镇痛药物与结构中含k“位码”的稠环吗啡类配基研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻醉性镇痛药物研究历史久远、在临床上用于缓解疼痛疗效可靠。第一章简单回顾了镇痛药物二百多年来辉煌曲折的发展历程,分析了当今世界上镇痛药物研究领域的现状和临床止痛策略,并提出进一步探索面临的机遇和挑战。
     第二章分别从吗啡生物碱及其结构类似物、芳香乙酰乙二胺类、芳基哌啶类和其他结构类型出发,系统整理和归纳了已经发现的非肽类阿片受体κ亚型配基的多种结构类型,着眼于κ配基对受体结合能力(Binding Affinity)的高低,活性(Potency)的强弱,效能(Efficacy)的优劣以及对κ受体的选择性,根据构效关系展开讨论。引入“信使”—“位码”概念,阐述κ“位码”的研究现状,以明确本课题设计的主导思想:选取共同作用的母核,在适当的区域和取向上引入合适的药效基团使化合物产生κ选择性作用,同时保留对μ和δ受体的一定活性,以阻滞激动κ受体引起的焦虑、致幻等副作用。最终达到发现安全、有效且使用方便的低/非成瘾性阿片类先导药物的目的。
     论文第三章选取了纳曲吲哚和奥维醇两种典型结构类型的稠环吗啡类化合物,运用分子模拟技术和定量构效关系方法并结合其他相关研究的成果,初步探讨了“信使”——“位码”概念的化学本质。认识到Ⅲ∶08的天冬氨酸残基较为保守,是“信使”结构的主要作用部位;外口袋的Ⅵ∶23的非保守性谷氨酸(Glu297)是拮抗型“位码”组分的主要作用部位,具体表现为与配基特定分布的碱性基团相互作用;而位于外口袋Ⅶ∶03的非保守性酪氨酸(Tyr312)则是激动型“位码”组分的主要作用部位,具体表现为与配基特定分布的芳环或氢键供体/受体或其组合相互作用。满足上述条件之一或相互间的组合,都可能成为潜在的κ“位码”组分,发挥配基的对κ受体的选择性作用。
     第四章在第三章研究的主旨指导下,在具有非选择性作用的蒂巴因母核结构的基础上设计并合成了含有潜在κ“位码”作用的两种结构类型三个系列(苯蒂巴因、奈培酮和奈培醇系列)的稠环吗啡类化合物。苯蒂巴因系列化合物以硝基苯甲醛为原料,通过与丙二酸的Knoevenagel缩合反应、热脱羧、与蒂巴因的Diels-Alder加成反应、硝基还原、胍基亲核取代及脱除Boc保护的反应方法制备。首次发现了蒂巴因与单取代亲二烯试剂在Diels-Alder反应中的两类三个8α-加成副产物并用单晶衍射确定了结构及构型,对该类副产物形成机理的探讨将有助于深化对Diels-Alder的反应机理的理解。对于苯环上含取代基的奈培酮系列化合物,经过尝试无法通过蒂维醇以及经典奈培酮合成法制备。设计了新的合成路线,以硝基苯甲醛为原料,在低温下与乙烯基溴镁试剂发生格氏反应,经Jones氧化、与蒂巴因的Diels-Alder加成、硝基还原、KBH_4还原、格氏反应和胍基亲核取代以及脱除Boc保护基等方法成功制备了取代奈培酮和奈培醇系列化合物。
     目标化合物经受体亲和力初筛和构效关系讨论,表明8α-苯蒂巴因对μ受体具有较强的亲和力。而能够产生氢键供体/受体作用的三个系列化合物中对κ亲和力高的有四个化合物,其中LQ004C(16)、LQ022C(34)和LQ022D2(39)的结构中都有取代氨苯基的存在,且氨基的空间分布相似。作为探针药效基团,该结构对化合物产生κ亲和力是重要的,此结论与论文第三章QSAR方法对氢键给体场分布的研究结果相对应,发现值得进一步研究的κ“位码”因素,初步实现了本探索性课题的研究目的。
     氨基取代苯蒂巴因盐酸盐经兔输精管离体组织试验发现:只有对位氨基取代7α-(苯基)-6α,14α-endo-乙烯基-四氢蒂巴因(LQ004C)能够发挥κ“位码”作用,它的盐酸盐对电刺激兔输精管收缩抑制的作用强度与阳性对照药布托啡诺(Butorphanol)相近,且能被κ选择性拮抗剂nor-BNI所阻断。此外在小鼠醋酸扭体和辐射热刺激的动物模型中也发现该化合物具有镇痛活性,比强效镇痛药布托啡诺低十倍,作为典型κ激动剂值得进一步研究。
     第五章主要研究低成瘾性混合型镇痛药美谱他酚在溶液中的构象异构现象并揭示其药效基团模型。以(+)-美普他酚盐酸盐为例,通过溶液中的核磁共振解析、变温实验以及分子动力学模拟等方法阐明了美普他酚盐类在溶液中存在两种构象。由于美普他酚在生理状态下以氮原子质子化状态存在,探讨了它的药效基团模型上与吗啡类、芳基哌啶类镇痛药物的异同。研究结果表明:美普他酚盐类在溶液中所存在的两种构象都可能是其镇痛活性构象。本研究对于如何理解混合型阿片作用机理的本质与设计理想镇痛药物具有一定的理论指导意义。
     第六章为化学实验部分,总共涉及超过45个中间体与目标化合物的合成,包括经红外、核磁共振和质谱确证的新化合物28个;苯蒂巴因系列的两个化合物LQ003A(10)和LQ003B(11)还通过单晶衍射测定确定结构及其构型。
The researches on opioid analgesics have lasted for more than two centuries, whose history, painful but fantastic, was briefly reviewed in the first chapter. We have to make gains in pain since the researches on traditional opioids was discouraged by analgesic booming against novel potential targets and the reality of failure on R&D ofκopioid selective agonists from arylacetamides.
     A variety of non-peptidicκligands (e.g. morphine analogs, arylacetamides, arylpiperidines and other structures) were critically reviewed in the second chapter. We focused on some related parameters such as binding affinity, potency and efficacy ofκligands, as well as their SAR (Structure-Activity Relationships) analysis. Then the concepts of "message" and ""address" were introduced intoκopioid investigations, from which the key theme of this thesis was derived. That is. analgesics should specifically bind and activateκopioid receptor to exert their pain-relief functions, but need maintain gentle binding affinities toμorδopioid receptors, which should be helpful to overcome the unacceptable side-effects ofκopioid agonists such as dysphoria and psychoactive effects.
     In the third chapter two categories of polycyclic morphinanes, namely natrindole analogs and orvinols, were discussed in detail, where molecular modeling and 3D-QSAR analysis were carried out to explore the "message" and "address" components over the morphine skeleton. In addition to good results achieved, the "address" component ofκopioid ligands was suggested to consist of an agonistic type of "address" and an antagonistic type of "address". The former "address" interacts with Tyr312 residue (VII:03) ofκopioid receptor by hydrogen bonds or/and hydrophobic interactions, whereas the latter one forms a salt bridge with Glu297 (VI:23) of the receptor.
     Based on the enlightened suggestions proposed in Chapter Three, two series of compounds identified as polycyclic morphinanes were designed and prepared in the forth chapter and initial pharmacological assays were conducted.
     Considering the non-selective thebaine as the skeleton, potentialκ"address" components (e.g. aromatic, hydrogen donor/acceptor or basic groups) were introduced to find analgesic leads throughκopioid acting mechanisms. With nitrobenzaldehyde as the starting material, phenyl thebaine series were prepared successfully by knoevenagel condensation with malonic acid, followed by decarboxylation to afford nitrostyrenes, then thermal cycloaddition with thebaine, the reduction of nitro group, and the substitution of guanidine group. During the Diels-Alder reactions of thebaine with nitrostyrenes, unexpected 8α-adducts, which were not present in the adducts of other single substituted dienophiles, were elucidated and verified by X-ray crystallography techniques. Discussion on the formation mechanism of these side products provided more detailed insights to understand Diels-Alder reactions. Unlike phenyl thebaine series, synthesis forwarded to nepenthone series were tried and failed by thevinols or classical nepenthone preparations. New synthetic routes were schemed and performed in this thesis and they were further validated to be successful to obtain our target molecules on nepenthone series. Synthesis was initiated by Grignard reactions of nitrobenzaldehyde with Bromovinylmagnesium at low temperature, followed by Jones oxidation, then by thermal cycloaddition with thebaine to afford nitronepenthones. And the transformation of nitronepenthones to various substituted nepenthones were investigated by reduction of nitro group with hydrazine/Raney nickel, reduction of carbonyl group with potassium borohydride, Grignard reactions of carbonyl group with iodomethylmagnesium and substitution of guanidine group.
     Binding affinity assays were conducted on cloned opioid receptors. For phenyl thebaine series, although phenyl thebaine showed low binding profiles against opioid receptors, the binding toμopioid receptor was favored by introduction of 8a-phenyl group with electron demanding properties. The presence of amino group could enhance affinity toκreceptor, which was proposed to be mediated through hydrogen donor/acceptor interactions other than salt bridge interactions. Furthermore, the p-amino substitution was critically required forκagonistic activity. The site onκreceptor involved in this interaction was suggested to be Tyr312 (VII:03). But for nepenthone series, different SARs were observed. The prototype compounds of this series, thevinone and nepenthone, retained someμopioid affinities. Nitronepenthones showed slightly increased binding toμandκreceptors. However, the affinities were almost abandoned by the introduction of amino group except for 2-amino nepenthone. In case of 2-amino nepenthone, the negative electronic effects were neutralized by the interaction of amino group with corresponding site onμandκopioid receptor. Nepenthols showed increasedκbut reducedμreceptor binding affinities as a result of formation of 19S-configuration and additional hydroxyl group. Similar to amino nepenthones, amino nepenthols abandonedκaffinities with slightly increasedμaffinities except for 2-amino nepenthols.
     Based on the results of RVD assays and rodent antinociceptive models in vivo, the para position of amino group was essential forκagonist potency and thus considered as aκ"address" component in phenyl thebaine series. LQ004C (16) contained this subunit was a kappa opioid agonist with similar activities to the marketed butorphanol which was believed to exert its analgesic potency throughκopioid receptor in RVD assays. Furthermore, LQ004C (16) was found to be an analgesic in vivo, with 10 less fold than butorphanol. And this compound showed desirable profiles for further investigations.
     In Chapter Five, the conformation of a marketed analgesic meptazinol. categorized as 3-aryl azepines, was investigated thoroughly, because its mixed pharmacological nature was still confusing to date. Our study began with an unexpected phenomenon observed on NMR spectra of meptazinol hydrochloride, followed by elucidation of different conformers in (+)-meptazinol hydrochloride present in solution, and then the mechanism of formation was discussed in detail. The resolved conformers were used for structural comparisons with the known opioid pharmacophores, from which (+)-meptazinol was suggested to be an opioid with different analgesic pharmacophore. The investigation provided heuristic insights for novel analgesic R&D from opioids.
     As the experimental part of Chapter Four, Chapter Six deal with more than forty five intermediates and target molecules, among which twenty eight compounds were novel. Detailed processes in organic synthesis and physiochemical properties were provided, as well as the data obtained from IR, NMR and MS spectra. Furthermore, the structures of LQ003A and LQ003B from phenyl thebaine series were also examined by X-ray crystallography.
引文
[1] Bonica JJ. History of pain concepts and pain therapy[J]. The Mount Sinai journal of medicine, New York, 1991, 58(3): 191-202.
    [2] Sabatowski R, Schafer D, Kasper SM, Brunsch H, Radbruch L. Pain treatment: a historical overview[J]. Current Pharmaceutical Design, 2004, 10(7): 701-716.
    [3] Sneader W. Drug Disovery: A History[M]. Chichester: John Wiley & Sons Ltd 2005.
    [4] Bentley KW. The chemistry of the morphine alkaloids[M]. London: Oxford AT THE CLARENDON PRESS1954: 2.
    [5] Mackay M, Hodgkin DC. A crystallographic examination of the structure of morphine[J]. Journal of the Chemical Society, 1955: 3621.
    [6] Gates M, Tschudi G. The synthesis of morphine[J]. Journal of the American Chemical Society, 1952, 74(4): 1109-1110.
    [7] Novak BH, Hudlicky T, Reed JW, Mulzer J, Trauner D. Morphine synthesis and biosynthesis-An update[J]. Current Organic Chemistry, 2000, 4(3): 343-362.
