更为理想的效果,在此基础上,将SRUKF估计技术与位同步技术结合,研究设计了环路未锁定时串行和并行两种载波跟踪方案,并通过实验验证了方案的合理性。
Along with the increasing application requirements of LBS (Location Based Service), the positioning technology in weak signal environment has caused worldwide concern. HSGPS (High sensitive GPS) and A-GPS (assisted GPS) have been taken as the most important research object by scientific research institutions and relevant departments in many countries. It is in such a background that the thesis makes an in-depth research on the core function of GPS receiver without external assisted source, i.e., the baseband signal processing.
     Firstly, a GPS research platform is designed. The thesis adopt software simulator to generate IF GPS signals. The error sources simulation techniques, various range delay simulation and signal power control techniques according to real almanac are researched. The thesis develops the capturing and tracking module of the regular GPS receiver, provide a research platform for new methods application. A software receiver on the basis of FPGA/ARM hardware platform is realized. In the end, software platform is applied to process analog signal and true signal, and the results verify the validity the complete research platform.
     Secondly, the thesis makes an intensive study of the performance of coherent integral in the non-ideal environment. The A/D conversion with arbitrary quantization bit rate and optimal AGC (Automation Gain Control) gain control setting methods are studied. Besides, the paper analysis cross-correlation interference, capturing frequency error and the influence of data bit inversion through different methods. These tasks provided theory basis for design a weak signal acquisition scheme.
     Third, research weak GPS signal acquisition technique. The part verify the differential coherent outputs have character of Gaussian Distribution. To improve the detection probility and parameter estimation, the thesis proposes a modified differential coherent weak signal capturing scheme using frequency error automatically real-time correction. Theoretical analysis and test proved that the method is superior to the traditional method in the performance of signal detection and frequency estimation accuracy can meet the demand for weak signal tracking.
     Finally, if the receiver is just in weak signal environment when it starts, the loop will keep in the state of loss lock, and can not find the data edge to implement weak signal tracking through lms update. In order to solve this problem, a carrier loop parameter estimation model based on SRUKF (Square Root Unscented Kalman Filtering) has been designed. On the premise of steady tracking, this scheme improved the traditional PLL's error, and avoided the complexity of traditional EKF (Extended Kalman Filtering) algorithm in computing nonlinear equation. The optimal dynamic path planning algorithm has been applied to GPS-bit synchronization, and better results have been obtained than the current histogram method which is widely used. In the end, through combining SRUKF estimation technology with new bit synchronization method, the thesis designed serial and parallel schemes in the state of loop's lost lock, and one of the two schemes can be chosen according to practical situation. The result of experiment and analysis confirmed the reasonableness of the two schemes.
引文
[1]http://www.gps.oldhand.org/articles/gps/2006/0714/2.html
    [2]MacGougan, Glenn D. High Sensitivity GPS Performance Analysis in Degraded Signal Environments. Geomatics Engineering University of Calgary. Thesis or Dissertation, MSc.2003,216-219P
    [3]Andrew W. The European Programme for Global Navigation Services. ESA Publications Division, ESTEC, PO Box 299,2200 AG Noordwijk, the Netherlands. European Space Agency.2005,10
    [4]http://analog.eccn.com/d/298490.html
    [5]George M. Giaglis, Ada Pateli, Kostas Fouskas. On the Potential Use of Mobile Positioning Technologies in Indoor Environments.15th Bled Electronic Commerce Conference eReality:Constructing the eEconomy Bled, Slovenia, June 17-19,2002.413-429P
    [6]Parkinson B, Spilker J. Global Positioning System:Theory and Applications (Vol. I). American Institute of Aeronautics and Astronautics.1996
    [7]Bo Z, Gerard L. GPS Software Receiver Enhancements for Indoor Use. Proceedings of ION GNSS 2005.2005:1138-1142P
    [8]蔡昌听,皮亦鸣.高灵敏度GPS的研究进展.全球定位系统.2006,2:1-9页
    [9]European Commission. Galileo:Mission High Level Definition.2002,9
    [10]Benedicto J, Dinwiddy S E, Gatti G, et all. GALILEO:Satellite System Design and Technology Developments. ESA Report.2000,11
    [11]Grelier T, Dantepal J, Delatour A, Ghion A, et all. Initial Observations and Analysis of Compass MEO Satellite Signal, Inside GNSS, May/June 2007.
