睾丸酮丛毛单胞菌3α-HSD/CR等基因的表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类活动将类固醇类物质(如雌二醇(E2)、口服避孕药)、多环芳香烃(PAHs)及杀虫剂等化合物大量排入环境中,这些物质已经引起生态破坏,不育、癌症等各种疾病日益增多。在众多的环境激素物质中,类固醇类物质不但非常稳定而且其激素活性大大高于其他环境激素类物质。C.testosteroni具有降解甾核的关键酶3α-羟类固醇脱氢酶/碳酰基还原酶(3α-hydroxysteroid dehydrogenase/carbonyl reductase,3α-HSD/CR)基因,因此能够以睾丸酮、孕酮和胆汁酸等类固醇类物质为唯一碳源和能源,通过包含许多酶的氧化甾核的复杂代谢途径,完全消化这类底物,因此该菌在这些危害大的稳定化合物的生物修复中起重要作用。然而,涉及这些物质降解的酶在该菌中是诱导表达的。为更好发挥C.testosteroni的作用,本研究对该细菌的一些基因进行克隆、载体构建和在大肠杆菌里进行表达:并对原始菌进行改造,检测。结果如下:
     1.提取C.testosteron.的基因组DNA,利用PCR扩增3α-HSD/CR和activator基因.构建了相应的表达载体pET-15b-3α和pET-15b-actl,并在大肠杆菌BL21里进行了诱导表达,为蛋白质纯化、抗体的制备打下基础。
     2.提取C.testosteroni的基因组DNA,利用PCR扩增activator基因。以具有tac强启动子的质粒pKtac1为载体,构建了2个含有C.testosteroni activator基因的质粒:pKtac1-actl(564bp全长activator基因)和pKtac1-act2(409bp部分activator基因)。这2个质粒经测序后发现:pKtac1-act1和pKtac1-act2在tac启动子的-35区保守序列都为TTGACA;在-10区保守序列pKtac1-actl为TATAAT,而pKtac1-act2却突变为TATGTT。将pKtac1-actl和pKtac1-act2分别进行酶切和连接,获得重组质粒pKtac1-act3(含启动子-10保守区为TATAAT,409bp的部分activator基因)和pKtac1-act4(含启动子-10保守区为TATGTT,564bp的全长activator基因)。
     3.酶联免疫分析(ELISA)测定4个重组质粒分别转化(或与含3α-HSD/CR基因的质粒pAX1共转化)宿主菌Escherichia coli HB101的细菌总蛋白质中的activator和3α-HSD/CR的表达量。结果说明:启动子-10保守区为TATAAT的质粒比-10保守区为TATGTT的质粒有更高的转录活性;actvitor的过量表达可能影响质粒pKtac1-act3表达的稳定性;启动子-10区保守序列的下降突变(pKtac1-act2,TATAAT→TATGTT)及tac启动子的丢失(pKtac1-act3,继代培养4次)揭示了宿主菌E. coli HB101的自身防护机制;过高的细菌C.testosteroni activator表达可能对大肠杆菌有毒性,因此细菌启动本身的防护机制,对启动子保守区进行了下降突变修饰或者对强启动子进行剔除。
     4.利用电穿孔转化法分别将质粒pKtac1-actl和pKtac1-act2同源整合到C.testosteroni的
Chemicals such as steroids (e.g estradiol (E2) and oral contraceptive etc.) , polycyclic aromatic hydrocarbons (PAHs) and insecticide have been discharged into environment, which have already caused ecological destruction and various diseases such as infertility, cancer increased. Among these environmental hormones, steroid is quite stable and its hormonal activity much more harmful than other compounds in the environment. 3α-Hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) from Comamonas testosteroni is a key enzyme involved in the degradation of steroids and xenobiotic. C. testosteroni strains are able to use steroids (testosterone, progesterone, bile acid) as sole carbon and energy sources. Complete assimilation of steroids is achieved through a complex pathway involving many enzymatic steps of oxidation responsible for the breakdown of the steroid nucleus, C. testosteroni therefore play a significant role in the bioremediation of these stablely hormonally active compounds in the environment. However the catabolic enzymes for these compounds metabolism in C. testosteroni are not constitutively expressed but are induced by their respective substrates. For empowering C. testosteroni to degrade those compounds more effectively, we cloned 3α-HSD/CR and its activator genes from C. testosteroni. Then, its vectors were constructed and had been expressed in Escherichia coli. We constructed two genetically engineered bacteria of Comamonas testosteroni. The results were as follows:1. 3α-HSD/CR and its activator genes were cloned from C. testosteroni by PCR with Comamonas testosteroni genomic DNA. Then two expression vector pET-15b-3α and pET-15b-act1 were constructed respectively and expressed in E. coli BL21. All the above provided the foundation for protein purifing and antibody preparing.2. The activator gene from Comamonas testosteroni was amplied by PCR with Comamonas testosteroni genomic DNA. The PCR fragments were cloned to plasmid pKtacl (containing tac promoter) and two plasmids: pKtac1-act1 (containing 564bp total activator gene) and pKtac1 -act2 (containing 409bp partial activator gene) were obtained. The recombinant plasmid pKtac1-act2 was found mutation on promoter -10 consensus sequence (TATAAT-+TATGTT) by DNA sequencing. The inserts of pKtacl-act1 and pKtacl -act2 were subcloned into pKtacl and yielded pKtacl -act3 (-10 consensus sequence is TATA AT, containing 409bp activator gene) , pKtacl-act4 (-10 consensus sequence is TATGTT, containing 564bp activator gene) .