    [8] Zezula J, Hudlicky T. Recent progress in the synthesis of morphine alkaloids[J]. Synlett, 2005, (3): 388-405.
    [9] Ohta A, Akita Y, Ohkuwa T, Chiba M, Fukunaga R, Miyafuji A, Nakata T, Tani N, Aoyagi Y. Palladium-catalyzed arylation of furan, thiophene, benzo[B]furan and benzo[B]thiophene[J]. Heterocycles, 1990, 31(11): 1951-1958.
    [10] Uchida K, Yokoshima S, Kan T, Fukuyama T. Total synthesis of(+/-)-morphine[J]. Organic Letters, 2006, 8(23): 5311-5313.
    [11] Trost BM, Tang WP. Enantioselective synthesis of (-)-codeine and (-)-morphine[J]. Journal of the American Chemical Society, 2002, 124(49): 14542-14543.
    [12] Trost BM, Tang WP, Yoste FD. Divergent enantioselective synthesis of (-)-galanthamine and (-)-morphine[J]. Journal of the American Chemical Society, 2005, 127(42): 14785-14803.
    [13] Beckett AH, Casy AF. Synthetic analgesics: stereochemical considerations[J]. Journal of Pharmacy and Pharmacology, 1954, 6(12): 986-1001.
    [14] Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog[J]. Journal of Pharmacology and Experimental Therapeutics, 1976, 197(3): 517-532.
    [15] Gilbert PE, Martin WR. The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog[J]. Journal of Pharmacology and Experimental Therapeutics, 1976, 198(1): 66-82.
    [16] Yasuda K, Raynor K, Kong H, Breder CD, Takeda J, Reisine T, Bell GI. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(14): 6736-6740.
    [17] Evans CJ, Keith DE, Jr., Morrison H, Magendzo K, Edwards RH. Cloning of a delta opioid receptor by functional expression[J]. Science, 1992, 258(5090): 1952-1955.
    [18] Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(24): 12048-12052.
    [19] Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization[J]. FEBS Letters, 1994, 341(1): 33-38.
    [20] Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain[J]. Molecular Pharmacology, 1993, 44(1): 8-12.
    [21] Portoghese PS. Schematic diagrams for each of the four rat opioid receptor subtype classes [EB/OL].http://www.opioid.umn.edu/, 2007-03-08:
    [22] Abraham DJ. Burger's Medicinal Chemistry & Drug Discovery[M]. New York: John Wiley and Sons, Inc.2003.
    [23] Daniels DJ, Lenard NR, Etienne CL, Law PY, Roerig SC, Portoghese PS. Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(52): 19208-19213.
    [24] Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11934-11939.
    [25] Thomas JB, Atkinson RN, Rothman RB, Fix SE, Mascarella SW, Vinson NA, Xu H, Dersch CM, Lu YF, Cantrell BE, Zimmerman DM, Carroll FI. Identification of the first trans-(3R,4R)-dimethyl -4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid kappa receptor antagonist activity[J]. Journal of Medicinal Chemistry, 2001, 44(17): 2687-2690.
    [26] Thomas JB, Atkinson RN, Vinson NA, Catanzaro JL, Perretta CL, Fix SE, Mascarella SW, Rothman RB, Xu H, Dersch CM, Cantrell BE, Zimmerman DM, Carroll FI. Identification of (3R)-7-hydroxy-N-((1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarbo xamide as a novel potent and selective opioid kappa receptor antagonist[J]. Journal of Medicinal Chemistry, 2003, 46(14): 3127-3137.
    [27] Gershell L, Goater JJ. From the analyst's couch-Making gains in pain[J]. Nature Reviews Drug Discovery, 2006, 5(11): 889-890.
    [28] Renfrey S, Downton C, Featherstone J. The painful reality[J]. Nature Reviews Drug Discovery, 2003, 2(3): 175-176.
    [29] Minami K, Uezono Y, Ueta Y. Pharmacological aspects of the effects of tramadol on G-protein coupled receptors[J]. Journal of Pharmacological Sciences, 2007, 103(3): 253-260.
    [30] Ide S, Minami M, Ishihara K, Uhl GR, Sora I, Ikeda K. Mu opioid receptor-dependent and independent components in effects of tramadol[J]. Neuropharmacology, 2006, 51(3): 651-658.
    [31] Tzschentke TM, Bruckman W, Friderichs E. Lack of sensitization during place conditioning in rats is consistent with the low abuse potential of tramadol[J]. Neuroscience Letters, 2002, 329(1): 25-28.
    [32] Prommer E. Levorphanol: the forgotten opioid[J]. Supportive Care in Cancer, 2007, 15(3): 259-264.
    [33] Commiskey S, Fan LW, Ho IK, Rockhold RW. Butorphanol: Effects of a prototypical agonist-antagonist analgesic on kappa-opioid receptors[J]. Journal of Pharmacological Sciences, 2005, 98(2): 109-116.
    [34] Boothby LA, Doering PL. Buprenorphine for the treatment of opioid dependence[J]. American Journal of Health-System Pharmacy, 2007, 64(3): 266-272.
    [35] Pace MC, Passavanti MB, Grella E, Mazzariello L, Maisto M, Barbarisi M, Baccari E, Sansone P, Aurilio C. Buprenorphine in long-term control of chronic pain in cancer patients[J]. Frontiers in Bioscience, 2007, 12: 1291-1299.
    [36] Green BG. Temperature perception and nociception[J]. Journal of Neurobiology, 2004, 61(1): 13-29.
    [37] Lewin GR, Moshourab R. Mechanosensation and pain[J]. Journal of Neurobiology, 2004, 61(1): 30-44.
    [38] Myers RR, Campana WM, Shubayev VI. The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets[J]. Drug Discovery Today, 2006, 11(1-2): 8-20.
    [39] Williams M, Kowaluk EA, Arneric SP.Emerging molecular approaches to pain therapy[J]. Journal of Medicinal Chemistry, 1999, 42(9): 1481-1500.
    [40] Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs[J]. Nature: New Biology, 1971,231(25): 232-235.
    [41] Roth GJ, Majerus PW. The mechanism of the effect of aspirin on human platelets. Ⅰ. Acetylation of a particulate fraction protein[J]. The Journal of Clinical Investigation, 1975, 56(3): 624-632.
    [42] Blobaum AL, Marnett LJ. Structural and functional basis of cyclooxygenase inhibition[J]. Journal of Medicinal Chemistry, 2007, 50(7): 1425-1441.
    [43] WHO. Achieving balance in national opioids control policy: Guidelines for assessment[EB/OL].http://www.painpolicy.wisc.edu/publicat/00whoabi/00whoabi.htm, 2007-03-12:
    [44] Bingham S, Beswick PJ, Blum DE, Gray NM, Chessell IR The role of the cylooxygenase pathway in nociception and pain[J]. Seminars in Cell & Developmental Biology, 2006, 17(5): 544-554.
    [45] Gajraj NM. COX-2 inhibitors celecoxib and parecoxib: Valuable options for postoperative pain management[J]. Current Topics in Medicinal Chemistry, 2007, 7(3): 235-249.
    [46] Petit-Zeman S. Characteristics of COX2 inhibitors questioned[J]. Nature Reviews Drug Discovery, 2004, 3(9): 726-727.
    [47] Goadsby PJ. Recent advances in understanding migraine mechanisms, molecules and therapeutics[J]. Trends in Molecular Medicine, 2007, 13(1): 39-44.
    [48] Harrison C. Analgesia-Fast-track to pain relief[J]. Nature Reviews Drug Discovery, 2007, 6(1): 24-24.
    [49] LoVerme J, Russo R, La Rana G, Fu J, Farthing J, Mattace-Raso G, Meli R, Hohmann A, Calignano A, Piomelli D. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha[J]. Journal of Pharmacology and Experimental Therapeutics, 2006, 319(3): 1051-1061.
    [50] Sykes N P. Morphine kills the pain, not the patient[J]. Lancet, 2007, 369(9570): 1325-1326.
    [51] Gilson AM, Ryan KM, Joranson DE, Dahl JL. A reassessment of trends in the medical use and abuse of opioid analgesics and implications for diversion control: 1997-2002[J]. Journal of Pain and Symptom Management, 2004, 28(2): 176-188.
    [52] Fischer B, Rehm J. Illicit opioid use in the 21st century: witnessing a paradigm shift?[J]. Addiction, 2007, 102(4): 499-501.
    [53] Tang YL, Zhao D, Zhao CZ, Cubells JF. Opiate addiction in China: current situation and treatments[J]. Addiction, 2006, 101(5): 657-665.
    [54] White JM. Pleasure into pain: The consequences of long-term opioid use[J]. Addictive Behaviors, 2004, 29(7): 1311-1324.
    [55] Mercadante S, Villari P, Ferrera P. Dialogues on complex analgesic strategies for difficult pain syndromes[J]. Supportive Care in Cancer, 2004, 12(8): 599-603.
    [56] Neary P, Delaney CP. Alvimopan[J]. Expert Opinion on Investigational Drugs, 2005, 14(4): 479-488.
    [57] Szmuszkovicz J, Von Voigtlander PF. Benzeneacetamide amines: structurally novel non-m mu opioids[J]. Journal of Medicinal Chemistry, 1982, 25(10): 1125-1126.
    [58] Barber A, Gottschlich R. Novel developments with selective, non-peptidic kappa-opioid receptor agonists[J]. Expert Opinion on Investigational Drugs, 1997, 6(10): 1351-1368.
    [59] Reece PA, Sedman AJ, Rose S, Wright DS, Dawkins R, Rajagopalan R. Diuretic effects, pharmacokinetics, and safety of a new centrally acting kappa-opioid agonist (CI-977) in humans[J]. Journal of Clinical Pharmacology, 1994, 34(11): 1126-1132.
    [60] Pande AC, Pyke RE, Greiner M, Wideman GL, Benjamin R, Pierce MW. Analgesic efficacy of enadoline versus placebo or morphine in postsurgical pain[J]. Clinical Neuropharmacology, 1996, 19(5): 451-456.
    [61] Sheffler DJ, Roth BL. Salvinorin A: the 'magic mint' hallucinogen finds a molecular target in the kappa opioid receptor[J]. Trends in Pharmacological Sciences, 2003, 24(3): 107-109.
    [62] Valde LJ, butler WM, Hatfield GM, Paul AG, Koreeda M. Divinorin A, a psychotropic terpenoid, and divinorin B from the hallucinogenic Mexican mint, Salvia divinorum[J]. Journal of Organic Chemistry, 1984, 49(24): 4716-4720.
    [63] John TF, French LG, Erlichman JS. The antinociceptive effect of Salvinorin A in mice[J]. European Journal of Pharmacology, 2006, 545(2-3): 129-133.
    [64] Fields H. State-dependent opioid control of pain[J]. Nature Reviews Neuroscience, 2004, 5(7): 565-575.
    [65] Hasebe K, Kawai K, Suzuki T, Kawamura K, Tanaka T, Narita M, Nagase H, Suzuki T. Possible pharmacotherapy of the opioid kappa receptor agonist for drug dependence[J]. Annals of the New York Academy of Sciences, 2004, 1025: 404-413.
    [66] Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Hruby V J, Porreca F. Antinociceptive and nociceptive actions of opioids[J]. Journal of Neurobiology, 2004, 61(1): 126-148.
    [67] Nugent FS, Penick EC, Kauer JA. Opioids block long-term potentiation of inhibitory synapses[J]. Nature, 2007, 446(7139): 1086-1090.
    [68] Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F. Dynorphin A activates bradykinin receptors to maintain neuropathic pain[J]. Nature Neuroscience, 2006, 9(12): 1534-1540.
    [69] Altier C, Zamponi GW. Opioid, cheating on its receptors, exacerbates pain[J]. Nature Neuroscience, 2006, 9(12): 1465-1467.
    [70] Benedetti F, Amanzio M. The neurobiology of placebo analgesia: From endogenous opioids to cholecystokinin[J]. Progress in Neurobiology, 1997, 52(2): 109-125.
    [71] Ananthan S. Opioid ligands with mixed mu/delta opioid receptor interactions: An emerging approach to novel analgesics[J]. Aaps Journal, 2006, 8(1): E118-E125.
    [72] Gupta A, Decaillot FM, Devi LA. Targeting opioid receptor heterodimers: Strategies for screening and drug development[J]. Aaps Journal, 2006, 8(1): E153-E159.