    [12]The Gallup Organization. General Public Survey on the European Galileo Programme Analytical Report.2007,6
    [13]Marcus A, Marcio A, Malcolm W, et all. Signal Propagation Analysis and Signature Extraction for GNSS Indoor Positioning, IEEE/ION PLANS 2006, San Diego, April 2006:913-919P
    [14]Yang Bo; Xu Yajun; Luo Jianjun et all. Indoor Positioning Performance of Galileo Signal. Second International Conference on Space Information Technology. Proc. of SPIE 6795,2007:1-5P
    [15]http://www.it.com.cn/f/mobile/064/10/257528.htm
    [16]廖劲光,韩波,廖惜春.基于Windows CE嵌入式车载导航终端的设计.五邑大学学报自然科学版.2009,23(1):47-51页
    [17]易大江,王浩,贾坤等.H2/H∞混合滤波在GPS/DR组合导航中的应用研究.信号处理.2009,25(1):104-108页
    [18]郜洪亮,刘遵义.基于GPS和FPGA的便携式高精度同步时钟的研制.电力系统保护与控制.2009,37(2):80-82页
    [19]Pratap M, Per B著.罗鸣,曹冲,肖雄兵译.全球定位系统一信号,测量与性能.电子工业出版社.2008
    [20]张守信.GPS卫星测量定位理论与应用.国防科技大学出版社.1996.
    [21]Grewal S, Weill R. GPS, Inertial Navigation, and Integration.2nd Edition, John Wiley&Sons, Inc.2007
    [22]GPS接收机的灵敏度分析.深圳市华颖锐兴科技有限公司http://e.newmaker.com/art_24251.html
    [23]Lachapelle G. GNSS Indoor Location Technologies. Journal of Global Positioning Systems.2004,3(1-2):2-11P
    [24]Lachapelle G, Kuusniemi H, Dao T H, et al. HSGPS Signal Analysis and Performance Under Various Indoor Conditions Proceedings of GPS/GNSS 2003 Conference (Session C3), Portland, OR, September 9-12,2003. The Institute of Navigation.2003:1-14P
    [25]韩帅.导航接收机在弱信号下C/A码捕获技术研究.哈尔滨工业大学硕士论文.2007,7
    [26]Karunanayake M D, Cannon M E, Lachapelle G. Analysis of Assistance Data on AGPS Performance. Measurement Science and Technology.2007, 18(7):1908-1916P
    [27]Maurizio Fantino, Fabio Dovis, Jinling Wang. Quality Monitoring for Multipath Affected GPS Signals. Presented at GNSS 2004, The 2004 International Symposium on GNSS/GPS, Sydney, Australia.6-8 December 2004,151-159P
    [28]梁坤,施浒立,宁春林.室内环境中的GPS信号特性分析.天文研究与技术(国家天文台台刊).2008,5(1):30-36P
    [29]Sana U Q. An Analysis of L1-C/A Cross Correlation & Acquisition Effort in Weak Signal Environments. International Global Navigation Satellite Systems Society IGNSS Symposium.2007,12.1-14P
    [30]Collin J, Kuusniemi1H, Mezentsev O. HSGPS under Heavy Signal Masking-Accuracy and Availability Analysis. Proceedings of 6th Nordic Radio Navigation Conference and Exhibition "NORNA 03". Tockholm-Helsinki. 1-11P
    [31]刘海涛.高灵敏GPS/GALILEO双模导航接收机的研究与开发.国防科学技术大学博士论文.2006
    [32]Frank V D. Indoor GPS Theory and Implementation. IEEE Position and Navigation Symposium.2002:240-247P
    [33]Nesreen I Ziedan. GNSS Receivers for Weak Signals. Artech Housh, Inc. 2006
    [34]Gidon L. Assisted GPS Solution in Cellular Networks. Master thesis, the University of Stanford.2006
    [35]Nainesh A,Julien B, Paul B, et al. Algorithm for GPS Operation Indoors and Downtown. GPS Solutions.2002,6(3):149-160P
    [36]White Plains. RFID Indoor Positioning Based on Probabilistic RFID Map and Kalman Filtering. Proceedings of the Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications,2007:1-7P
    [37]Bao Xu, Wang Gang. Random Sampling Algorithm in RFID Indoor Location System. The third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06),2006:168-176P
    [38]Rizos C, Barnes J, Small D., G Voight. Gambale, A New Pseudolite-Based Positioning Technology for High Precision Indoor and Outdoor Positioning, Int. Symp. & Exhibition on Geoinformation 2003, Shah Alam, Malaysia, 2003:115-129P
    [39]Lachapelle G, Collin J. Pedestrian and Vehicular Navigation Under Signal Masking Using Integrated HSGPS and Self Contained Sensor Technologies. Proceedings of 11th World Congress, International Association of Institutes of Navigation, Berlin.2003,10:1-29P