    3. The four recombinants were transformed into Escherichia coli HB101. The results indicated: 1) plasmids with TATA AT -10 consensus sequence had higher promoter activity than that of plasmids with TATGTT -10 consensus sequence in E. coli; 2) overexpression of activator from C. testosteroni was toxic to cells so pKtacl-ac/J which contains 409bp activator gene is unstable in E. coli HB101; 3) -10 consensus sequence down mutation (pKtac 1-ac/2, TATAAT-+TATGTT) and tac promoter fragment disappeared(pKtacl -act3 after 4 inoculations) from the cells revealed the self-defence mechanism off. coli HB101.4. The pKtacl -actl (containing 564bp total activator gene) and pKtacl-ac/2 (containing 409bp partial activator gene) were integrated into C. testosteroni chromosome through homologous recombination by electroporation respectively. Genetically engineered bacteria C. testosteroni+pKtac\-actl and C. /es/as/erom+pKtacl-ac/2 were gained by antibiotic and PCR selection then detected by Southern hybridization. The total cell lysate of C. testosteroni^ pKtacl-ac/7 and C. /estas/erom+pKtacl-ac/2 were extracted to detect the quantity of 3a-HSD/CR using ELISA. The results indicated that two genetically engineered bacteria could constitutively expressed 3a-HSD/CR gene evidently without the presence of substrates such as testosterone.5. Two genetically engineered bacteria were inoculated for 50 days and their total cell lysate were extracted per five days to detect the quantity of 3a-HSD/CR and activator using ELISA. The results indicated: the expression of activator and 3a-HSD/CR are quite high and stable when C. testosteroni^ pKtacl-ac/7 inoculated in LB medium containing antibiotic, while both unstable when inoculated in LB medium without antibiotic; the same as C. /es/os/erowj+pKtacl-ac/2. C. tes/as/erom+pKtacl-ac/./ was more stable than C. /es/as/erom+pKtacl-ac/2 in LB medium without antibiotic. From the results we could preliminary conclude that the expression of 3o-HSD/CR was regulated by the activator gene.6. The RT-PCR results indicted: genetically engineered bacteria C. testosteroni+pKtac\-act] and C. testosteroni+pKtacl-act2 constitutively expressed 3a-HSD/CR which is a key enzyme involved in the degradation of steroids and xenobiotic carbonyl compounds; at the same time 4-hydroxy-2-oxovalerate aldolase and 2-hydroxypenta-2,4-dienoate hydratase also constitutively expressed. These enzyme are both founctioned in the catabolism of AHs and steroids.7. The preliminary results of two-dimensional gel electrophoresis showed: genetically
引文
1. Ahmad D, R Masse, M Sylvestre. Cloning and expression of genes involved in 4-chlorobiphenyl transformation by Pseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria. Gene, 1990, 86:53-61
    2. Anderson D C. Sex-hormone-binding globulin. Clin Endocrinol, 1974, 3:69-96
    3. Arai H, S Akahira, T Ohishi et al. Adaptation of Comamonas testosteroni TA441 to utilization of phenol by spontaneous mutation of the gene for a trans-acting factor. Mol. Microbiol, 1999, 33:1132-1140
    4. Arai H, T Yamamoto, T Shimzu et al. Genetic organization and characteristics of the 3-(3-hydroxyphenyl) propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology, 1999, 145:2813-2820
    5. Arnold F H. Directed evolution: creating biocatalysis for the future. Chemical Eng Sci., 1996, 51 : 5091-5102
    6. Barbaro D J, P A Maekowiak, S S Barth et al. Pseudomonas testeosteoni infection: Eighteen recent cases and a review of the literature. Rev. Infectt. Dis, 1987, 9:124-129
    7. Barriault D, P Marie-Michele, M Sylvestre. Family shuffling of a targeted bphA region to engineer biphenyl dioxygenase. J. Bacteriol., 2002, 184(14): 3794-3800
    8. Bayly R C, M G Barbour. The degradation of aromatic compounds by the meta and gentisate pathways. Mierobiol. Ser, 1984, 13:253-294
    9. Beaulieu M, E Levesque, D W Hum et al. Isolation and characterization of a novel cDNA encoding a human UDP-glucuronosyltransferase active on C_(19) steroids. J. Biol. Chem., 1996, 271:22855-22862
    10. Bej A K, P Michael, M ARonald. Effect of introducing genetically engineered microorganisms on soil microbial community diversity. FEMS Microbiology Letters. 1991, 86(2): 169-175
    11. Belyaeva T A., J T. Wade, C L. Webster et al. Transcription activation at the Escherichia coli melAB promoter: the role of MelR and the cyclic AMP receptor protein. Molecular Microbiology, 2000, 36(1): 211-222
    12. Benjiamin L. Genes Ⅶ. New York: Published by Oxford University Press Inc., 2000
    13. Benson A M, A J Suruda, P. Talalay. Concentration-dependent association of Δ~5-3-ketosteroid isomerase of Pseudomonas testosteroni. J. Biol. Chem., 1975, 250: 276-280
    14. Benson A M, R Jarabak, P Talalay. The amino acid sequence of Δ~5-3-ketosteroid isomerase of Pseudomonas testosteroni. J. Biol. Chem, 1971,246:7514-7525
    15. Berg A, M Ingelman-Sunoberg, J A Gustafsson. Purification and characterization of cytochrome P-450meg. J. Biol. Chem., 1979, 254:5264-5271
    16. Bhende P M, M E Susan. Amino Aeid-DNA Contacts by RhaS: an AraC Family Transcription Activator. Journal of Bacteriology, 1999, 181 (17): 5185-5192
    17. Birnbaum L S. Endocrine effects of prenatal exposure to PCBs, dioxins, and other xenobiotics; implications for policy and future research. Environ Health Perspect, 1994, 102: 676-679,
    18. Biswas M G, D W Russell. Expression cloning and characterization of oxidative 17β- and 3α-hydroxysteroid dehydrogenases from rat and human prostate. J. Biol. Chem., 1997, 272: 15959-15966,
    19. Bitman J, H C Cecil. Estrogenic activity of DDT analogs and polychlorinated biphenyls. J Agr Food Chem, 1970, 18:1108-1112
    20. Bomba A, S Gancarcikova, R Nemcova et al. The effect of lactic acid bacteria on intestinal metabolism and metabolic profile in gnotobiotic pigs. Dtsch Tierarztl Wochenschr, 1998, 105(10): 384-389
    21. Bortone S A, R P Cody. Morphological masculinization in poeciliid females from a paper mill effluent receiving tributary of the St. Johns River, Florida, USA. Bull. Environ, Contain. Toxicol., 1999, 63:150-156
    22. Boyer J, P Talalay. The amino acid composition of crystalline Δ~5-3-ketosteroid isomerase and its tryptic peptides. J. Biol. Chem., 1966, 241:180-187
    23. Brosius J, M Erfle, J Storella. Spacing of the -10 and -35 Regions in the tac Promoter. J. Biol. Chem., 1985, 260(6): 3539-3541
    24. Brown N L, J V Stoyanov, S P Kidd et al. The MerR family of transcriptional regulators. FEMS Microbiol. Rev., 2003, 27: 145-163.