    [73] Rios CD, Jordan BA, Gomes I, Devi LA. G-protein-coupled receptor dimerization: modulation of receptor function[J]. Pharmacology & Therapeutics, 2001, 92(2-3): 71-87.
    [74] Devi LA. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking[J]. Trends in Pharmacological Sciences, 2001,22(10): 532-537.
    [75] Vaught JL, Takemori AE. Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence[J]. Journal of Pharmacology and Experimental Therapeutics, 1979, 208(1): 86-90.
    [76] Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (14): 5135-5139.
    [77] Stevenson GW, Folk JE, Linsenmayer DC, Rice KC, Negus SS. Opioid interactions in rhesus monkeys: Effects of delta plus mu and delta plus kappa agonists on schedule-controlled responding and thermal nociception[J]. Journal of Pharmacology and Experimental Therapeutics, 2003, 307(3): 1054-1064.
    [78] Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: A role in opiate synergy[J]. Journal of Neuroscience, 2000, 20(22): RC110.
    [79] Vaught JL, Rothman RB, Westfall TC. Mu and delta receptors: their role in analgesia in the differential effects of opioid peptides on analgesia[J]. Life Sciences, 1982, 30(17): 1443-1455.
    [80] Miyamoto Y, Portoghese PS, Takemori AE. Involvement of delta 2 opioid receptors in the development of morphine dependence in mice[J]. Journal of Pharmacology and Experimental Therapeutics, 1993, 264(3): 1141-1145.
    [81] Sharma SK, Jones RM, Metzger TG, Ferguson DM, Portoghese PS. Transformation of a kappa-opioid receptor antagonist to a kappa-agonist by transfer of a guanidinium group from the 5'-to 6'-position of naltrindole[J]. Journal of Medicinal Chemistry, 2001, 44(13): 2073-2079.
    [82] Caudle RM, Finegold AA, Mannes AJ, Tobias MD, Kenshalo DR, Jr., ladarola MJ. Spinal kappa1 and kappa2 opioid binding sites in rats, guinea pigs, monkeys and humans[J]. Neuroreport, 1998, 9(11): 2523-2525.
    [83] Portoghese PS, Lipkowski AW, Takemori AE. Binaltorphimine and nor-binaltorphimine, potent and selective kappa-opioid receptor antagonists[J]. Life Sciences, 1987, 40(13): 1287-1292.
    [84] Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A. Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa 1 and kappa 2 opioid receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(11): 4061-4065.
    [85] Maat L, Woudenberg RH, Meuzelaar GJ, Linders JTM. Chemistry of opium alkaloids. Part 44: Synthesis and opioid receptor binding profile of substituted ethenoisomorphinans and ethenomorphinans[J]. Bioorganic & Medicinal Chemistry, 1999, 7(3): 529-541.
    [86] Caudle RM, Mannes AJ, ladarola MJ. GR89,696 is a kappa-2 opioid receptor agonist and a kappa-1 opioid receptor antagonist in the guinea pig hippocampus[J]. Journal of Pharmacology and Experimental Therapeutics, 1997, 283(3): 1342-1349.
    [87] Butelman ER, Ko MC, Traynor JR, Vivian JA, Kreek MJ, Woods JH. GR89,696: a potent kappa-opioid agonist with subtype selectivity in rhesus monkeys[J]. Journal of Pharmacology and Experimental Therapeutics, 2001,298(3): 1049-1059.
    [88] Connor M, Kitchen I. Has the sun set on kappa3-opioid receptors?[J]. British Journal of Pharmacology, 2006, 147(4): 349-350.
    [89] Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function[J]. Nature, 1999, 399(6737): 697-700.
    [90] Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25): 9050-9055.
    [91] Wessendorf MW, Dooyema J. Coexistence of kappa- and delta-opioid receptors in rat spinal cord axons[J]. Neuroscience Letters, 2001, 298(3): 151-154.
    [92] Snook LA, Milligan G, Kieffer BL, Massotte D. mu-delta opioid receptor functional interaction: Insight using receptor-G protein fusions[J]. Journal of Pharmacology and Experimental Therapeutics, 2006, 318(2): 683-690.
    [93] Wang HL, Hsu CY, Huang PC, Kuo YL, Li AH, Yeh TH, Tso AS, Chen YL. Heterodimerization of opioid receptor-like 1 and mu-opioid receptors impairs the potency of mu receptor agonist[J]. Journal of Neurochemistry, 2005, 92(6): 1285-1294.
    [94] Prinster SC, Hague C, Hall RA. Heterodimerization of G protein-coupled receptors: Specificity and functional significance[J]. Pharmacological Reviews, 2005, 57(3): 289-298.
    [95] DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents[J]. Current Pharmaceutical Design, 2004, 10(7): 743-757.
    [96] Andresen V, Camilleri M. Challenges in drug development for functional gastrointestinal disorders. Part Ⅱ: Visceral pain[J]. Neurogastroenterology and Motility, 2006, 18(5): 354-360.
    [97] Walker JS. Anti-inflammatory effects of kappa-opioids: relevance to rheumatoid arthritis[J]. Pain Reviews, 2001, 8(3-4): 113-119.
    [98] Bileviciute-Ljungar I, Saxne T, Spetea M. Anti-inflammatory effects of contralateral administration of the kappa-opioid agonist U-50,488H in rats with unilaterally induced adjuvant arthritis[J]. Rheumatology, 2006, 45(3): 295-302.
    [99] Eisenach JC, Carpenter R, Curry R. Analgesia from a peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis[J]. Pain, 2003, 101(1-2): 89-95.
    [100] Riviere PJM. Peripheral kappa-opioid agonists for visceral pain[J]. British Journal of Pharmacology, 2004, 141(8): 1331-1334.
    [101] Rawls SM, Ding Z, Gray AM, Cowan A. Peripheral kappa-opioid agonist, ICI 204448, evokes hypothermia in cold-exposed rats[J]. Pharmacology, 2005, 74(2): 79-83.
    [102] Benamar K, Geller EB, Adler MW. Role of the nitric oxide pathway in kappa-opioid-induced hypothermia in rats[J]. Journal of Pharmacology and Experimental Therapeutics, 2002, 303(1): 375-378.
    [103] Schlyer S, Horuk R. I want a new drug: G-protein-coupled receptors in drug development[J]. Drug Discovery Today, 2006, 11(11-12): 481-493.
    [104] Gordon DB, Dahl JL, Miaskowski C, McCarberg B, Todd KH, Paice JA, Lipman AG, Bookbinder M, Sanders SH, Turk DC, Carr DB. American pain society recommendations for improving the quality of acute and cancer pain management-American Pain Society Quality of Care Task Force[J]. Archives of Internal Medicine, 2005, 165(14): 1574-1580.
    [1] Pugsley MK. The opioid receptor independent actions of kappa receptor Agonists in the cardiovascular system[J]. Current Pharmaceutical Design, 2004, 10(20): 2429-2444.
    [2] McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. Opioids, opioid receptors, and the immune response[J]. Drug and Alcohol Dependence, 2001, 62(2): 111-123.
    [3] Millan MJ. Kappa-opioid receptors and analgesia[J]. Trends in Pharmacological Sciences, 1990, 11(2): 70-76.
    [4] Millan MJ. Kappa-opioid receptor-mediated antinociception in the rat. Ⅰ. Comparative actions of mu- and kappa-opioids against noxious thermal, pressure and electrical stimuli[J]. Journal of Pharmacology and Experimental Therapeutics, 1989, 251(1): 334-341.
    [5] Fields H. State-dependent opioid control of pain[J]. Nature Reviews Neuroscience, 2004, 5(7): 565-575.
    [6] Meng ID, Johansen JP, Harasawa I, Fields HL. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception[J]. Journal of Neurophysiology, 2005, 93(3): 1138-1144.
    [7] Schenk S, Partridge B, Shippenberg TS. U69593, a kappa-opioid agonist, decreases cocaine self-administration and decreases cocaine-produced drug-seeking[J]. Psychopharmacology (Ber1), 1999, 144(4): 339-346.
    [8] Mello NK, Negus SS. Interactions between kappa opioid agonists and cocaine-Preclinical studies[J]. Annals of the New York Academy of Sciences, 2000, 909: 104-132.
    [9] Carroll FI. 2002 medicinal chemistry division award address: Monoamine transporters and opioid receptors. Targets for addiction therapy[J]. Journal of Medicinal Chemistry, 2003, 46(10): 1775-1794.
    [10] Hasebe K, Kawai K, Suzuki T, Kawamura K, Tanaka T, Narita M, Nagase H, Suzuki T. Possible pharmacotherapy of the opioid kappa receptor agonist for drug dependence[J]. Annals of the New York Academy of Sciences, 2004, 1025: 404-413.
    [11] Xia Q, Sheng JZ, Tai KK, Wong TM. Effect of chronic U-50488H treatment on binding and mechanical responses of the rat hearts.[J]. Journal of Pharmacology and Experimental Therapeutics, 1994, 268(2): 930-934.
    [12] Wong TM, Wu S. Roles of kappa opioid receptors in cardioprotection against ischemia: the signaling mechanisms[J]. Acta Physiologica Sinica, 2003, 55(2): 115-120.
    [13] Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC, Jr., Jones RM, Portoghese PS, Carlezon WA, Jr. Antidepressant-like effects ofkappa-opioid receptor antagonists in the forced swim test in rats[J]. Journal of Pharmacology and Experimental Therapeutics, 2003, 305(1): 323-330.
    [14] Gilbert PE, Martin WR. The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog[J]. Journal of Pharmacology and Experimental Therapeutics, 1976, 198(1): 66-82.
    [15] Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog[J]. Journal of Pharmacology and Experimental Therapeutics, 1976, 197(3): 517-532.
    [16] Husbands SM. Kappa-opioid receptor ligands[J]. Expert Opinion on Therapeutic Patents, 2004, 14(12): 1725-1741.
    [17] Lewis JW, Husbands SM. The orvinols and related opioids-High affinity ligands with diverse efficacy profiles[J]. Current Pharmaceutical Design, 2004, 10(7): 717-732.
    [18] Kaczor A, Matosiuk D. Non-peptide opioid receptor ligands-Recent advances. Part Ⅰ-Agonists[J]. Current Medicinal Chemistry, 2002, 9(17): 1567-1589.
    [19] 张其楷.选择性kappa阿片样受体激动剂和拮抗剂的研究新进展[J].国外医学药学分册,1995,22(2):65-70.
    [20] 郑志兵,焦克芳,李松.kappa阿片受体激动剂研究进展[J].中国药物化学杂志,1995,5(4):294-302.
    [21] 沈敬山,刘东祥,蒋华良,嵇汝运.非肽类阿片kappa受体激动剂的研究现状[J].药学进展,1998,22(4):193-199.
    [22] 郭婷,王德传,徐云根,刘景根.外周选择性kappa阿片受体激动剂的最新研究进展[J].药学进展,2006,30(3):104-108.
    [23] Fries DS. Foye's principle of medicinal chemistry.[M]. Berlin: Lippincott Williams & Wilkines. 2002: 453-479.
    [24] Herz A, Akil H, Simon EJ. Handbook of experimental pharmacology[M]. Berlin: Springer-Verlag1993: Vol. 104, 645-679.
    [25] May EL, Jacobson AE, Mattson MV, Traynor JR, Woods JH, Harris LS, Bowman ER, Aceto MD. Synthesis and in vitro and in vivo activity of (-)-(1R,5R,9R)- and (+)-(1S,5S,9S)-N-alkenyl-,-N-alkynyl-, and -N-cyanoalkyl-5, 9-dimethyl-2'-hydroxy-6,7-benzomorphan homologues[J]. Journal of Medicinal Chemistry, 2000, 43(26): 5030-5036.
    [26] Lavecchia A, Greco G, Novellino E, Vittorio F, Ronsisvalle G. Modeling of kappa-opioid receptor/agonists interactions using pharmacophore-based and docking simulations[J]. Journal of Medicinal Chemistry, 2000, 43(11): 2124-2134.
    [27] Ronsisvalle G, Prezzavento O, Pasquinucci L, Marrazzo A, Vittorio FG-V, J.A,, Carboni L, Spampinato S. CCB, a novel specific kappa opioid agonist, which discriminates between opioid and sigma I recognition sites.[J]. Life Sciences, 1995, 57(16): 1487-1495.
    [28] Ronsisvalle G, Marrazzo A, Pasquinucci L, Prezzavento O, Pappalardo M, Vittorio F. Specific kappa opioid receptor agonists[J]. Farmaco, 2001, 56(1-2): 121-125.