    [40]Christian K, Bernd E, Thorsten L. Improvements of GNSS Receiver Performance Using Tightly Coupled INS Measurements. Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 2000.2000,9:844-854P
    [41]Basnayake C, Mezentsev O, Lachapelle G, et al. An HSGPS, inertial and map-matching integrated portable vehicular navigation system for uninterrupted real-time vehicular navigation. International Journal of Vehicle Information and Communication Systems. International Journal of Vehicle Information and Communication Systems 2005.2005:131-151P
    [42]Shaojun F, Choi L L. Assisted GPS and Its Impact on Navigation in Intelligent Transportation Systems. The IEEE 5th International Conference on Intelligent Transportation Systems.2002:926-931P
    [43]Christian S, Oliver K. Indoor Navigation with SVG. http://www.svgopen.org/2005/papers/IndoorNavigationWithSVG
    [44]Salman S. Development of Map Aided GPS Algorithms for Vehicle Navigation in Urban Canyons. PhD thesis. The University of Calgary.2005
    [45]曹冲.高灵敏度GNSS接收机为何特别受到关注.卫星与网络.2006.(12):38-40P
    [46]Sanjeet S. Comparison of Assisted GPS (AGPS) Performance using Simulator and Field Tests. ION GNSS 2006, Fort Worth TX.2006:1-12P
    [47]梁坤,施浒立.高灵敏度GPS捕获技术的分析与仿真.全球定位系统.2007.(6):26-32P
    [48]http://plan.geomatics.ucalgary.ca/index.php
    [49]http://www.sirf.com/products/index.html
    [50]SiRF Technology, Inc. SiRFstarⅢTM GPS Single Chip A High Performance GPS in a Small Form Factor. Product exhibit poster. March, 2005
    [51]先进的GPS芯片组ANTATIS4适合移动导航和多媒体应用.http://www.atmel.com/dyn/resources/prod_documents/doc4630_cn.pdf
    [52]Frank V D, Charles A. Indoor GPS Technology. Presented at CTIA Wireless-Agenda, Dallas.2001,5:1-10P
    [53]http://www.u-nav.com/accessories.html
    [54]http://www.fast-china.com/cpzx.asp
    [55]http://edu.zdor.cn/lab/0711/200015.htm
    [56]Van Nee D J R, et al. New Fast GPS Code-Acquisition Technique Using FFT. Electronics Letters,1991,27(2):158-160P
    [57]皮亦鸣,张婧,蔡昌昕.GPS信号的差分相关捕获算法研究.全球定位系统.2006,31(4):1-4P
    [58]Uijt de Haag M. An Investigation into the Application of Block Processing Techniques for the Global Positioning System. PhD Dissertation, Ohio University.1999
    [59]James B T. Fundamentals of Global Positioning System Receivers. A Software Approach. John Wiley & Sons, Inc.2nd Edition,2004
    [60]Zarrabizadeh M H, Sousa E S. A Differentially Coherent PN Code Acquisition Receiver for CDMA Systems.1997,45(11):1456-1465P
    [61]Choi H, Cho D J, Yun S J, et al. A Novel Weak Signal Acquisition Scheme for Assisted GPS. Proc. ION GPS 2002,24-27 September 2002, Portland, OR,2002:177-183P
    [62]Zarrabizadeh M H, Sousa E S. A Differentially Coherent PN Code Acquisition Receiver for CDMA Systems.1997,45(11):1456-1465P
    [63]Park S H, Choi H, Lee S J, et al. A Novel GPS Initial Synchronization Scheme Using Decomposed Differential Matched Filter. Proceedings of The Institute of Navigation, ION NTM 2002, San Diego, CA, January 28-30. 2002:246-253P
    [64]Schmid A, Gunther C, A Neubauer. Frequency Offset Estimation for Galileo/GPS Receivers Based on Differential Correlation. Proceedings of IEEE Statistical Signal Processing (SSP). July 2005:687-691P
    [65]Jose A A R, Vincent H, Thomas P, et al. Theroy on Acquisition Algorithms for Indoor Positioning.12th Saint Petersburg International Conference on integrated navigation systems Saint Peterburg, Russia, May 23-25,2005