    25. Browning D F, S J W Busby. The regulation of bacterial transcription initiation. Nature Reviews, Microbiology, 2004, 2:1-9
    26. Browning D, J Cole, S Busby. Suppression of FNR-dependent transcription activation at the Escherichia coli nit promoter by Fis, IHF and H-NS: modulation of transcription initiation by a complex nucleo-protein assembly. Mol. Microbiol., 2000, 37:1258-1269
    27. Burshell A, P A Stathis, Y Do et al.Characterization of an estrogen-binding protein in the yeast Saccharomyees cerevisiae. J. Biol.Chem., 1984, 259:3450-3456
    28. Busby S, R H Ebright. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell, 1994, 79:743-746
    29. Cabrera J E, J L Pruneda-Paz, S Genti-Raimondi. Steroid-inducible transcription of the 3beta/17beta-hydroxysteroid dehydrogenase gene (3beta/17beta-hsd) in Comamonas testosteroni. J Steroid Bioehem Mol Biol., 2000, 73(3-4): 147-52
    30. Carlsen E, Giwercman A, Keiding N et al. Evidence for decreasing quality of semen during past 50 years. Br. Med. J., 1992, 305:609-613
    31. Cheng K C, P C White, K N Qin. Molecular cloning and expression of rat liver 3α-hydroxysteroid dehydrogenase. Mol. Endocrinol., 1991, 56:823-828
    32. Cho H-S, Ha N-C, G Choi et al. Crystal structure of D5-3-ketosteroid isomerase from Pseudomonas testosteroni in complex with equilenin settles the correct hydrogen bonding scheme for transition state stabilization. J. Biol. Chem., 1999, 274(46): 32863-32868
    33. Choi K P, I Molnar, M Yamashita et al. Purification and characterization of the 3-ketosteroid-delta 1-dehydrogenase of Arthrobacter simplex produced in Streptomyees lividans. J. Bioehem., 1995, 117:1043-1049
    34. Choi K P, Molnar I, Y Murooka. Secretory overproduction of Arthrobacter simplex 3-ketosteroid delta 1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector. Appl. Microbiol Biotechnol., 1995,43: 1044-1049
    35. Cohen S P, H Hachler, S B Levy. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coll J. Bacteriol., 1993, 175: 1484-1492.
    36. Colborn T, F S vom Saal, A M Soto. Developmental effects of endocrine-disrupting chemicals in wildlife and humans [see comments]. Environ Health Perspect., 1993, 101:378-384,
    37. Coulter A W, P Talalay. Studies on the microbial degradation of steroid ring A. J. Biol. Chem., 1968, 243: 3238-3247.
    38. Crameri A C, S Raillard, W P C Stemmer. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature, 1997, 391: 288-291
    39. Danzo B J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environmental Health Perspectives, 1997, 105(3): 294-103
    40. Davidson S. J and Paul Talalay. Purification and Mechanism of Action of a Steroid Δ4-5B-Dehydrogenase. J. Biol. Chem., 1966, 241: 906-915
    41. Davis D L, H L Bradlow. Can environmental estrogens cause breast cancer? Sci Amr., 1995,273: 166-172
    42. Davison J. Genetic exchange between bacteria in the environment. Plasmid., 1999, 42:73-91
    43. De Lauzon S, N Christeff, F Heme et al. Protection of substrate against enzymatic action by binding to proteins. Dependence upon enzyme and binding protein. J. Biol. Chem, 1980,255(14): 6875-6879
    44. De Smet I, P De Boever, W Verstraete.Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr., 1998, 79(2): 185-94.
    45. Debashis G S, S P John, L D William. Crystals of active tetramers of 3a,20p-hydroxysteroid dehydrogenase. J. Biol. Chem., 1986,261(3): 1306-1308
    46. DeBoer H A, L J Comstock, M Vasser. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci.USA, 1983, 80: 21-25
    47. Degen G H, P Janning, J Wittsiepe et al. Integration of mechanistic data in the toxicological evaluation of endocrine modulators. Toxicology Letters., 2002, 127: 225-237
    48. DeLong A, A Calderon-Urrea, S L Dellaporta. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell, 1993, 74: 757-768.
    49. Diaz E, M A Prieto. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol., 2000,11:467-475.
    50. Dove S L, S A Darst, A hochschild. region 4 of (?) as a target for transcription regulation. Mol. Microbiol., 2003,48: 863-874
    51. Drobnic J. Genetically modified organisms in bioremediation and legislation. International
     Biodeterioration and Biodegradation. 1999, 44(1): 3-6
    52. Ebright R H. Transcription activation at Class Ⅰ CAPdependent promoters. Mol. Microbiol., 1993, 8:797-802
    53. European Commission. European workshop on the impact of endocrine disrupters on human heath and wildlife, report of proceedings, 2-4 December 1996, Weybridge, UK; Publication EUR 17549, 1997
    54. Falconi M, B Colonna, G Prosseda et al. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J., 1998, 17: 7033-7043.
    55. Florin C, T Kohler, M Grandguillot et al. Comamonas testosteroni 3-ketosteroid-delta 4(5 alpha)-dehydrogenase: gene and protein characterization. J. Bacterioi., 1996, 178(11): 3322-3330
    56.Frederick M,Ausubel et al(颜子颖,王海林等译).精编分子生物学实验指南(第三版).北京:科学出版社,1998
    57. Fujita Y, T Fujita. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc. Natl. Acad. Sci. U S A., 1987, 84:4524-4528
    58. Futamata H, K Watanabe, S. Harayama. Relationships between the trichloroethylene-degrading activities and the amino acid sequences of phenol hydroxylases in phenol-degrading bacteria, p. 99-104. In G. B. Wickramanayake and R. E. Hinchee (ed.), Natural attenuation: chlorinated and recalcitrant compounds. Battelle Press, Columbus, Ohio. 1998
    59. Futamata H, S Harayama, K Watanabe. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol, 2001,67(10): 4671-4677
    60. Gallegos M T, C Michan, J L Ramos. The XylS/AraC family ofregulators. Nucleic Acids Res., 1993, 21: 807-810.
    61. Gallegos M T, R Schleif, A Bairoch et al. AraC/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev., 1997, 61:393-410
    62. Garcia-Valdes E, E Cozar, R Rotger, New naphthalene degradingmarine Pseudomonas strains. Appl. Environm .Microbiol., 1988, 54:2478-2485
    63. Geissler W M, Davis D L, L Wu et al. Male pseudohermaphroditism caused by mutations of testicular 17 betahydroxysteroid dehydrogenase 3. Nature Genet, 1994, 7: 34-39.