    [29] Sagara T, Ozawa S, Kushiyama E, Koike K, Takayanagi I, Kanematsu K. Design and synthesis of 10-oxo derivative of N-cyclopropylmethyl (-)-6-beta-acetylthiodihydronormorphine, a potentially kappa-selective opioid receptor-ligand[J]. Bioorganic & Medicinal Chemistry 1995, 5(14): 1505-1508.
    [30] Kanematsu K, Sagara T. An approach to the rational design of opioid receptor receptor ligands: nonnarcotic κ-opioid receptor ligand KT-95 free from euphoria and/or dysphoria[J]. Current Medicinal Chemistry-Central Nervous System agents., 2001, 1(1): 1-25.
    [31] Derrick I, Lewis JW, Moynihan HA, Broadbear J, Woods JH. Potential irreversible ligands for opioid receptors. Cinnamoyl derivatives of beta-naltrexamine[J]. Journal of Pharmacy and Pharmacology, 1996, 48(2): 192-196.
    [32] Derrick I, Moynihan HA, Broadbear J, Woods JH, Lewis JW. 6N-cinnamoyl-beta-naltrexamine and its p-nitro derivative. High efficacy kappa-opioid agonists with weak antagonist actions[J]. Bioorganic & Medicinal Chemistry Letters, 1996, 6(2): 167-172.
    [33] Holzgrabe U, Nachtsheim C, Siener T, Drosihn S, Brandt W. Opioid-agonists, -antagonists, and opioid receptors[J]. Pharmzie, 1997, 52(1): 4-22.
    [34] Nagase H, Hayakawa J, Kawamura K, Kawai K, Takezawa Y, Matsuura H, Tajima C, Endo T. Discovery of a structurally novel opioid kappa-agonist derived from 4,5-epoxymorphinan[J]. Chemical & Pharmaceutical Bulletin, 1998, 46(2): 366-369.
    [35] Lahti RA, Vonvoigtlander PF, Barsuhn C. Properties of a selective kappa agonist, U-50488H[J]. Life Sciences, 1982, 31 (20-21): 2257-2260.
    [36] Ensinger HA, Stockhaus K, H. M. Differentiation of mu- and kappa-receptors by means of correlation of analgesic potency in vivo and receptor binding affinity in vitro of various opioid agonists.[J]. Methods and Findings in Experimental and Clinical Pharmacology, 1984, 6(10): 649-653.
    [37] Portoghese PS, Larson DL, Sultana M, Takemori AE. Opioid agonist and antagonist activities of morphindoles related to naltrindole[J]. Journal of Medicinal Chemistry, 1992, 35(23): 4325-4329.
    [38] Gal TJ, DiFazio CA, Dixon R. Prolonged blockade of opioid effect with oral nalmefene[J]. Clinical Pharmacology and Therapeutics, 1986, 40(5): 537-542.
    [39] Archer S, Seyed-Mozaffari A, Ward S, Kosterlitz HW, Paterson SJ, McKnight AT, Corbett AD. 10-Ketonaltrexone and 10-ketooxymorphone[J]. Journal of Medicinal Chemistry, 1985, 28(7): 974-976.
    [40] Abraham DJ. Burger's Medicinal Chemistry & Drug Discovery[M]. New York: John Wiley and Sons, Inc.2003.
    [41] Portoghese PS, Takemori AE. TENA, a selective kappa opioid receptor antagonist[J]. Life Sciences, 1985, 36(8): 801-805.
    [42] Takemori AE, Ho BY, Naeseth JS, Portoghese PS. Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays[J]. Journal of Pharmacology and Experimental Therapeutics, 1988, 246(1): 255-258.
    [43] Lin CE, Takemori AE, Portoghese PS. Synthesis and kappa-opioid antagonist selectivity of a norbinaltorphimine congener. Identification of the address moiety required for kappa-antagonist activity[J]. Journal of Medicinal Chemistry, 1993, 36(16): 2412-2415.
    [44] Bolognesi M, Ojala WH, Gleason WB, Griffin JF, FarouzGrant F, Larson DL, Yakemori AE, Portoghese PS. Opioid antagonist activity of naltrexone-derived bivalent ligands: Importance of a properly oriented molecular scaffold to guide "address" recognition at kappa opioid receptors[J]. Journal of Medicinal Chemistry, 1996, 39(9): 1816-1822.
    [45] Chauvignac C, Miller CN, Srivastava SK, Lewis JW, Husbands SM, Traynon JR. Major effect of pyrrolic N-benzylation in norbinaltorphimine, the selective kappa-opioid receptor antagonist[J]. Journal of Medicinal Chemistry, 2005, 48(5): 1676-1679.
    [46] Larson DL, Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Binding of norbinaltorphimine (norBN1) congeners to wild-type and mutant mu and kappa opioid receptors: molecular recognition loci for the pharmacophore and address components of kappa antagonists[J]. Journal of Medicinal Chemistry, 2000, 43(8): 1573-1576.
    [47] Olmsted SL, Takemori AE, Portoghese PS. A remarkable change of opioid receptor selectivity on the attachment of a peptidomimetic kappa address element to the delta antagonist, natrindole: 5'-[N2-alkylamidino)methyl]naltrindole derivatives as a novel class of kappa opioid receptor antagonists [J]. Journal of Medicinal Chemistry, 1993, 36(1): 179-180.
    [48] Jales AR, Husbands SM, Lewis JW. Selective kappa-opioid antagonists related to naltrindole. Effect of side-chain spacer in the 5'-amidinoalkyl series[J]. Bioorganic & Medicinal Chemistry Letters, 2000, 10(20): 2259-2261.
    [49] Stevens WC, Jr., Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. Potent and selective indolomorphinan antagonists of the kappa-opioid receptor[J]. Journal of Medicinal Chemistry, 2000, 43(14): 2759-2769.
    [50] Black SL, Chauvignac C, Grundt P, Miller CN, Wood S, Traynor JR, Lewis JW, Husbands SM. Guanidino N-substituted and N,N-disubstituted derivatives of the kappa-opioid antagonist GNTI[J]. Journal of Medicinal Chemistry, 2003, 46(25): 5505-5511.
    [51] Black SL, Jales AR, Brandt W, Lewis JW, Husbands SM. The role of the side chain in determining relative delta- and kappa-affinity in C5'-substituted analogues of naltrindole[J]. Journal of Medicinal Chemistry, 2003, 46(2): 314-317.
    [52] Sharma SK, Jones RM, Metzger TG, Ferguson DM, Portoghese PS. Transformation of a kappa-opioid receptor antagonist to a kappa-agonist by transfer of a guanidinium group from the 5 '- to 6'-position of naltrindole [J]. Journal of Medicinal Chemistry, 2001, 44(13): 2073-2079.
    [53] Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25): 9050-9055.
    [54] Ananthan S, Khare NK, Saini SK, Davis P, Dersch CM, Porreca F, Rothman RB. Novel ligands for the opioid receptors: Synthesis and structure-activity relationships among 5'-aryl and 5'-heteroaryl 17-cyclopropylmethyl-4,5 alpha-epoxypyrido[2',3': 6,7]morphinans[J]. Bioorganic & Medicinal Chemistry, 2003, 11(18): 4143-4154.
    [55] Ananthan S, Kezar HSr, Saini SK, Khare NK, Davis P, Dersch CM, Porreca F, Rothman RB. Synthesis, opioid receptor binding, and functional activity of 5'-substituted 17-cyclopropyl methyl pyrido[2',3':6,7]morphinans.[J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13(3): 529-532.
    [56] Srivastava SK, Shefali, Miller CN, Aceto MD, Traynor JR, Lewis JW, Husbands SM. Effects of substitution on the pyrrole N atom in derivatives of tetrahydronaltrindole, tetrahydrooxymorphindole, and a related 4,5-epoxyphenylpyrrolomorphinan[J]. Journal of Medicinal Chemistry, 2004, 47(26): 6645-6648.
    [57] Prommer E. Levorphanol: the forgotten opioid[J]. Supportive Care in Cancer, 2007, 15(3): 259-264.
    [58] Neumeyer JL, Bidlack JM, Zong RS, Bakthavachalam V, Gao P, Cohen DJ, Negus SS, Mello NK. Synthesis and opioid receptor affinity of morphinan and benzomorphan derivatives: Mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine dependence[J]. Journal of Medicinal Chemistry, 2000, 43(1): 114-122.
    [59] Neumeyer JL, Gu XH, van Vliet LA, DeNunzio NJ, Rusovici DE, Cohen DJ, Negus SS, Mello NK, Bidlack JM. Mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine abuse: synthesis and opioid receptor binding affinity of N-substituted derivatives of morphinan[J]. B ioorganic & Medicinal Chemistry Letters, 2001, 11(20): 2735-2740.
    [60] Zhang A, Xiong W, Bidlack JM, Hilbert JE, Knapp BI, Wentland MP, Neumeyer JL. 10-Ketomorphinan and 3-substituted-3-desoxymorphinan analogues as mixed kappa and micro opioid ligands: synthesis and biological evaluation of their binding affinity at opioid receptors[J]. Journal of Medicinal Chemistry, 2004, 47(1): 165-174.
    [61] Commiskey S, Fan LW, Ho IK, Rockhold RW. Butorphanol: Effects of a prototypical agonist-antagonist analgesic on kappa-opioid receptors[J]. Journal of Pharmacological Sciences, 2005, 98(2): 109-116.
    [62] Schmidhammer H, Yrenker E, Burkard WP, Eggstein-Aeppli L, Hefti F, Holck MI. An opioid agonist with preference for kappa-opioid receptors: (-)-N-cyclopropylmethylmorphinan-6-one[J]. Archiv Der Pharmazie, 1990, 323(1): 27-29.
    [63] Zhang A, Xiong W, Hilbert JE, DeVita EK, Bidlack JM, Neumeyer JL. 2-aminothiazole-derived opioids. Bioisosteric replacement of phenols[J]. Journal of Medicinal Chemistry, 2004, 47(8): 1886-1888.
    [64] Bently KW, Hardy DG. Novel analgesic and molecular rearrangements in the morphine-thebaine group. Ⅰ.. Ketones derived from 6, 14-endo-ethenotetrahydrothebaine[J]. Journal of the American Chemical Society, 1967, 89(13): 3267-3273.
    [65] Bently KW, Hardy DG, Meek B. Novel analgesic and molecular rearrangements in the morphine-thebaine group. Ⅱ.. Alcohols derived from 6, 14-endo-etheno- and 6, 14-endo-etheno- and 6, 14-endo-ethanotetrahydrothebaine[J]. Journal of the American Chemical Society, 1967, 89(13): 3273-3280.
    [66] Ohmori S, Morimoto Y. Dihydroetorphine: A potent analgesic: Pharmacology, toxicology, pharmacokinetics, and clinical effects[J]. Cns Drug Reviews, 2002, 8(4): 391-404.
    [67] Qin BY. Advances in dihydroetorphine: From analgesia to detoxification[J]. Drug Development Research, 1996, 39(2): 131-134.
    [68] Wang DX, Lu XQ, Qin BY. Dihydroetorphine Is a Mu-Receptor-Selective Ligand[J]. Journal of Pharmacy and Pharmacology, 1995, 47(8): 669-673.
    [69] Park HS, Lee HY, Kim YH, Park JK, Zvartau EE, Lee H. Highly selective kappa-opioid receptor agonist with low addictive potential and dependence liability[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(13): 3609-3613.
    [70] 宫泽辉,岳永娟,崔梦旬,柳用绍,秦伯益.阿片受体部分激动剂——噻诺啡长效机制的研究[J].中国药理通讯,2003,20(1):19.
    [71] 仲伯华,刘河,吴波,王亚萍.N-环丙甲基-7α-[(R)-1-羟基-1-甲基-3-(2-噻吩)丙基]-6,14一内乙基桥四氢去甲基蒂巴因(噻诺啡)合成和晶体结构[J].有机化学,2005,25(2):210-212.
    [72] Li JX, Becker GL, Traynor JR, Gong ZH, France CP. Thienorphine: Receptor binding and behavioral effects in rhesus monkeys[J]. Journal of Pharmacology and Experimental Therapeutics, 2007, 321(1): 227-236.
    [73] Hutchins CW, Rapoport H. Analgesic of the orvinol type. 19-deoxy and 6, 20-expoxy derivatives[J]. Journal of Medicinal Chemistry, 1984, 27(4): 521-527.