    [66]Robert E P. Multicorrelator Techniques for Robust Mitigation of Threats to GPS Signal Quality. Ph.D thesis. the University of Stanford. June 2001
    [67]Surendran K S. New Enhanced Sensitivity Detection Techniques for GPS L1 CA and Modernized Signal Acquisition. Ph.D thesis, the University of Calgary. January 2008
    [68]Zhen Z, Frank V G, Janusz S. GPS Signal Acquisition Using the Repeatability of Successive Code Phase Measurements. GPS Solutions. 2008,12(1):43-53P
    [69]Akos D M. A Software Radio Approach to Global Navigation Satellite System Receiver Design. PhD thesis. Ohio University.1997
    [70]Braasch M S, A J V Dierendonck. GPS Receiver Architecture and Measurements. Proceeding of IEEE.1999,87(1):48-64P
    [71]Gunawardena S, Van G F, Soloviev A. Real Time Block Processing Engine for Software GNSS Receivers. Proceedings of ION National Technical Meeting.2004:371-378P
    [72]Daniele B. A Statistical Theory for GNSS Signal Acquisition. Ph.D Thesis. Dottorato in Elettronica e delle Comunicazioni-XX ciclo.2008
    [73]Cillian O'Driscoll B.E. Performance Analysis of the Parallel Acquisition of Weak GPS Signals. Ph.D thesis. The National University of Ireland. January, 2007
    [74]Widrow B, Koll I, Liu M. Statistical Theory of Quantization. IEEE Trans. Instrum. Meas.1996,45(2):353-361P
    [75]Sripad A B, Snyder D L. A Necessary and Sufficient Condition for Quantization Errors to be Uniform and White.1977,25(5):442-448P
    [76]Flikkema P G. Fast Single-Element PN Acquisition for the TDRSS MA System. IEEE Transactions on Communications.1998,36(11):1226-1235P
    [77]Unjeng c, William J H, Joseph I S. Spread-Spectrum Code Acquisition in the Presence of Doppler Shift and Data Modulation. IEEE Transactions on Communications.1990,38(2):241-250P
    [78]Verdu S, Multiuser Detection. Universal Press,1998
    [79]Morton Y T, Tsui J B, Lin D M, et al. Assessment and Handling of C/A Code Selfinterference During Weak GPS Signal Acquisition. ION GPS, Portland, OR, Sep.2003:646-653P
    [80]Glennon E P. A Review of GPS Cross Correlation Mitigation Techniques. The 2004 International Symposium on GNSS/GPS. Sydney, Australia.6-8 December 2004:125-137P
    [81]Gustavo L O, Gonzalo S. Detection and Mitigation of Cross-Correlation Interference in High-Sensitivity GNSS Receivers. The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 07).2007:1-5P
    [82]Holtzman, J M. Wireless and Mobile Communications. Springer(lst Edition),1994
    [83]Patel P, J Holtzman. Analysis of a Simple Successive Interference Cancellation Scheme in a DS/CDMA System. Selected Areas in Communications. IEEE Journal on 1994.12(5):796-807P
    [84]Pedersen. Practical Implementation of Successive Interference Cancellation in DS/CDMA Systems. Universal Personal Communications,1996. IEEE International Conference on 1996:321-325P
    [85]Madhani P H. Application of Successive Interference Cancellation to the GPS Pseudolite Near-far Problem. IEEE Transactions on Aerospace and Electronic Systems.2003,39(2):481-488P
    [86]Zhao L, Amin M, Lindsey A. Mitigation of Periodic Interferers in GPS Receivers Using Subspace Projection Techniques. Proceedings of the International Symposium on Signal Processing and its Applications.2001: 497-500P
    [87]Wolfgang K, Aurora, John K Thomas, et al. GPS Near-Far Resistant Receiver. United States Patent.2003
    [88]Behrens R T, Scharf L L. Signal Processing Applications of Oblique Projection Operators. IEEE Transactions Signal Processing.1994,42(6): 1413-1423P