    64. Genti-Raimondi S, M E Tolmasky, L C Patrito et al. Molecular cloning and expression of the beta-hydroxysteroid dehydrogenase gene from Pseudomonas testosteroni. Gene., 1991, 105(1): 43-49.
    65. Genus J M C. Steroid hormones and plant growth and development. Phytochemistry., 1977, 17: 1-14.
    66. Ghosh D, T B J Samanta. 11 alpha-Hydroxylation of progesterone by cell free preparation of Aspergillus ochraceus TS. J. Steroid Biochem., 1981, 14:1063-1067
    67. Gibsos DT,KC Wang, C J SIH et al. Mechanisms of steroid oxidation by microorganisms IX. on the mechanism of ring a cleavage in the degradation of 9,10-seco steroids by microorgamisms. J. Biol. Chem., 1966, 241(3): 551-559
    68. Goetz A, R Pukall, E Smit et al. Detection and characterization of broad-hostrange plasmids in environmental bacteria by PCR. Appl. Environ. Microbiol., 1996,62: 2621-2628.
    69. Gonza'lez-Pe'rez M M, J L Ramos, M T Gallegos et al. Critical nucleotides in the upstream region of the XylS-dependent TOL meta-cleavage pathway operon promoter as deduced from analysis of mutants. J. Biol. Chem., 1999, 274: 2286-2290.
    70. Goosen N, van de Putte P. The regulation of transcription initiation by integration host factor. Mol. Microbiol., 1995, 16: 1-7
    671. Goyal A K, G J Zylstra. Genetics of naphthalene and phenanthrene degradation by Comamonas testosteroni. Journal of Industrial Microbiology & Biotechnology., 1997, 19: 401-407
    72. Goyal A K, G J Zylstra. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol, 1996, 62(1): 230-236
    73. Gralla J D. Activation and repression of E. coli promoters. Curr. Opin. Genet. Dev., 1996, 6:526-530
    74. Grimm C, E Maser, E Mobus et al. The crystal structure of 3a-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. Shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J. Biol. Chem., 2000,275(52): 41333-41339
    75. Habe H, T Kimura, H Nojiri et al. Cloning and nucleotide sequence of the genes involved in the meta-cleavage pathway of cumene degradation in Pseudomonas fluorescens. J. Ferment. Bioeng., 1996, 81:247-254.
    76. Harder J, C Probian. Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium. Arch. Microbiol., 1997, 167:269-274
    77. Harley C B, R P Reynolds. Analysis of E. coli promoter sequences. Proc. Natl. Acad. ScLUSA, 1988, 85(12): 4468-4472
    78. Heldwein E E, R G Brennan. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature., 2001,409: 378-382
    79. Herbst A, H Ulfelder, D C Poskanzer. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med., 1971, 284: 878-881
    80. Hofer B, S Backhaus, K N Timmis. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene.,1994,144:9-16
    81. Hollender J, J Hopp, W Dott. Degradation of 4-chlorophenol via the meta cleavage pathway by Comamonas testosteroni JH5. Appl Environ Microbiol, 1997, 63(11): 4567-4572
    82. Holtel A, K N Timmis, J L Ramos. Upstream binding sequences of the XyaIR activator
    ??protein and integration host factor in the xylS gene promoter region of the Pseudomonas TOL plasmid. Nucleic Acids Research, 1992, 20(7): 1755-1762
    83. Horinouchi M, T Hayashi, H Koshino et al. Gene encoding the hydrolase for the product of the meta-cleavage reaction in testosterone degradation by Comamonas testosteroni. Appl. Environ. Microbiol., 2003,69: 2139-2152
    84. Horinouchi M, T Hayashi, T Yamamoto et al. A new bacterial steroid degradation gene cluster in Comamonas testosteroniTA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol., 2003, 69(8): 4421-4430
    85. Horinouchi M, T Yamamoto, K Taguchi et al. Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroniTA441. Microbiology, 2001, 147: 3367-3375
    86. Horinouchi M, T Yamamoto, K Taguchi et al. Testosterone degradation genes in Comamonas testosteroni TA441 II: ORF12 and tesD, E, F, G. RIKEN Review, 2001, 42:31-34
    87. Hrywna Y, T Tsoi, O Maltseva et al. Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls. Appl Environ Microbiol, 1999,65(5): 2163-2169
    88. Hurlock B, P Talalay. 3a-hydroxysteroids as coenzymes of hydrogen transfer between di-and triphosphopyridine nucleotides. J. Biol. Chem., 1958, 233: 886-893
    89. Hurlock B, P Talalay. Principles of the enzymatic measurement of steroids. J. Biol. Chem.,1957,227:37-52
    90. Hurtubise Y, D Barriault, J Powlowski et al. Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components. J. Bacteriol., 1995,177:6610-6618
    91. Hurtubise Y, D Barriault, M Sylvestre. Characterization of active recombinant his-tagged oxygenase component of Comamonas testosteroni B-356 biphenyl dioxygenase. J. Biol. Chem, 1996,271(14): 8152-8156
    92. Hurtubise Y, D Barriault, M Sylvestre. Involvement of the terminal oxygenase β subunit in the biphenyl dioxygenase reactivity pattern toward chlorobiphenyls. J. Biol. Chem, 1998,180(22): 5828-5835
    93. Ishihama A. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol., 2000, 54:499-518
    94. Itagaki E, T Wakabayashi, T Hatla. Purification and characterization of 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina.. Biochim. Biophys. Acta., 1990, 1038: 60-67
    95. Jarabak J, P Talalay. Stereospecificity of hydrogen transfer by pyridine nucleotide-linked hydroxysteroid dehydrogenases. J. Biol. Chem., 1960,235:2147-2151
    96. Jayarao B M, L Wang. A study on the prevalence of gram-negative bacteria in bulk tank milk. Journal of Dairy Science, 1999, 82(12): 2620-2624
    97. Jenkins R, R A Angus, H McNatt et al. Identification of androstenedione in a rive
     containing paper mill effluent. Environ. Toxicol. Chem., 2001, 20: 1325-1331
    98. Jez J M, M J Bennett, B P Schlegel et al. Comparative anatomy of the aldo-keto reductase superfamily. Biochem. J., 1997, 326: 625-636
    99. John Davison. Genetic exchang between bacteria in the environment. Plasmid, 1999, 42(2):73-91
    100. Johnson J L, T G Beito, C J Krco et al. Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol. Cell. Bio)., 1994, 14: 1956-1963.