    [74] Husbands SM, Lewis JW. Structural determinants of efficacy for kappa opioid receptors in the orvinol series: 7,7-spiro analogues of buprenorphine[J]. Journal of Medicinal Chemistry, 2000, 43(2): 139-141.
    [75] Zimmerman DM, Nickander R, Horng JS, Wong DT. New structural concepts for narcotic-antagonists defined in a 4-phenylpiperidine series[J]. Nature, 1978, 275(5678): 332-334.
    [76] Traynor JR, Guo L, Coop A, Lewis JW, Woods JH. Ring-constrained orvinols as analogs of buprenorphine: differences in opioid activity related to configuration of C(20) hydroxyl group[J]. Journal of Pharmacology and Experimental Therapeutics, 1999, 291(3): 1093-1099.
    [77] Bermejo FM, Husbands SM, Lewis JW. Derivatives of flavonepenthone: Kappa opioid receptor selectivity in an N-methylmorphinan[J]. Helvetica Chimica Acta, 1999, 82(10): 1721-1727.
    [78] Grundt P, Martinez-Bermejo F, Lewis JW, Husbands SM. Opioid binding and in vitro profiles of a series of 4-hdroxy-3-methoxyindolomorphinans. Transformation of a delta-selective ligand into a high affinity kappa-selective ligand by introduction of a 5,14-substituted bridge.[J]. Journal of Medicinal Chemistry, 2003, 46(14): 3174-3177.
    [79] Husbands SM, Neilan CL, Broadbear J, Grundt P, Breeden S, Aceto MD, Woods JH, Lewis JW, Traynor JR. BU74, a complex oripavine derivative with potent kappa opioid receptor agonism and delayed opioid antagonism[J]. European Journal of Pharmacology, 2005, 509(2-3): 117-125.
    [80] Husbands SM, Lewis JW. Morphinan cyclic imines and pyrrolidines containing a constrained phenyl group: high affinity opioid agonists[J]. Bioorganic & Medicinal Chemistry Letters, 1995, 5(24): 2969-2947.
    [81] Rennison D, Grundt P, Goodyer C, Lewis JW, Husbands SM. Formic acid catalysed rearrangement of 5 beta-methyldihydrothevinols (=3,6-dimethoxy-5,17-dimethyl-4,5-epoxy-6,14-ethanomorphinan -7-methanols ): Synthesis of new doubly bridged morphinan derivatives[J]. Chemistry & Biodiversity, 2005, 2(2): 215-220.
    [82] Coop A, Norton CL, Berzetei-Gurske I, Burnside J, Toll L, Husbands SM, Lewis JW. Structural determinants of opioid activity in the orvinols and related structures: Ethers of orvinol and isoorvinol[J]. Journal of Medicinal Chemistry, 2000, 43(9): 1852-1857.
    [83] Vonvoigtlander PF, Lahti RA, Ludens JH. U-50,488: a selective and structurally novel non-Mu (kappa) opioid agonist[J]. Journal of Pharmacology and Experimental Therapeutics, 1983, 224(1): 7-12.
    [84] Halfpenny PR, Hill RG, Horwell DC, Hughes J, Hunter JC, Rees DC. Highly selective κ-opioid analgesics. 2. Synthesis and structure-activity relationships of novel N-[(2-amino cyclohexyl) aryl]acetamide derivatives[J]. Journal of Medicinal Chemistry, 1989, 32(7): 1620-1626.
    [85] Barlow JJ, Blackburn TP, Costello GF, James R, Le Count DJ, Main BG, Pearce RJ, Russell K, Shaw JS. Structure-activity studies related to 2-(3,4-dichlorophenyl)-N-methyl-N-2-(1-pyrrolidinyl)-1-substituted-ethylacetamides: a novel series of potent and selective κ-opioid agonists[J]. Journal of Medicinal Chemistry, 1991, 34(11): 3149-3158.
    [86] Salbin V, Horwell DC, McKinght AT, Broqua P. Trans N-Methyl-N-[2-(1-pyrrolidinyl) cyclohexyl] cycloprop-2-ene-1-carboxamides: novel lipophilic kappa opioid agonists[J]. Bioorganic & Medicinal Chemistry Letters, 1997, 7(3): 291-296.
    [87] Chu GH, Gu MH, Cassel JA, Belanger S, Stabley GJ, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE. Novel phenylamino acetamide derivatives as potent and selective kappa opioid receptor agonists[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(3): 645-648.
    [88] Chu GH, Gu MH, Cassel JA, Belanger S, Graczyk TM, DeHaven RN, Conway-James N, Koblish M, Little PJ, DeHaven-Hudkins DL, Dolle RE. Potent and highly selective kappa opioid receptor agonists incorporating chroman- and 2,3-dihydrobenzofuran-based constraints[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(23): 5114-5119.
    [89] Halfpenny PR, Hill RG, Horwell DC, Hughes J, Hunter JC, Rees DC. Highly selective κ-opioid analgesics. 2. Synthesis and structure-activity relationships of novel N-[(2-amino cyclohexyl)aryl] acetamide derivatives[J]. Journal of Medicinal Chemistry, 1989, 32(7): 1620-1626.
    [90] Halfpenny PR, Horwell DC, Hughes J, Humblet C, Hunter JC, neuhaus D, Rees DC. Highly selective κ opioid analgesics. 4. Synthesis of some conformationally restricted naphthalene derivatives with high receptor afffinity and selectivity. [J]. Journal of Medicinal Chemistry, 1991, 34(1): 190-194.
    [91] Yoshio I, Atsusuke T. Analgesic carboxylic acid amide derivatives[P]. Europe: EP0356247, 1990-02-28:
    [92] Semple G, Andersson BM, Chhajlani V, Georgsson J, Johansson M, Lindschoten M, Ponten F, Rosenquist A, Sorensen H, Swanson L, Swanson M. 3-Aryl pyridone derivatives. Potent and selective kappa opioid receptor agonists[J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12(2): 197-200.
    [93] Semple G, Andersson BM, Chhajlani V, Georgsson J, Johansson M J, Rosenquist A, Swanson L. Synthesis and Biological activity of kappa opioid receptor agonists. Part 2: preparation of 3-aryl-2-pyridone analogues generated by solution- and solid-phase parallel synthesis methods[J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13(6): 1141-1145.
    [94] Mamoru U. Sulfonamide compounds as opioid K-receptor agonists[P]. World: WO9418165, 1994-08-18:
    [95] Fumitaka I. N-[2-(pyrrolidinyl-1)-1-phenylethyl]acetamides as kappa receptor antagonists [P]. World: WO9606077, 1996-02-29:
    [96] Fumitaka I. Hydrazide compound as kappa agonist. [P]. Japan: JP11012250, 1999-01-19:
    [97] Costello GF, James R, Shaw JS, Slater AM. 2-(3.4-dichlorophenyl)-N- methyl-N-[2-(1-pyrrol-idinyl)-1-substituted-ethyl]-acetamides: the use of conformational analysis in the development of a novel series of potent opioid κ agonists. [J]. Journal of Medicinal Chemistry, 1991, 34(1): 181-189.
    [98] Vecchietti V, Giordani A, Giardina G, Colle R, Clarke GD. (2S)-1-(arylacetyl)-2-(aminomethyl) piperidine derivatives: novel, highly selective κ opioid analgesics. [J]. Journal of Medicinal Chemistry, 1991, 34(1): 397-403.
    [99] Giardina G, Clarke GD, Dondio G, Petrone G, Sbacchi M, Vecchietti V. Selective kappa-opioid agonists: synthesis and structure-activity relationships of piperidines incorporating on oxo-containing acyl group.[J]. Journal of Medicinal Chemistry, 1994, 37(21): 3482-3491.
    [100] de Costa BR, Radesca L, Paolo LD, Bowen WD. Synthesis, characterization, and biological evaluation of a novel class of N-(Arylethyl)-N-alkyl-2-(1-pyrrolidinyl)ethylamines: Structural Requirements and Binding Affinity at the σ Receptor.[J]. Journal of Medicinal Chemistry, 1992, 35(1): 38-47.
    [101] de Costa BR, Rice KC, Bowen WD, Thurkauf A, Rothman RB, Band L, Jacobson AE, Radesca L, Contreras PC, Gray NM, Daly I, Lyengar S, Finn DT, Vazirani S, Walker JM. Synthesis and evaluation of N-substituted cis -N-methyl-2-(1-pyrrolidinyl)cyclohexylamines as high affinity σ receptor ligands. Identification of a new class of highly potent and selective σ receptor probes[J]. Journal of Medicinal Chemistry, 1990, 33(11): 3110-3116.
    [102] Simon EJ. Proceedings of the 25th International Narcotics Research Conference (Inrc)-North Falmouth, Ma, USA, 16-21 July 1994-Opioids and Their Receptors-Cloning and Beyond-Preface[J]. Regulatory Peptides, 1994, 54(1): R19-R20.
    [103] Brooks DP, Valente M, Petrone G, Depalma PD, Sbacchi M, Clarke GD. Comparison of the water diuretic activity of kappa receptor agonists and a vasopressin receptor antagonist in dogs[J]. Journal of Pharmacology and Experimental Therapeutics, 1997, 280(3): 1176-1183.
    [104] Rajagopalan P, Scribner RM, Penner P, Mattei PL, Kezar HS, Cheng CY, Cheeseman RS, Ganti VR, Johnson AL, Wuonola MA, Schmidt WK, Tam SW, Steinfels GF, Cook L. Dup 747-SAR Study[J]. Bioorganic & Medicinal Chemistry Letters, 1992, 2(7): 721-726.
    [105] Rajagopalan P, Scribner RM, Pennev P, Schmidt WK, Tam SW, Steinfels GF, Cook L. Dup 747-A new, potent, kappa opioid analgesic-synthesis and pharmacology[J]. Bioorganic & Medicinal Chemistry Letters, 1992, 2(7): 715-720.
    [106] Meecham KG, Boyle SJ, Hunter JC, Hughes J. An invitro profile of activity for the (+) and (-) enantiomers of Spiradoline and PD117302[J]. European Journal of Pharmacology, 1989, 173(2-3): 151-157.
    [107] Lahti RA, Mickelson MM, McCall JM, Vonvoigtlander PF. [H-3]U-69593 a highly selective ligand for the opioid kappa-receptor[J]. European Journal of Pharmacology, 1985, 109(2): 281-284.
    [108] Halfpenny PR, Horwell DC, Hughes J, Hunter JC, Rees DC. Highly selective kappa-opioid analgesics. 3. Synthesis and structure-activity-relationships of novel N-[2-(1-Pyrrolidinyl)-4-sub-stituted-cyclohexyl]- or N-[2-(1-Pyrrolidinyl)-5-substituted-cyclohexyl]arylacetamide derivatives [J]. Journal of Medicinal Chemistry, 1990, 33(1): 286-291.
    [109] Fujibayashi K, Sakamoto K, Watanabe M, Iizuka Y. Pharmacological properties of R-84760, A novel kappa-opioid receptor agonist[J]. European Journal of Pharmacology, 1994, 261(1-2): 133-140.
    [110] Hayes AG, Birch PJ, Hayward NJ, Sheehan MJ, Rogers H, Tyers MB, Judd DB, Scopes DIC, Naylor A. A series of novel, highly potent and selective agonists for the kappa-opioid receptor[J]. British Journal of Pharmacology, 1990, 101(4): 944-948.
    [111] Naylor A, Judd DB, Lloyd JE, Scopes DIC, Hayes AG, Birch PJ. A potent new class of kappa-receptor agonist-4-substituted 1-(arylacetyl)-2-[(dialkylamino)methyl]piperazines[J]. Journal of Medicinal Chemistry, 1993, 36(15): 2075-2083.
    [112] Giuseppe G, Roberto C, Vittorio F. Tetrahydrothieno(2,3-c)pyridine derivatives, process for their preparation and their pharmaceutical application[P]. World: WO9215592, 1992-09-17:
    [113] Wang C, Chakrabarti MK, Whitwam JG. Effect of ICI197067, a kappa-opioid receptor agonist, spinally on a-delta and c-reflexes and intracerebrally on respiration[J]. European Journal of Pharmacology, 1993, 243(2): 113-121.
    [114] Mou QY, Chen J, Zhu YC, Zhou DH, Chi Z, Q., Long Y, Q. 3-Pyrroline containing arylace-tamides: A novel series of remarkably selective kappa-agonists[J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12(17): 2287-2290.