    [89]Yu T, Morton, Mikel M, et al. GPS Civil Signal Self-Interference Mitigation during Weak Signal Acquisition. IEEE Transactions on Signal Processing. 2007,55(12):5859-5863P
    [90]唐卫涛,李琼,唐斌.一种新的消除GPS互相关干扰的方法——Q路滤波法.测绘通报.2007,7:19-22P
    [91]梁坤,王剑,施浒立.高灵敏度GPS接收机中的互相关减轻算法研究.电子学报.2008,36(6):1098-1102P
    [92]William J H, Joseph I S, Victor A V. High Dynamic GPS Receiver Using Maximum Likelihood Estimation and Frequency Tracking. IEEE Transactions on Aerospace and Electronic Systems.1987,23(4):425-437P
    [93]Victor A, Vilnrotter, Yilnrotter S, et al. A Comparison of Frequency Estimation Techniques for High-Dynamic Trajectories. US National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, National Technical Information Service, distributor.1988,9
    [94]Jan Wendel, Gert F, Trommer. Tightly Coupled GPS/INS Integration for Missile Applications. Aerospace Science and Technology.2004:627-634P
    [95]Alban S., Akos D, Rock S, et all. Performance Analysis and Architectures for INS-Aided GPS Tracking Loops. Institute of Navigation-NTM, Anaheim, CA,22-24 January 2003:611-622P
    [96]Ravindra Babul, Jinling Wang. Dynamics Performnance of Carrier and Code Tracking Loops in Ultra-Tight GPS/JNS/PL Integration. IEEE Indicon 2005 Conference, Chennai, India,11-13 Dec.2005:233-236P
    [97]Petovello M G, O'Driscoll C and Lachapelle G. Ultra-Tight GPS/INS for Carrier Phase Positioning In Weak-Signal Environments, Proceedings of NATO RTO SET-104 Symposium on Military Capabilities Enabled by Advances in Navigation Sensors, Antalya, Turkey, NATO,2007:1-18P
    [98]Petovello M G, O'Driscoll C and Lachapelle G. Weak Signal Carrier Tracking Using Extended Coherent Integration with an Ultra-Tight GNSS/IMU Receiver, Proceedings of European Navigation Conference, Toulouse, France,2008:1-11P
    [99]Psiaki, M L. Smoother-Based GPS Signal Tracking in a Software Receiver. Proc. of ION GPS, Salt Lake City, UT, Sept.11-14,2001:2900-2913P
    [100]Psiaki M L, H Jung. Extended Kalman Filter Methods for Tracking Weak GPS Signal. ION GPS 2002, Portland, OR.2002:2539-2553P
    [101]Hee J, Mark L Psiaki, Steven P Powell. Kalman-Filter-Based Semi-Codeless Tracking of Weak Dual-Frequency GPS Signals. ION GPS/GNSS 2003, Portland, OR.9-12 September 2003:2515-2523P
    [102]梁前浩.GPS中频信号仿真与微弱信号捕获、跟踪方法研究.北京交通大学硕士学位论文.2008
    [103]张婧.基于非线性滤波的GPS微弱信号处理的研究.上海交通大学硕士学位论文.2007
    [104]Ziedan N, Garrison, James L. Extended Kalman Filter-Based Tracking of Weak GPS Signals Under High Dynamic Conditions. Proceedings of ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA,2004:20-31P
    [105]Kokkonen M, Pietila S. A New Bit Synchronization Method for a GPS Receiver. IEEE Position Location and Navigation Symposium.2002: 85-90P
    [106]Marco A, Thomas P, Jong-Hoon W, et al. An Algorithm for Bit Synchronization and Signal Tracking in Software GNSS Receivers. Proceedings of ION GNSS-2006, Fort Worth, Texas, Sept.26-29,2006: 1-13P
    [107]http://www.ngs.noaa.gov/CORS/
    [108]Lei D. IF GPS Signal Simulator Development and Verification. Master thesis. The University of Calgary.2003
    [109]刘基余.GPS卫星导航定位原理与方法.科学出版社.2003:369-376P
    [110]John C G. Local Oscillator Phase Noise and Its Effect on Receiver Performance. Watkins-Johnson Company Tech-notes.1981,8(6):1-13P
    [111]寇艳红,张其善.GPS接收机中晶振误差的模拟方法.电子与信息学报.2004,26(8):1319-1324P
    [112]Irsigler M, Eissfeller B. PLL Tracking Performance in the Presence of Oscillator Phase Noise. GPS Solutions.2002,5(4):45-57P
    [113]Allan D W. Statistics of Atomic Frequency Standards. Proceedings of IEEE. 1966,54(2):221-230P