    101. Jornvall H, B Persson, M Krook et al. Short-chain dehydrogenases/reductases (SDR). Biochemistry., 1995,34: 6003-6013
    102. Junker F, R Kiewitz, A M Cook. Characterization of the toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J. Bacteriol., 1997, 179: 919-927.
    103. Karlson P. Why are so many hormones steroids? Hoppe-Seyler's Z.Physiol. Chem., 1983,364: 1067-1087.
    104. Kavlock R J, G P Daston, C DeRosa et al. Research needs for the assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect., 1996,104(Suppl 4): 715-740
    105. Kawahara F S, S F Wang, P Talalay. The preparation and properties of crystalline Δ5-3-ketosteroid isomerase. J. Biol. Chem., 1962,237: 1500-1506
    106. Khanna M,KN Qin, R W Wang et al. Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3α-hydroxysteroid dehydrogenases. J. Biol. Chem., 1995, 270: 20162-20168
    107. Kharoune M, L. Kharoune, J M Lebeault et al.Isolation and characterization of two aerobic bacterial strains that completely degrade ethyl tert-butyl ether (ETBE). Appl Microbiol Biotechnol, 2001,55:348-353
    108. Kieslich K. Microbial side-chain degradation of sterols. J. Basic Microbiol., 1985, 25: 461-474
    109. Kimbara K, T Hayakawa, M Shimura. Remediating PCB wastes using microorganisms. Railways and the environment. Japan Railway & Transport Review 17 September 1998:17-20
    110. Kolb A, S Busby, H Buc et al. Transcrip tional regulation by cAMP and its receptor protein. Annu. Rev. Biochem., 1993, 62: 749-795
    111. Kosono S, M Maeda, F Fuji et al. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl.Environ.Microbiol, 1997, 63: 3282-3285
    112. Kuliopulos A, D Shortle, P Talalay. Isolation and sequencing of the gene encoding delta 5-3-ketosteroid isomerase of Pseudomonas testosteroni: overexpression of the protein. Proc Natl Acad Sci U S A. 1987, 84(24): 8893-8897.
    113. Lawson C L, S David, K S Murakami et al. Catabolite activator protein: DNA binding and transcription activation. Current Opinion in Structural Biology., 2004, 14: 1 — 11
    114. Lenard J. Mammalian hormones in microbial cells. Trends Biochem. Sci., 1992, 17:147-150.
    115. Leppik R A, D J Sinden. Pseudomonas mutant strains that accumulate androstane and seco-androstane intermediates from bile acids. Biochem. J., 1987, 243: 15-21
    116. Leppik R A. Deoxycholic acid degradation by a Pseudomonas sp.: acidic intermediates with A-ring unsaturation. Biochem. J., 1983, 210: 829-836.
    117. Leppik R A. Steroid catechol degradation: disecoandrostane intermediates accumulated by Pseudomonas transposon mutant strains. J. Gen. Microbiol., 1989, 135: 1979-1988.
    118. Lessner D J, G R Johnson, R E Parales et al. Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. Strain JS765. Appl Environ Microbiol., 2002,68(2): 634-641
    119. Levy H R, P Talalay. Bacterial oxidation of steroidsl. Ring a dehydrogenations by intact cells. J. Biol. Chem., 1959, 234: 2009-2013.
    120. Levy H R, P Talalay. Bacterial oxidation of steroidsl I. Studies on the enzymatic mechanism of ring a dehydrogenation. J. Biol. Chem., 1959,234: 2014-2021
    121. Liao S, T Liang, S Fang et al. Steroid structure and androgenic activity. Specificities involved in the receptor binding and nuclear retention of various androgens. J. Biol.Chem.,1973,248:6154-6162
    122. Loose D S, D Feldman. Characterization of a unique corticosterone-binding protein in Candida albicans. J. Biol. Chem., 1982,257:4925-4930
    123. Lorimer IAL, I Pastan. Random recombination of antibody single chain Fv sequences after fragmentation with DNase I in the presence of Mn2+. Nucleic Acids Research.., 1995, 23:3067-3068
    124. Mackenzie A S, S C Brassell, G Eglinton et al. Chemical fossils: the geological fate of steroids. Science, 1982,217:491-504
    125. Maeda H, N Fujita, A Ishihama. Competition among seven Escherichia coli a subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res., 2000,28:3497-3503
    126. Mahato S B, I Majumdar. Current trends in microbial steroid biotransformation. Phytochemistry., 1993, 34: 883-898
    127. Mahato S B, S Garai. Advances in microbial steroid biotransformation. Steroids., 1997,62:332-345
    128. Mallonee D H, W B White, P B Hylemon. Cloning and sequencing of a bile acid-inducible operon from Eubacterium sp. strain VPI 12708. J. Bacteriol., 1990, 172: 7011-7019
    129. Manzanera M, S Marques, J L Ramos. Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators. FEBS Lett., 2000,476(3): 312-317
    130. Marekov L, M Krook, H JOrnvall. Prokaryotic 20 beta-hydroxysteroid dehydrogenase is an enzyme of the 'short-chain, non-metal loenzyme' alcohol dehydrogenase type. FEBS Lett., 1990,266:51-54
    131. Maser E, E MObus, G Xiong. Functional expression, purification, and characterization of 3a-hydroxysteroid dehydrogenase /carbonyl reductase from Comamonas testosteroni. Biochemical and Biophysical Research Communications., 2000, 272:622-628
    132. Maser E, G Xiong, C Grimm et al. 3a-hydroxysteroid dehydrogenase / carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation. Chemico-Biological Interactions., 2001, 130-132: 707-722
    133. McDonald Francis M, N Kowalsky, M Watanabe. Extraction of a steroid transport system from Pseudomonas testosteroni membranes and incorporation into synthetic liposomes. J. Steroid Biochem., 1985,23: 523-528.