    [115] Tuthill PA, Seida PR, Barker W, Cassel JA, Belanger S, DeHaven RN, Koblish M, Gottshall SL, Little PJ, DeHaven-Hudkins DL, Dolle RE. Azepinone as a conformational constraint in the design of kappa-opioid receptor agonists[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(22): 5693-5697.
    [116] Chang AC, Takemori AE, Portoghese PS. 2-(3,4-dichlorophenyl)-N-methyl-N-[(1s)1-(3-isothio cyanatophenyl)-2-(1-pyrrolidinyl)ethyl]acetamide-An opioid receptor affinity label that produces selective and long-lasting kappa antagonism in mice[J]. Journal of Medicinal Chemistry, 1994, 37(11): 1547-1549.
    [117] Decosta BR, Rothman RB, Bykov V, Band L, Pert A, Jacobson AE, Rice KC. Probes for Narcotic Receptor Mediated Phenomena. 17. Synthesis and Evaluation of a Series of Trans-3,4-Dichloro-N-Methyl-N-[2-(1-Pyrrolidinyl)Cyclohexyl]Benzeneaceta Mide (U50,488) Related Isothiocyanate Derivatives as Opioid Receptor Affinity Ligands[J]. Journal of Medicinal Chemistry, 1990, 33(4): 1171-1176.
    [118] Horan P, Decosta BR, Rice KC, Porreca F. Differential antagonism of U69,593- and bremazocine-induced antinociception by(-)-UPHIT-Evidence of kappa-opioid receptor multiplicity in mice[J]. Journal of Pharmacology and Experimental Therapeutics, 1991, 257(3): 1154-1161.
    [119] Riviere PJM. Peripheral kappa-opioid agonists for visceral pain[J]. British Journal of Pharmacology, 2004, 141(8): 1331-1334.
    [120] Amarante LH, Alves DP, Duarte IDG. Study of the involvement of K+ channels in the peripheral antinociception of the κ-opioid receptor agonist bremazocine[J]. European Journal of Pharmacology, 2004, 494(2-3): 155-160.
    [121] DeHaven-Hudkins DL, Dolle RE. Peripherally restricted opioid agonists as novel analgesic agents[J]. Current Pharmaceutical Design, 2004, 10(7): 743-757.
    [122] Rogers H, Birch PJ, Harrison SM, Palmer E, Manchee GR, Judd DB, Naylor A, Scopes DIC, Hayes AG. GR94839, a kappa-opioid agonist with limited access to the central-nervous-system, has antinociceptive activity[J]. British Journal of Pharmacology, 1992, 106(4): 783-789.
    [123] Shaw JS, Carroll JA, Alcock P, Main BG. ICI 204448: a kappa-opioid agonist with limited access to the CNS.[J]. British Journal of Pharmacology, 1989, 96(4): 986-992.
    [124] Kumar V, Guo D, Cassel JA, dAUBERT JD, DeHaven RN, DeHaven-Hudkins DL, Gauntner EK, Gottshall SL, Griner SL, Koblish M, Little PJ, Mansson E, Maycock AL. Synthesis and evaluation of novel peripherally restricted kappa-opioid receptor agonists[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(4): 1091-1095.
    [125] Barber A, Bartoszyk GD, Greiner HE, Mauler F, Murray RD, Seyfried CA, Simon M, Gottschlich R, Harting J, Lues I. Central and peripheral actions of the novel kappa-opioid receptor agonist, EMD60400[J]. British Journal of Pharmacology, 1994, 111(3): 843-851.
    [126] Shen S, Ingenito AJ. kappa-opioid receptors behind the blood-brain barrier are involved in the anti-hypertensive effects of systemically administered kappa-agonists in the conscious spontaneously hypertensive rat[J]. Journal of Pharmacy and Pharmacology, 1999, 51(11): 1251-1256.
    [127] Barber A, Bartoszyk GD, Bender HM, Gottschlich R, Greiner HE, Harting J, Mauler F, Minck KO, Murray RD, Simon M, Seyfried CA. A pharmacological profile of the novel, peripherally-selective kappa-opioid receptor agonist, EMD-61753[J]. British Journal of Pharmacology, 1994, 113(4): 1317-1327.
    [128] Casy AF, Dewar GH, Aldeeb OAA. Stereochemical studies of the 4-alkyl-4-arylpiperidine class of opioid ligand[J]. Magnetic Resonance in Chemistry, 1989, 27(10): 964-972.
    [129] Casy AF, Dewar GH, Deeb O. Stereochemical influences upon the opioid ligand activities of 4-alkyl-4-arylpiperidine derivatives[J]. Chirality, 1989, 1(3): 202-208.
    [130] Casy AF, Ogungbamila FO. The solute conformation of opioid ligands of the 4-arylpiperidine class-alpha-promedol and related-compounds[J]. Magnetic Resonance in Chemistry, 1992, 30(10): 969-976.
    [131] Li W, Wang XH, Lau CW, Tang Y, Xie Q, Qiu ZB. Conformational re-analysis of(+)-meptazinol: an opiold with mixed analgesic pharmacophores[J]. Acta Pharmacologica Sinica, 2006, 27(9): 1247-1252.
    [132] Grundt P, Williams IA, Lewis JW, Husbands SM. Identification of a new scaffold for opioid receptor antagonism based on the 2-amino-1,1-dimethyl-7-hydroxytetralin pharmacophore[J]. Journal of Medicinal Chemistry, 2004, 47(21): 5069-5075.
    [133] Thomas JB, Fall MJ, Cooper JB, Rothman RB, Mascarella SW, Xu H, Partilla JS, Dersch CM, McCullough KB, Cantrell BE, Zimmerman DM, Carroll FI. Identification of an opioid kappa receptor subtype-selective N-substituent for(+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine[J]. Journal of Medicinal Chemistry, 1998, 41(26): 5188-5197.
    [134] Thomas JB, Atkinson RN, Rothman RB, Fix SE, Mascarella SW, Vinson NA, Xu H, Dersch CM, Lu YF, Cantrell BE, Zimmerman DM, Carroll FI. Identification of the first trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid kappa receptor antagonist activity[J]. Journal of Medicinal Chemistry, 2001, 44(17): 2687-2690.
    [135] Carroll I, Thomas JB, Dykstra LA, Granger AL, Allen RM, Howard JL, Pollard GT, Aceto MD, Harris LS. Pharmacological properties of JDTic: a novel kappa-opioid receptor antagonist[J]. European Journal of Pharmacology, 2004, 501(1-3): 111-119.
    [136] Thomas JB, Atkinson RN, Namdev N, Rothman RB, Gigstad KM, Fix SE, Mascarella SW, Burgess JP, Vinson NA, Xu H, Dersch CM, Cantrell BE, Zimmerman DM, Carroll FI. Discovery of an opioid kappa receptor selective pure antagonist from a library of N-substituted 4 beta-methyl-5-(3-hydroxyphenyl)morphans[J]. Journal of Medicinal Chemistry, 2002, 45(16): 3524-3530.
    [137] Carroll FI, Melvin MS, Nuckols MC, Mascarella SW, Navarro HA, Thomas JB. N-substituted 4 beta-methyl-5-(3-hydroxyphenyl)-7 alpha-amidomorphans are potent, selective kappa opioid receptor antagonists[J]. Journal of Medicinal Chemistry, 2006, 49(5): 1781-1791.
    [138] Thomas JB, Fix SE, Rothman RB, Mascarella SW, Dersch CM, Cantrell BE, Zimmerman DM, Carroll FI. Importance of phenolic address groups in opioid kappa receptor selective antagonists[J]. Journal of Medicinal Chemistry, 2004, 47(4): 1070-1073.
    [139] Zimmerman DM, Cantrell BE, Swartzendruber JK, Jones ND, Mendelsohn LG, Leander JD, Nickander RC. Synthesis and analgesic properties of N-substituted trans-4a-aryldecahydro-isoquinolines[J]. Journal of Medicinal Chemistry, 1988, 31(3): 555-560.
    [140] Pascaud X, Honde C, Legallou B, Chanoine F, Roman F, Bueno L, Junien JL. Effects of fedotozine on gastrointestinal motility in dogs-Mechanism of action and related pharmacokinetics[J]. Journal of Pharmacy and Pharmacology, 1990, 42(8): 546-552.
    [141] Creighton CJ, Ramabadran K, Ciccone PE, Liu JC, Orsini MJ, Reitz AB. Synthesis and biological evaluation of the major metabolite of atomoxetine: elucidation of a partial kappa-opioid agonist effect[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(15): 4083-4085.
    [142] Lotsch J, Ditterich W, Hummel T, Kobal G. Antinociceptive effects of the kappa-opioid receptor agonist RP 60180 compared with pentazocine in an experimental human pain model[J]. Clinical Neuropharmacology, 1997, 20(3): 224-233.
    [143] Guyon C, Fardin V, Garret C, Plau B, Taurand G, Kappa agonist phenothiazines: synthesis and SAR[A]. In: Medicinal Chemistry: Today and Tomorrow[M], London: Blackwell Science 1997: 81-87.
    [144] Romer D, Buscher HH, Hill RC, Maurer R, Petcher TJ, Zeugner H, Benson W, Finner E, Milkowski W, Thies PW. An opioid benzodiazepine[J]. Nature, 1982, 298(5876): 759-760.
    [145] Anzini M, Canullo L, Braile C, Cappelli A, Gallelli A, Vomero S, Menziani MC, De Benedetti PG, Rizzo M, Collina S, Azzolina O, Sbacchi M, Ghelardini C, Galeotti N. Synthesis, biological evaluation, and receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as kappa-opioid receptor agonists endowed with antinociceptive and antiamnesic activity[J]. Journal of Medicinal Chemistry, 2003, 46(18): 3853-3864.
    [146] Samhammer A, Holzgrabe U, Haller R. Synthesis, stereochemistry and analgesic activity of 3,7-diazabicyclo[3.3.1]nonan-9-ones and 1,3-diazaadamantan-6-ones[J]. Archiv Der Pharmazie, 1989, 322(9): 551-555.
    [147] Brandt W, Drosihn S, Haurand M, Holzgrabe U, Nachtsheim C. Search for the pharmacophore in kappa-agonistic diazabicyclo[3.3.1]nonan-9-one-1,5-diesters and arylacetamides[J]. Archiv Der Pharmazie, 1996, 329(6): 311-323.
    [148] Holzgrabe U, Brandt W. Mechanism of action of the diazabicyclononanone-type kappa-agonists[J]. Journal of Medicinal Chemistry, 2003, 46(8): 1383-1389.
    [149] Lee DYW, Ma ZZ, Liu-Chen LY, Wang YL, Chen Y, Carlezon WA, Cohen B. New neoclerodane diterpenoids isolated from the leaves of Salvia divinorum and their binding affinities for human kappa opioid receptors[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 13(19): 5635-5639.
    [150] Sheffler DJ, Roth BL. Salvinorin A: the 'magic mint' hallucinogen finds a molecular target in the kappa opioid receptor[J]. Trends in Pharmacological Sciences, 2003, 24(3): 107-109.
    [151] Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11934-11939.
    [152] John TF, French LG, Erlichman JS. The antinociceptive effect of Salvinorin A in mice[J]. European Journal of Pharmacology, 2006, 545(2-3): 129-133.
    [153] Rothman RB, Murphy DL, Xu H, Godin JA, Dersch CM, Partilla JS, Tidgewell K, Schmidt M, Prisinzano TE. Salvinorin A: Allosteric interactions at the mu-opioid receptor[J]. Journal of Pharmacology and Experimental Therapeutics, 2007, 320(2): 801-810.
    [154] Lee DYW, He MS, Kondaveti L, Liu-Chen LY, Ma ZZ, Wang YL, Chen Y, Li JG, Beguin C, Carlezon WA, Cohen B. Synthesis and in vitro pharmacological studies of C(4) modified salvinorin A analogues[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(19): 4169-4173.
    [155] Lee DYW, Karnati VVR, He MS, Liu-Chen LY, Kondaveti L, Ma ZZ, Wang YL, Chen Y, Beguin C, Carlezon WA, Cohen B. Synthesis and in vitro pharmacological studies of new C(2) modified salvinorin A analogues[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(16): 3744-3747.
    [156] Munro TA, Rizzacasa MA, Roth BL, Toth BA, Yah F. Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist[J]. Journal of Medicinal Chemistry, 2005, 48(2): 345-348.