    [114]Zucca C, Tavella P. The Clock Model and Its Relationship with Allan and Related Variances. IEEE Transactions on Ultrasonics.2005 Ferroelectrics, and Frequency Control,2005,52(2):289-296P
    [115]Winkel J O. Modeling and Simulating GNSS Signals Structure and Receivers. PhD Thesis. University FAF Munich.2003
    [116]孙宏伟.原子钟噪声的蒙特卡络模拟方法.陕西天文台台刊.1996,19(5):33-39P
    [117]Davis. A Kalman Filter Clock Algorithm for Use in the Presence of Flicker Frequency Modulation Noise. Metrologia 42, Institute of Physics Publishing. 2005:1-10P
    [118]冯爱明,林敏.利用几何插值法合成1/f噪声.中国计量学院学报.2002,13(2):109-112P
    [119]Worn E G. Wavelet-based Representations for the 1/f Family of Fractal Process. IEEE Procedings.1993,81:1428-1450P
    [120]林玉荣,唐江河,邓正隆.基于小波和FFT的组合分形噪声生成方法.哈尔滨工业大学学报.2006,38(5):777-779P
    [121]Ezquer R G, Jadur C A; de Gonzalez, Mosert M. IRI-95 TEC Predictions for the South American Peak of the Equatorial Anomaly. Advances in Space Research,22(6):811-814P
    [122]Coisson, Radicella S M, R Leitinger, et all. Topside Electron Density in IRI and NeQuick:Features and Limitations, Adv. Space Res.2006, (37): 937-942P
    [123]赵琳.卫星导航原理与应用.哈尔滨工程大学出版社.2002
    [124]Spilker J. Digital Communication by Satellite. Prentice Hall, Englewood Cliffs, NJ,1995
    [125]Thomas J, Axelrad P.a, Kober W. A Complete IF Software GPS Receiver:a tutorial about the detail, ION GPS 2003:789-810P
    [126]Ping L. Improving Tracking Performance of PLL in High Dynamic Applications. Master thesis, Department of Geometrics Engineering in Calgary University,2004
    [127]Daniele B, Cyrille G, Florence M, et al. The Output SNR and Its Role in Quantifying GNSS Signal Acquisition Performance. ION GNSS 2009: 1-12P
    [128]Ojha A K. Comparison of Generalized Q-function Algorithms. IEEE Trans. Inform. Theory.1987, IT-33:591-596P
    [129]Mark R. Fundamentals of Radar Signal Processing. McGraw-Hill.2005
    [130]David D, Judith D, Executrix G, et al. Noncoherent Gain Enhancement Technique for Non-stationary Targets. United States Patent 6538599. May 19,1998
    [131]Schmid A, Neubauer A. Comparison of the Sensitivity Limits for GPS and Galileo Receivers in Multipath Scenarios. Position Location and Navigation Symposium.2004:503-509P
    [132]Strassle C. The Squaring-Loss Paradox, Proceedings of ION GNSS 2007. 2007:2715-2722P
    [133]Lowe S T. Voltage Signal-to-Noise Ratio (SNR) Nonlinearity Resulting from Incoherent Summations. TMO Progress Report.1999:42-137P
    [134]Wei Y. Selected GPS Receiver Enhancements for Weak Signal Acquisition and Tracking. Master thesis. The University of Calgary.2007
    [135]Wei Y, Bo Z, Rob Watson, et all. Differential Combining for Acquiring Weak GPS Signals. Signal Processing.2006.87:824-840P
    [136]Shin O, Lee K. Differentially Coherent Combining for Double-dwell Code Acquisition in DS/CDMA Systems. IEEE Trans Communication.2003, 51(7):1046-1050P
    [137]http://mathworld.wolfram.com/NormalProductDistribution.html
    [138]Mary L B. Mathematical Methods in the Physical Sciences.3rd Edition. Wiley, Inc. July 2005
    [139]Abramowitz, Stegun. Handbook of Mathematical Functions. Dover, New York, NY, USA,9th Printing. November 1970
    [140]http://wiki.mbalib.com/wiki/中心极限定理
    [141]盛骤,谢式千,潘承毅.概率论与数理统计.第三版.高等教育出版社.2007,12
    [142]Mourad B. Signal Detection and Estimation. Second Edition. Artech house, Inc.2005
    [143]John G P[美]著.张力军,张宗橙,郑宝玉等译.数字通信(第四版).电子工业出版社.2003,1
    [144]Simon M K. Probability Distributions Involving Gaussian Random Variables:A Handbook for Engineers and Scientists. The International Series in Engineering and Computer Science. Springer, May 2002