    134. McLachlan J A, K S Korach. Symposium on estrogens in the environment, III. Environ Health Perspect., 1995, 103(Suppl 7): 3-4
    135. Metzger D, J H White, P Chambon. The human oestrogen receptor functions in yeast. Nature, 1988,334:31-36
    136. Mobus E, E Maser. Cloning and sequencing of a new Comamonas testosteroni gene encoding 3 alpha-hydroxysteroid dehydrogenase/carbonyl reductase. Adv Exp Med Biol., 1999,463:395-402
    137. MObus E, E Maser. Molecular cloning, overexpression and characterization of steroid-inducible 3a-hydroxysteroid dehydrogenase / carbonyl reductase from Comamonas testosteroni. J. Biol. Chem., 1998, 273(47): 30888-30896
    138. MObus E, M Jahn, R Schmid et al. Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J. Bacteriol., 1997, 179(18): 5951-5955
    139. Molnar I, K P Choi, M Yamashita et al. Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-△~1-dehydrogenase, 3-ketosteroid-△~5-isomerase and a hypothetical regulatory protein. Mol. Microbiol., 1995,15: 895-905
    140. Moore J C, F H Arnold. Directed evolution of a para-nitrobenzyl esterase. Nature Biotechnol., 1996, 14:458-467
    141. Moore J C, H M Jin, O Kuchner et al. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J Mol Biol., 1997, 272: 336-347
    142. Morgan C A, R C Wyndham. Isolation ang characterization of resin acid degrading bacteria found in effluent from a bleached kraft puip mill. Can. J. Microbiol., 1996,42: 423-430
    143. Mulligan M E, J Brosius, W R McClure. Characterization in vitro of the effect of spacer length on the activity of Escherichia coli RNA polymerase at the TAC promoter. J. Biol. Chem., 1985,260(6): 3529-3538
    144. Munkittric K R,M E McMaster, L H McCarthy et al. An overview of recent studies on the potential of pulp-mill effluents to alter reproductive parameters in fish. J. Toxicol. Environ. Health Part B Crit. Rev., 1998, 1:347-371
    145. Murakami K S, S Masuda, E A Campbell et al. A. Structural basis of transcription initiation:
    ??an RNA polymerase holoenzyme-DNA complex. Science., 2002, 296: 1285-1290
    146. Nelson D R. Cytochrome P450 and the individuality of species. Arch.Biochem. Biophys., 1999,369: 1-10
    147. Nelson J A, R F Struck, R James. Estrogenic activities of chlorinated hydrocarbons. J Toxicol Environ Health., 1978,4: 325-339
    148. Nico B, G Johan, P Devos et al. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, 12gfp. Appl Environ Microbiol., 2000, 66(7): 2906-2913
    149. Nico B, G Johan, P Devos et al. Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol., 2001, 67(3): 1107-1115
    150. Nico B, Leendegelder, Hannelievens et al. Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Environ. Sci. Technol., 2002, 36: 4698-4704
    151. Nico B, M T Eva, V Willy et al. Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. Appl Environ Microbiol., 2002,69(3): 1511-1520
    152. Niilo K, Urve T, V de Lorenzo et al. Functional domains of the TOL plasmid transcription factor XylS. Journal of Bacteriology., 2000,182(4): 1118-1126
    153. Nishino S F, J C Spain. Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. Strain JS765. Appl Environ Microbiol, 1995, 61(6): 2308-2313
    154. North K, Golding J. A maternal vegetarian diet in pregnancy is associated with hypospadias. The ALSPAC Study Team; Avon longitudinal study of pregnancy and childhood, BJU Int., 2000,85(1): 107-113
    155. Oh K S, S-S Cha, D-H Kim et al. Role of catalytic residues in enzymatic mechanisms of homologous ketosteroid isomerases. Biochemistry, 2000, 39: 13891-13896
    156. Ohtsubo Y, M Shimura, M Delawary et al. Novel approach to the improvement of biphenyl and polychlorinated biphenyl degradation activity: Promoter implantation by homologous recombination. Appl Environ Microbiol., 2003,69(1): 146-153
    157. Oppermann U C T, E Maser. Characterization of a 3a-hydroxysteroid dehydrogenase/carbonyl reductase from the Gram-negative bacterium Comamonas testosteroni. Eur. J. Biochem., 1996, 241: 744-749.
    158. Oppermann U C T, I Belai, E Maser. Antibiotic resistance and enhanced insecticide catabolism as consequences of steroid induction in the Gram-negative bacterium Comamonas testosteroni. J. Steroid Biochem. Mol. Biol., 1996, 58: 217-223.
    159. Oppermann U C, C Filling, H Jornvall. Forms and functions of human SDR enzymes. Chem. Biol. Interact., 2001,130-132: 699-705.
    160. Oppermann Udo, C Filling, M Hult et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chemico-Biological Interactions, 2003, 143-144: 247-253
    161. Otto C M, N Frank, X Z Su et al. Expression of recombinant feline tumor necrosis factor is
     toxic to Escherichia coli. Clinical and Diagnostic Laboratory Immunology, 1995, 2 (6): 740-746
    162. Ourisson G, M Rohmer, K Poralla. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol., 1987,41: 301-333.
    163. Parales R E, C S Harwood. Characterization of the genes encoding b-ketoadipate: succinyl-coenzyme A transferase in Pseudomonas putida. J. Bacteriol., 1992, 174: 4657-4666.
    164. Pawlowski J E, M Huizinga, T M Penning. Cloning and sequencing of the cDNA for rat liver 3a-hydroxysteroid dehydrogenase/dihydrodio dehydrogenase. J. Biol. Chem., 1991, 266: 8820-8825
    165. Payne D W, M Shikita, P Talalay. Enzymatic estimation of steroids in subpicomole quantities by hydroxysteroid dehydrogenases and nicotinamide nucleotide cycling. J. Biol. Chem., 1982,257:633-642
    166. Penning T M, D F Covey, P Talalay. Irreversible inactivation of △~5-3-ketosteroid isomerase of Pseudomonas testosteroni by acetylenic suicide substrates. Mechanism of formation and properties of the steroid-enzyme adduct. J Biol Chem, 1981, 256: 6842-6850
    167. Penning T M, D N Heller, T M Balasubramaniang et al. Mass spectrometric studies of a modified active-site tetrapeptide from △~5-3-ketosteroid isomerase of Pseudomonas testosteroni. J. Biol. Chem., 1982, 257(21): 12589-12593
    168. Penning T M, P Talalay. Linkage of an acetylenic secosteroid suicide substrate to the active site of △~5-3-ketosteroid isomerase. J. Biol. Chem, 1981,256:6851-6858
    169. Persson B, M Krook, H Jornvall. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem., 1991,200:537-543
    170. Plesiat P, H Nikaido. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol., 1992, 6(10): 1323-33.
    171. Plesiat P, M Grandguillot, S Harayama Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid delta 1 -dehydrogenase. J. Bacteriol., 1991, 173:7219-7227;
    172. Pousette A, K CarlstrOm. High affinity protein binding and enzyme inducing activity of methyltrienolone in Pseudomonas testosteroni. Acta. Chem. Scand. B., 1986, 40: 515-521
    173. Privalsky M L, M Sharif, K R Yamamoto. The viral erbA oncogene protein, a constitutive repressor in animal cells, is a hormone-regulated activator in yeast. Cell, 1990, 63: 1277-1286
    174. Providenti M A, M Jornvall, M S Scott et al. Comamonas testosteroni BR6020 possesses a single genetic locus for extradiol cleavage of protocatechuate. Microbiology., 2001, 147: 2157-2167
    175. Pruneda-Paz J L, M Linares, J E Cabrera et al. Identification of a novel steroid inducible gene associated with the beta hsd locus of Comamonas testosteroni. J Steroid Biochem Mol Biol, 2004,88(1): 91-100.