    [157] Beguin C, Richards MR, Wang YL, Chert Y, Liu-Chen LY, Ma ZZ, Lee DYW, Carlezon WA, Cohen BM. Synthesis and in vitro pharmacological evaluation of salvinorin A analogues modified at C(2)[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(11): 2761-2765.
    [158] Harding WW, Schmidt M, Tidgewell K, Kannan P, Holden KG, Dersch CM, Rothman RB, Prisinzano TE. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: Selective modification of the furan ring[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(12): 3170-3174.
    [159] Lee DYW, He MS, Liu-Chen LY, Wang YL, Li JG, Xu W, Ma ZZ, Carlezon WA, Cohen B. Synthesis and in vitro pharmacological studies of new C(4) modified salvinorin A analogues[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(21): 5498-5502.
    [160] Beguin C, Richards MR, Li JG, Wang YL, Xu W, Liu-Chen LY, Carlezon WA, Cohen BM. Synthesis and in vitro evaluation of salvinorin A analogues: Effect of configuration at C(2) and substitution at C(18)[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(17): 4679-4685.
    [161] Harding WW, Schmidt M, Tidgewell K, Kannan P, Holden KG, Gilmour B, Navarro H, Rothman RB, Prisinzano TE. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: Semisynthesis of salvinicins A and B and other chemical transformations of salvinorin A[J]. Journal of Natural Products, 2006, 69(1): 107-112.
    [162] Harding WW, Tidgewell K, Byrd N, Cobb H, Dersch CM, Butehnan ER, Rothman RB, Prisinzano TE. Neoclerodane diterpenes as a novel scaffold for mu opioid receptor ligands[J]. Journal of Medicinal Chemistry, 2005, 48(15): 4765-4771.
    [163] Schwyzer R. ACTH: a short introductory review[J]. Annals of the New York Academy of Sciences, 1977, 297: 3-26.
    [164] Chavkin C, Goldstein A. Specific receptor for the opioid peptide dynorphin: structure--activity relationships[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(10): 6543-6547.
    [165] Portoghese PS, Sultana M, Takemori AE. Design of peptidomimetic delta-opioid receptor antagonists using the Message Address concept[J]. Journal of Medicinal Chemistry, 1990, 33(6): 1714-1720.
    [166] 曾一斌,仇缀百.阿片受体delta亚型选择性拟肽配基的研究进展[J].中国药物化学杂志,1996,6(1):68-72.
    [1] Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor[J]. Science, 2000, 289(5480): 739-745.
    [2] Evers A, Klebe G. Ligand-supported homology modeling of G-protein-coupled receptor sites: Models sufficient for successful virtual screening[J]. Angewandte Chemie-International Edition, 2004, 43(2): 248-251.
    [3] Evers A, Klabunde T. Structure-based drug discovery using GPCR homology modeling: Successful virtual screening for antagonists of the AlphalA adrenergic receptor[J]. Journal of Medicinal Chemistry, 2005, 48(4): 1088-1097.
    [4] Larson DL, Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Binding of norbinaltorphimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular recognition loci for the pharmacophore and address components of kappa antagonists[J]. Journal of Medicinal Chemistry, 2000, 43(8): 1573-1576.
    [5] Stevens WC, Jr., Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. Potent and selective indolomorphinan antagonists of the kappa-opioid receptor[J]. Journal of Medicinal Chemistry, 2000, 43(14): 2759-2769.
    [6] Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Research, 2000, 28(1): 45-48.
    [7] Hall D, Pavitt N. An appraisal of molecular force fields for the representation of polypeptides[J]. Journal of Computational Chemistry, 1984, 5(5): 441-450.
    [8] Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site-directed mutagenesis of opioid receptors: Exploring the 'address' recognition locus[J]. Journal of Medicinal Chemistry, 2001, 44(6): 857-862.
    [9] Black SL, Chauvignac C, Grundt P, Miller CN, Wood S, Traynor JR, Lewis JW, Husbands SM. Guanidino N-substituted and N,N-disubstituted derivatives of the kappa-opioid antagonist GNTI[J]. Journal of Medicinal Chemistry, 2003, 46(25): 5505-5511.
    [10] Black SL, Jales AR, Brandt W, Lewis JW, Husbands SM. The role of the side chain in determining relative delta- and kappa-affinity in C5'-substituted analogues of naltrindole[J]. Journal of Medicinal Chemistry, 2003, 46(2): 314-317.
    [11] Grundt P, Martinez-Bermejo F, Lewis JW, Husbands SM. Opioid binding and in vitro profiles of a series of 4-hdroxy-3-methoxyindolomorphinans. Transformation of a delta-selective ligand into a high affinity kappa-selective ligand by introduction of a 5,14-substituted bridge.[J]. Journal of Medicinal Chemistry, 2003, 46(14): 3174-3177.
    [12] Srivastava SK, Husbands SM, Aceto MD, Miller CN, Traynor JR, Lewis JW. 4 '-arylpyrrolomorphinans: Effect of a pyrrolo-N-benzyl substituent in enhancing delta-opioid antagonist activity[J]. Journal of Medicinal Chemistry, 2002, 45(2): 537-540.
    [13] Bostrom J, Hogner A, Schmitt S. Do structurally similar ligands bind in a similar fashion?[J]. Journal of Medicinal Chemistry, 2006, 49(23): 6716-6725.
    [14] Jones RM, Portoghese PS. 5'-Guanidinonaltrindole, a highly selective and potent kappa-opioid receptor antagonist[J]. European Journal of Pharmacology, 2000, 396(1): 49-52.
    [15] Portoghese PS. Ligands for opioid receptors[EB/OL].http://www.opioid.umn.edu/, 2007-04-02:
    [16] Gouldson PR, Kidley NJ, Bywater RP, Psaroudakis G, Brooks HD, Diaz C, Shire D, Reynolds CA. Toward the active conformations of rhodopsin and the beta(2)-adrenergic receptor[J]. Proteins-Structure Function and Bioinformatics, 2004, 56(1): 67-84.
    [17] Coop A, Norton CL, Berzetei-Gurske I, Burnside J, Toll L, Husbands SM, Lewis JW. Structural determinants of opioid activity in the orvinols and related structures: Ethers of orvinol and isoorvinol[J]. Journal of Medicinal Chemistry, 2000, 43(9): 1852-1857.
    [18] Bermejo FM, Husbands SM, Lewis JW. Derivatives of flavonepenthone: Kappa opioid receptor selectivity in an N-methylmorphinan[J]. Helvetica Chimica Acta, 1999, 82(10): 1721-1727.
    [19] Husbands SM, Breeden SW, Grivas K, Lewis JW. Ring constrained analogues of the orvinols: The furanomorphides[J]. Bioorganic & Medicinal Chemistry Letters, 1999, 9(6): 831-834.
    [20] Grundt P, Martinez-Bermejo F, Lewis JW, Husbands SM. The 14-alkyl- and 14-alkenyl-5 beta-methylindolomorphinan series provide delta-selective partial opioid agonists[J]. Helvetica Chimica Acta, 2003, 86(3): 793-798.
    [21] Grundt P, Jales AR, Traynor JR, Lewis JW, Husbands SM. 14-amino, 14-alkylamino, and 14-acylamino analogs of oxymorphindole. Differential effects on opioid receptor binding and functional profiles[J]. Journal of Medicinal Chemistry, 2003, 46(8): 1563-1566.
    [22] Filizola M, Villar HO, Loew GH. Differentiation of delta, mu, and kappa opioid receptor agonists based on pharmacophore development and computed physicochemical properties[J]. Journal of Computer-Aided Molecular Design, 2001, 15(4): 297-307.
    [23] Brandt W. A uniform molecular model of delta opioid agonist and antagonist pharmacophore conformations[J]. Journal of Computer-Aided Molecular Design, 1998, 12(6): 615-621.
    [24] Huang P, Kim S, Loew G. Development of a common 3D pharmacophore for delta-opioid recognition from peptides and non-peptides using a novel computer program[J]. Journal of Computer-Aided Molecular Design, 1997, 11(1): 21-28.
    [25] Filizola M, Villar HO, Loew GH. Molecular determinants of non-specific recognition of delta, mu, and kappa opioid receptors[J]. Bioorganic & Medicinal Chemistry, 2001, 9(1): 69-76.
    [26] Bernard D, Coop A, MacKerell AD. 2D conformationally sampled pharmacophore: A ligand-based pharmacophore to differentiate delta opioid agonists from antagonists[J]. Journal of the American Chemical Society, 2003, 125(10): 3101-3107.
    [27] Bernard D, Coop A, MacKerell AD. Quantitative conformationally sampled pharmacophore for delta opioid ligands: Reevaluation of hydrophobic moieties essential fo biological acitivity[J]. Journal of Medicinal Chemistry, 2007, 50(8): 1799-1809.
    [28] Peng YY, Keenan SM, Zhang Q, Kholodovych V, Welsh WJ. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: Pooling data from different studies[J]. Journal of Medicinal Chemistry, 2005, 48(5): 1620-1629.
    [29] Kane BE, Svensson B, Ferguson DM. Molecular recognition of opioid receptor ligands[J]. Aaps Journal, 2006, 8(1): E126-E137.
    [30] Pogozheva ID, Przydzial MJ, Mosberg HI. Homology modeling of opioid receptor-ligand complexes using experimental constraints[J]. Aaps Journal, 2005, 7(2): Article 43.
    [31] Eguchi M. Recent advances in selective opioid receptor agonists and antagonists[J]. Medicinal Research Reviews, 2004, 24(2): 182-212.
    [32] Bondensgaard K, Ankersen M, Thogersen H, Hansen BS, Wulff BS, Bywater RP. Recognition of privileged structures by G-protein coupled receptors[J]. Journal of Medicinal Chemistry, 2004, 47(4): 888-899.
    [33] Kong HY, Raynor K, Reisine T. Amino-acids in the cloned mouse kappa-receptor that are necessary for high-affinity agonist binding but not antagonist binding[J]. Regulatory Peptides, 1994, 54(1): 155-156.
    [34] Sharma SK, Jones RM, Metzger TG, Ferguson DM, Portoghese PS. Transformation of a kappa-opioid receptor antagonist to a kappa-agonist by transfer of a guanidinium group from the 5'-to 6'-position of naltrindole[J]. Journal of Medicinal Chemistry, 2001,44(13): 2073-2079.
    [35] Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25): 9050-9055.
    [36] Subramanian G, Paterlini MG, Larson DL, Portoghese PS, Ferguson DM. Conformational analysis and automated receptor docking of selective arylacetamide-based kappa-opioid agonists[J]. Journal of Medicinal Chemistry, 1998, 41(24): 4777-4789.
    [37] Lavecchia A, Greco G, Novellino E, Vittorio F, Ronsisvalle G. Modeling of kappa-opioid receptor/agonists interactions using pharmacophore-based and docking simulations[J]. Journal of Medicinal Chemistry, 2000, 43(11): 2124-2134.
    [38] Iadanza M, Holtje M, Ronsisvalle G, Holtje HD. kappa-opioid receptor model in a phospholipid bilayer: Molecular dynamics simulation[J]. Journal of Medicinal Chemistry, 2002, 45(22): 4838-4846.
    [39] Holzgrabe U, Brandt W. Mechanism of action of the diazabicyclononanone-type kappa-agonists[J]. Journal of Medicinal Chemistry, 2003, 46(8): 1383-1389.
    [40] Roth BL, Barter K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11934-11939.
    [41] Yan F, Mosier PD, Westkaemper RB, Stewart J, Zjawiony JK, Vortherms TA, Sheffier DJ, Roth BL. Identification of the molecular mechanisms by which the diterpenoid salvinorin A binds to kappa-opioid receptors[J]. Biochemistry, 2005, 44(24): 8643-8651.
    [42] Kane BE, Nieto MJ, McCurdy CR, Ferguson DM. A unique binding epitope for salvinorin A, a non-nitrogenous kappa opioid receptor agonist[J]. Febs Journal, 2006, 273(9): 1966-1974.
    [43] Derrick I, Moynihan HA, Broadbear J, Woods JH, Lewis JW. 6N-cinnamoyl-beta-naltrexamine and its p-nitro derivative. High efficacy kappa-opioid agonists with weak antagonist actions[J]. Bioorganic & Medicinal Chemistry Letters, 1996, 6(2): 167-172.
    [1] Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25): 9050-9055.