    [145]Demoz G E, Alireza R. Sensitivity and Performance Analysis of Doppler-Aided GPS Carrier-Tracking Loops. Navigation:Journal of the Institute of Navigation.2005,52(2):49-60P
    [146]Elliott D K著.寇艳红译.GPS原理与应用.电子工业出版社.2006
    [147]Tsung-Yu C. Model Analysis on the Performance for an Inertial Aided FLL-Assisted-PLL Carrier-Tracking Loop in the Presence of Ionospheric Scintillation. Institute of Navigation 2007 International Technical Meeting (NTM 2007). San Diego, California, USA.2007:1276-1296P
    [148]Phillip W W. Performance Comparisons between FLL, PLL and a Novel FLL-Assisted-PLL Carrier Tracking Loop under RF Interference Conditions. Proceeding of ION GPS, Nashville, Tennessee,1998:783-795P
    [149]Raymond L F. The Acceleration Sensitivity of Quartz Crystal Oscillators:A Review. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.1988,35(3):297-305P
    [150]Pascal O G. Effect of Oscillator Instability on GNSS Signal Integration Time. Master's thesis. Institute of Microtechnology Universite de Neuchatel. 2007.08
    [151]RTCA, Environmental Conditions and Test Procedures for Airbrone Equipment, Section 8, Vibration, RTCA Document No. RTCA/DO-160D, December 14,2000
    [152]Alban S. Design and Performance of a Robust GPS/INS Attitude System for Automobile Applications. Ph.D. Thesis. Stanford University, Stanford, California, U.S.A. June,2004
    [153]David W A. Statistics of Atomic Frequency Standards. Proceeding of IEEE. 1966,54(2):221-230P
    [154]Irsigler M, Eissfeller B. PLL Tracking Performance in the Presence of Oscillator Phase Noise. GPS Solutions. Wiley Periodicals Inc.2002,5(4): 45-57P
    [155]Rudolph V D M. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. Ph.D thesis. The University of Stellenbosch. 2008.4
    [156]康叶伟,黄亚楼,孙凤池.一种基于RBUKF滤波器的SLAM算法.计算机工程.2008,34(1):17-19P
    [157]潘泉,杨峰,叶亮.一类非线性滤波器—UKF综述.控制与决策.2005,20(5):481-489P
    [158]Yanling H, Zhilan X, Feng S. Comparison of Unscented Kalman Filters. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China.2007:895-899P
    [159]Rudolph M D, Eric A W. The Square Root Kalman Filter for State and Parameter Estimation. Oregon Gradurate I nstitute of Science and Technology.2003:15-18P
    [160]Lin D M. A Weak Signal Tracking Technique for a Stand-Alone Software GPS Receiver. Proceedings of ION-GPS, Portland, OR, September 24-27, 2002.2534-2538P
    [161]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西北工业大学出版社.1998
    [162]Vander M R, Wan E A. The Square-root Unscented Kalman Filter for State and Parameter-Estimation. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ, USA:IEEE,2001:3461-3464P
    [163]Haykin S. Kalman Filtering and Neural Networks. New York:John Wiley&Sons.2001:221-280P
    [164]聂奇.非线性滤波及其在导航系统中的应用.哈尔滨工程大学博士学位论文.2007.4
    [165]Lawrence R R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE,1989,77(2): 257-286P
    [166]http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.h tml
    [167]Viterbi A J. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Trans on Information Theory. IT-13(2), April,1967.260-269P
    [168]Pierre, Baldi, Soren, et al著.张东晖,黄颖等译.生物信息学—机器学习方法(第二版).中信出版社,2003.7
    [169]Ziedan. and J. L. Garrison. Bit Synchronization and Doppler Frequency Removal at Very Law Carrier to Noise Ratio Using a Combination of the Viterbi Algorithm with an Extended Kalman Filter. ION GPS-GNSS 2003: 616-627P
    [170]Forney G D. The Viterbi Algorithm. Proceedings of the IEEE.1973,61(3): 268-278P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700