    176. Pugiisi E, M Nicelli, E Capri et al. Cholesterol, P-sitosterol, ergosterol, and coprostanol in
     agricultural soils. J. Environ. Qual., 2003, 32: 466-471.
    177. Radianingtyas H, G K Robinson, A T Bull. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology, 2003, 149:3279-3287
    178. Raivio T L, T J Silhavy. Periplasmic stress and ECF sigma factors. Annu. Rev. Microbiol, 2001, 55:591-624
    179. Ramos J L, F Rojo, L Zhou et al. A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and the Escherichia coli AraC activators. Nucleic Acids Res, 1990, 18: 2149-2152.
    180. Ramos J L, S Marque's, K N Timmis. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu.Rev. Microbiol, 1997, 51 : 341-373.
    181. Rhee S, R G Martin, J L Rosner et al. A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc. Natl. Acad. Sci. USA, 1998, 95: 10413-10418.
    182. Richer E, V Vidal-Ingigliardi, O Raibaud. A new mechanism for coactivation of transcription: repositioning of an activator triggered by the binding of a second activator. Cell, 1991, 66, 1185-1195
    183. Rolland R, M Gilbertson, T Colborn. Environmentally induced alterations in development: A focus on wildlife. Environ Health Perspect, 1995, 103(Suppl 4): 1-106
    184. Ross W, A Ernst, R L Gourse. Fine structure of E. coli RNA polymerase-promoter interactions: α subunit binding to the UP element minor groove. Genes Dev, 2001, 15: 491-506
    185. Rowland S S, W A Falkler, N Bashirelahi. Identification of an estrogen-binding protein in Pseudomonas aeruginosa. J. Steroid Biochem. Mol. Biol, 1992, 42:721-727
    186. Ruetschi U, B Odelhog, S Lindstedt et al. Characterization of 4-hydroxyphenylpyruvate dioxygenase. Primary structure of the Pseudomonas enzyme, Eur. J. Biochem, 1992, 205: 459-466.
    187.Sambrook J,D W Russell(黄培堂等译).分子克隆:实验指南(第三版).北京:科学出版社.2002
    188. Sanderson A, J E Mitchell, S D Minchin et al. Substitutions in the Escherichia coli RNA polymerase σ~(70) factor that affect recognition of extended -10 elements at promoters. FEBS Lett., 2003, 544:199-205
    189. Sato S I, N Ouchiyama, T Kimura et al. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA 10: nucleotide sequences of genes and characterization of meta-eleavage enzymes and hydrolase .J. Bacteriol, 1997, 179:4847-4849
    190. Schena M, K R Yamamoto. Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science, 1988, 241:965-967
    191. Scott,S., S Busby, I Beaeham. Transcriptional co-activation at the ansB promoters: involvement of the activating regions of CRP and FNR when bound in tandem. Mol. Microbiol., 1995, 18:521-531
    192. SIH C J, H W Whitlook. Biochemistry of steroids. Annu.Rev.Biochem, 1968, 37: 661-694
    193. SIH C, S S Lee, Y Y Tsong et al. Mechanisms of steroid oxidation by microorganisms. Ⅷ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, an ntermediate in the microbiological degradation of ring a of androst-4-ene-3,17-dione. J. Biol. Chem., 1966, 241(3): 540-550
    194. Skowasch D, E Mobus, E Maser. Identification of a novel Comamonas testosteroni gene encoding a steroid-inducible extradiol dioxygenase. Biochemical and Biophysical Research Communications., 2002,294: 560-566
    195. Skowronski R, D Feldman. Characterization of an estrogen-binding protein in the yeast Candida albicans. Endocrinology, 1989, 124: 1965-1972
    196. Sondossi M, M Sylvestre, D Ahmad. Effects of chlorobenzoate transformation on the Psendomonas testosteroni biphenyl and chlorobiphenyl degradation pathway. Appl. Envir. Microbiol. 1992, 58:485-495.
    197. Sprusansky, B Rezuchovd, D Homerova et al. Expression of the gap gene encoding glyceraldehyde-3-phosphate dehydrogenase of Streptomyces aureofaciens requires GapR, a member of the AraC/XylS family of transcriptional activators. Microbiology., 2001, 147: 1291-1301
    198. Stemmer W P C. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA, 1994, 91: 10747-10751
    199. Stemmer W P C. Rapid evolutionof a protein in vitro by DNA shuffing. Nature, 1994, 370(4): 389-391
    200. Stolz A., M Rahimi-Kiani., Ameis D et al. Molecular structure of rat hepatic 3α-hydroxysteroid dehydrogenase. J. Biol. Chem, 1991, 266: 15253-15257
    201. Suzuki, K., S Ueda, M Sugiyama et al. Cloning and expression of a Pseudomonas 3 alpha-hydroxysteroid dehydrogenase-encoding gene in Escherichia coli. Gene, 1993, 130: 137-140
    202. Sylvestre M, Y Hurtubise, D Barriault et al. Characterization of active recombinant 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase from Comamonas testosteroni B-356 and sequence of the encoding gene (bphB). Appl Environ Microbiol, 1996, 62(8): 2710-2715
    203. Szalewska-Palasz A, A Wegrzyn, A B Laszczak et al. DnaA-stimulated transcriptional activation of oriλ: Escherichia coli RNA polymeraseβ subunit as a transcriptional activator contact site. PNAS, 1998, 95(8): 4241-4246
    204. Talalay P, I M Philip. Specificity, kinetics, and inhibition of α-and β-hydroxysteroid dehydrogenases. J. Biol. Chem., 1956, 218: 675-691
    205. Talalay P, M D Marie. Purification and roperties of a β-hydroxysteroid dehydrogenase. J. Biol. Chem., 1953,205: 823-837
    206. Talalay P, M M Dobson, D F Tapley. Oxidative degradation of testosterone by adaptative enzymes. Nature, 1952, 170:620-621
    207. Tardif G, C W Greer, D Labbe et al. Involvement of a large plasmid in the degradation of
    ??1,2-dichlorethene by Xanthobacter autotrophicus. Appl. Environ. Microbiol, 1991, 57: 1853-1857.
    208. Taylor M R, P Holmes, R Duarte-Davidson et al., A research strategy for investigating the ecological significance of endocrine distruption: report of a UK workshop. Sci Total Environ. 1999,233(1-3): 181-91.
    209. Teramoto M, K Ohnishi, S Harayama et al. An AraC/XylS Family Member at a High Level in a Hierarchy of Regulators for Phenol-Metabolizing Enzymes in Comamonas testosteroni R5. J. Bacteriol, 2002,184(14):3941-3946
    210. Teramoto M, S Harayama, K Watanabe. PhcS represses gratuitous expression of phenol-metabolizing enzymes in Comamonas testosteroni R5. J. Bacteriol, 2001, 183(14):4227-4234
    211. Thomas J E, R Carroll, L P Sy et al. Isolation and characterization of a 50 kDa testosterone-binding protein from Pseudomonas testosteroni. J. Steroid Biochem, 1989, 32: 27-34.
    212. Thornburg L D, F Henot, D P Bash et al. Electrophilic assistance by Asp-99 of 3-oxo-Delta 5-steroid isomerase. Biochemistry, 1998,37: 10499-10506.
    213. Tivol W, E Beckman, W Benisek. Effect of protein concentration on the molecular weight of △~5-3-ketosteroid isomerase. J. Biol. Chem., 1975, 250(1): 271-275
    214. Tjian R, Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell, 1994,77:5-8
    215. Tobin J F, R F Schleif. Positive regulation of the Escherichia coli L-rhamnose operon is mediated by products of tandemly repeated regulatory genes. J. Mol. Biol. 1987, 196: 789-799.
    216. Torroja L, D Ortuno-Sahagun, A Ferrus et al. Scully, an essential gene of Drosophila, is homologous to mammalian mitochondrial type Ⅱ L-3-hydroxyacyl-CoA dehydrogenase/amyloid-Ppeptide- binding protein. J. Cell Biol, 1998, 141: 1009-1017.
    217. Tralau T, A M Cook, J Ruff. Map of the IncP1βPlasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol, 2001,67(4): 1508-1516
    218. Tralau T, J Mampel, A M Cook et al. Characterization of TsaR, an oxygen-sensitive LysR-type regulator for the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Appl Environ Microbiol, 2003,69(4): 2298-2305
    219. Tsutsui T, J C Barrett. NeoPlasstic transformation of cultured mammalian cells by estrogens and estrogen-like chemicals, Environmental Health Perspectives, 1997,105: 621-623
    220. US EPA. United States environmental protection agency special report on environmental endocrine disruption: an effects assessment and analysis. 1997, EPA/630/R-96/012 (http://www.epa.gov/endocrine/)
    221. Wang S F, S. K Frank, P Talalay. The mechanism of the △~5-3-ketosteroid isomerase reaction: absorption and fluorescence spectra of enzyme-steroid complexes. J. Biol. Chem., 1963,238:576-585
    222. Watanabe K, S Hino, K Onodera et al. Diversity in kinetics of bacterial phenol-oxygenating activity. J. Ferment. Bioeng, 1996, 81: 562-565.
    223. Watanabe M, D Lefebvre, Y Lefebvre et al. Membrane bound dehydrogenases of Pseudomonas testosteroni. J. Steroid Biochem., 1980, 13:821-827
    224. Watanabe M, H Watanabe. Periplasmic steroid-binding proteins and steroid transforming enzymes of Psedoraonas testosteroni. J. Steroid. Biochem., 1974, 5:439-446
    225.Weaver R F.Molecular(影印版)北京:科学出版社,2002
    226. Westbrook E M, P B. Sigler. Enzymatic function in crystals of Δ~5-3-ketosteroid isomerase. catalytic activity and binding of competitive inhibitors. J. Biol. Chem., 1984, 259(14): 9090-9095
    227. Wilson R, R Ainscough, K Anderson et al. 2.2 Mb of contiguous nucleotide sequence from chromosome Ⅲ of C. elegans. Nature, 1994, 368:32-38
    228. Winter J, L H Moore, V R Dowell et al. C-ring cleavage of flavonoids by human intestinal bacteria. Appl. Environ. Microbiol, 1989, 55:1203-1208
    229. Wu Z R, S Ebrahimian, M E Zawrotny et al. Solution structure of 3-oxo-delta5-steroid isomerase. Science, 1997, 276:415-418
    230. Xiong G, E Maser. Regulation of the steroid-inducible 3α-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comaraonas testosteroni. J. Biol. Chem., 2001, 276(13): 9961-9970
    231. Xiong G, H-J Martin, A Blum et al. A model on the regulation of 3α-hydroxysteroid dehydrogenase/carbonyl reductase expression in Comamonas testosteroni. Chemico-Biological Interactions., 2001, 130-132:723-736
    232. Xiong G, H-J Martin, E Maser. Characterization and recombinant expression of the translational repressor RepB of 3α-hydroxysteroid dehydrogenase/carbonyl reductase in Comamonas testosteroni. Chemico-Biological Interactions., 2003, 143-144:425-433
    233. Xiong G, H-J Martin, E Maser. Identification and characterization of a translational repressor of the steroid-inducible 3α-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comammonas testeroni. J. Biol. Chem., 2003, 278(48): 47400-47407
    234. Xiong G, S Markowetz, E Maser. Regulation of 3α-hydroxysteroid dehydrogenase/carbonyl reductase in Comamonas testosteroni. function and relationship of two operators. Chemico-Biological Interactions., 2003, 143-144:411-423
    235. Yap L F, Y K Lee, C L Poh. Mechanism for phenol tolerance in phenol-degrading Comamonas testosteroni strain. Appl Microbiol Biotechnol., 1999, 51:833-840
    236. Yun S, D S Jang, G Choi et al. Trifluoroethanol increases the stability of Δ~5-3-ketosteroid isomerase. ~(15)N NMR relaxation studies. J. Biol. Chem. 2002, 277(26): 23414-23419
    237. Yun Y S, T H Lee, G H Namet al. Origin of the different pH activity profile in two homologous ketosteroid isomerases. J. Biol. Chem, 2003, 278(30): 28229-28236.
    238. Yura T, Nakahigashi K. Regulation of the heat-shock response. Curr. Opin. Microbiol, 1999,2:153-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700