    [2] Lewis JW, Readhead MJ. Novel analgesic and molecular rearrangements in the morphine-thebaine group. 29. Aryl and arylalkyl tertiary alcohols in the 6, 14-endo-ethenotetrahydrothebaine series[J]. Journal of Medicinal Chemistry, 1973, 16(1): 84-85.
    [3] 曾一斌.阿片受体亚型选择性激动剂研究-7α-取代苯基-6,14-内亚乙烯基-四氢奥利文衍生物的合成[D].上海:上海医科大学,1995:
    [4] 胡萍,叶菜英,仇缀百,杨惠芬,张德昌.新合成阿片受体配基对delta受体的激动作用[J].基 础医学与临床,2002,22(5):434-437.
    [5] Abraham DJ. Burger's Medicinal Chemistry & Drug Discovery[M]. New York: John Wiley and Sons, Inc.2003.
    [6] Bently KW, Hardy DG. Novel analgesic and molecular rearrangements in the morphine-thebaine group. Ⅰ. Ketones derived from 6, 14-endo-ethenotetrahydrothebaine[J]. Journal of the American Chemical Society, 1967, 89(13): 3267-3273.
    [7] Bently KW, Hardy DG, Meek B. Novel analgesic and molecular rearrangements in the morphine-thebaine group. Ⅱ.. Alcohols derived from 6, 14-endo-etheno- and 6, 14-endo-etheno- and 6, 14-endo-ethanotetrahydrothebaine[J]. Journal of the American Chemical Society, 1967, 89(13): 3273-3280.
    [8] Kobrich G, Buck P. Nachweis und darstellung metallierter nitroaromaten[J]. Chemische Berichte, 1970, 103(5): 1412-1419.
    [9] Parham WE, Piccirilli RM. Selective halogen-lithium exchange in 2, 5-dibromobenzenes and 2, 5-dibromopyridine[J]. Journal of Organic Chemistry, 1977, 42(2): 257-260.
    [10] Parham WE, BRADSHER CK. Aromatic organolithium reagents bearing electrophilic groups. Preparation by halogen-lithium exchange.[J]. Accounts of Chemical Research, 1982, 15(10): 300-305.
    [11] Weidmann B, Maycock CD, Seebach D. 144. Alkyl, aryl, vinyl, and heterosubstituted organozirconium compounds. -Selective nucleophiles of low basicity.[J]. Helvetica Chimica Acta, 1981, 64(5): 1552-1557.
    [12] Weidmann B, Seebach D. Organometallic compounds of titanium and zirconium as selective nucleophilic reagents in organic synthesis[J]. Angewandte Chemie International Edition, 1983, 22(1): 31-45.
    [13] Bentley KW, Ball JC. Acid-catalyzed rearrangements in the nepenthone series[J]. Journal of Organic Chemistry, 1958, 23(11): 1720-1725.
    [14] Ginsberg HE Lederman I, Papa D. Beta-(p-nitrobenzoyl)-acrylic acid and p-nitroacrylophenone[J]. Journal of the American Chemical Society, 1953, 75(18): 4587-4589.
    [15] Sheng W, Coburn CA, Bornmann WG, Danishefsky SJ. Concise total syntheses of dl-camptothecin and related anticancer drugs[J]. Journal of Organic Chemistry, 1993, 58(3): 611-617.
    [16] Carrion MD, Camacho ME, Leon J, Escames G, Tapias V, Acuna-Castroviejo D, Gallo MA, Espinosa A. Synthesis and iNOS/nNOS inhibitory activities of new benzoylpyrazoline derivatives[J]. Tetrahedron, 2004, 60(18): 4051-4069.
    [17] Bartoli G, Bosco M, Dalpozzo R. Grignard reagents selective attack to nitroarenic function in the presence of other electrophilic groups[J]. Tetrahedron Letters, 1985, 26(1): 115-118.
    [18] 李杰.有机人名反应及机理[M].上海:华东理工大学出版社2003.
    [19] Stille JK, Milstein D. Mild, selective, general method of ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium[J]. Journal of Organic Chemistry, 1979, 44(10): 1613-1618.
    [20] Labadie JW, Tueting D, Stille JK. Synthetic utility of the palladium-catalyzed coupling reaction of acid chlorides with organotins[J]. Journal of Organic Chemistry, 1983, 48(24): 4634-4642.
    [21] Reetz MT, Kyung SH, Hullmann M. CH3Li/TiCl4: a non-basic and highly selective Grignard analogue[J]. Tetrahedron, 1986, 42(11): 2931-2935.
    [22] Wiley RH, Smith NR. m-Nitrostyrene[EB/OL].http://www.orgsyn.org/, 2007-04-08:
    [23] Wiley RH, Smith NR. Nitrostyrenes and 2-nitro-5-vinylfuran[J]. Journal of the American Chemical Society, 1950, 72(11): 5198-5199.
    [24] Fulmor W, Lancaster JE, Morton GO, Brown JJ, Howell CF, Nora CT, Jr Hardy RA. Nuclear magnetic resonance studies in the 6, 14-endo-ethenotetrahydrothebaine series[J]. Journal of the American Chemical Society, 1967, 89(13): 3323-3330.
    [25] deGrauw M, Muller EF, Woudenberg RH, Maat L. Synthesis and Diels-Alder reaction of 5 beta-methyl-beta-dihydrothebaine and its 6-demethoxy analogue (chemistry of opium alkaloids .42.)[J]. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1996, 115(1): 63-66.
    [26] Fringuelli F, Taticchi A. The Diels-Alder reaction: Selected Practical Methods.[M]. Chichester: John Wiley & Sons, Ltd.2002.
    [27] Knipmeyer LL, Rapoport H. Analgesics of the 6, 14-ethenomorphinan type. 6-Deoxy-7α-orvinols an 6-deoxy-8α-orvinols[J]. Journal of Medicinal Chemistry, 1985, 28(4): 461-466.
    [28] Soundararajan S. Charge distribution, electric dipole moments & molecular structure of nitriles[J]. Indian Journal of Chemistry, 1963, 1: 503-506.
    [29] 杨杰.阿片受体亚型选择性配基的研究-N-环丙甲基-7α-取代苯基-6,14-内亚乙烯基-四氢蒂巴因衍生物的合成[D].上海:上海医科大学,1996:
    [30] Stevens WC, Jr., Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. Potent and selective indolomorphinan antagonists of the kappa-opioid receptor[J]. Journal of Medicinal Chemistry, 2000, 43(14): 2759-2769.
    [31] Guo ZX, Cammidge AN, Horwell DC. A convenient and versatile method for the synthesis of protected guanidines[J]. Synthetic Communications, 2000, 30(16): 2933-2943.
    [32] Kim KS, Qian LG. Improved Method for the Preparation of Guanidines[J]. Tetrahedron Letters, 1993, 34(48): 7677-7680.
    [33] Gers T, Kunce D, Markowski P, Izdebski J. Reagents for efficient conversion of amines to protected guanidines[J]. Synthesis, 2004, (1): 37-42.
    [34] 宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社 2000.
    [35] Derrick I, Coop A, Al-Mousawi SM, Husbands SM, Lewis JW. Perchloric acid induced epimerisation of the thevinones: an improved synthesis of 7 beta-dihydrothevinones[J]. Tetrahedron Letters, 2000, 41(39): 7571-7576.
    [36] Patrick G. Instant Notes in Medicinal Chemistry[M]. 北京:科学出版社 2003.
    [37] Carey FA, Sundberg RJ. Advanced Organic Chemistry[M]. New York: Kluwer Academic/Plenum Publishers2000.
    [38] Grossman RB. The art of writing reasonable organic reaction mechanisms[M]. New York: Springer-Verlag New York, Inc.2002.
    [39] Hofmann's Rule[EB/OL].http://www.organic-chemistry.org/namedreactions/hofmann-rule.shtm,2007-04-24:
    [40] Saytzeffs Rule[EB/OL].http://www.organic-chemistry.org/namedreactions/saytzeff-rule.shtm,2007-04-24:
    [41] Juaristi E, Cuevas G. Recent Studies of the Anomeric Effect[J]. Tetrahedron, 1992, 48(24): 5019-5087.
    [42] Commiskey S, Fan LW, Ho IK, Rockhold RW. Butorphanol: Effects of a prototypical agonist-antagonist analgesic on kappa-opioid receptors[J]. Journal of Pharmacological Sciences, 2005, 98(2): 109-116.
    [1] Hoskin PJ, Hanks GW. Opioid agonist-antagonist drugs in acute and chronic pain states[J]. Drugs, 1991, 41(3): 326-344.
    [2] Green D. Current concepts concerning the mode of action of meptazinol as an analgesic.[J]. Postgraduate Medical Journal, 1983, 59(Supple-1): 9-12.
    [3] Spiegel K, Pasternak GW. Meptazinol: a novel mu-1 selective opioid analgesic.[J]. Journal of Pharmacology and Experimental Therapeutics, 1984, 228(2): 414B.
    [4] Ennis C, Haroun F, Lattimer N. Can the effects of meptazinol on the guinea-pig isolated ileum be explained by inhibition of acetylcholinesterase?[J]. Journal of Pharmacy and Pharmacology, 1986, 38(1): 24-27.
    [5] 章承继.美普他酚的合成、拆分及前体药物研究[D].上海:复旦大学,2003:
    [6] 陈燕.美普他酚的合成、拆分及光学活性体研究[D].上海:复旦大学,2004:
    [7] 陈燕,郁韵秋,郑优丽,仇缀百.毛细管电泳法检测美普他酚手性拆分中的光学纯度[J].复旦学报(医学版),2005,32(1):105-107.
    [8] 卢美艳.美普他酚前体药物和双配基的设计和合成[D].上海:复旦大学,2005:
    [9] Tillack JV, Seccombe RC, Kennard CHL, Oh PWT. Analgetics. I. Crystal structure of pethidine hydrochloride, 4-carbethoxy-1-4-phenylpiperdine hydrochloride, C15H21NO2.HCl[J]. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1974, 93(6): 164-165.
    [10] Casy AF, Dewar GH, Al-Deeb OAA. Conformational Equilibra of hydrochloride salts of pethidine, ketobemidone, and related central analgesics of the 4-arylpiperidine class.[J]. Journal of the Chemical Society-Perkin Transactions Ⅱ 1989, 2: 1243-1247.
    [11] Li W, Hao JL, Tang Y, Chen Y, Qiu ZB. Structural comparisons of meptazinol with opioid analgesics[J]. Acta Pharmacologica Sinica, 2005, 26(3): 334-338.
    [12] Tzschentke TM, Bruckman W, Friderichs E. Lack of sensitization during place conditioning in rats is consistent with the low abuse potential of tramadol[J]. Neuroscience Letters, 2002, 329(1): 25-28.
    [13] Casy AF, Parfitt RT. Opioid analgesics: Chemsitry and receptor.[M]. New York and London: Plenum Press1986: 485.
    [14] Tyers MB. A classification of opiate receptors that mediate antinociception in animals[J]. British Journal of Pharmacology, 1980, 69(3): 503-512.
    [15] Carroll FI. 2002 medicinal chemistry division award address: Monoamine transporters and opioid receptors. Targets for addiction therapy[J]. Journal of Medicinal Chemistry, 2003, 46(10): 1775-1794.
    [16] Zimmerman DM, Nickander R, Horng JS, Wong DT. New structural concepts for narcotic-antagonists defined in a 4-phenylpiperidine series[J]. Nature, 1978, 275(5678): 332-334.
    [17] Portoghese PS, Alreja BD, Larson DL. Allylprodine analogs as receptor probes-evidence that phenolic and nonphenolic ligands interact with different subsites on identical opioid receptors[J]. Journal of Medicinal Chemistry, 1981, 24(7): 782-787.
    [18] Casy AF, Ogungbamila FO. Phenolic analogues of reversed esters of pethidine[J]. Journal of Pharmacy and Pharmacology, 1985, 37(2): 121-123.
    [19] Horn AS, Rodgers JR. Enkephalins and opiates-structure-activity relations[J]. Journal of Pharmacy and Pharmacology, 1977, 29(5): 257-265.
    [20] Allinger NL, Tribble MT. Conformational analysis LⅩⅩⅧ. The conformation of phenylcyclohexane and related molecules.[J]. Tetrahedron Letters, 1971, 12(35): 3259-3262.
    [21] Hodgson DJ, Rychlewska U, Eliel EL, Manoharan M, Knox DE, Olefirowicz EM. Rotational conformation of the phenyl moiety in geminally substituted phenylcyclohexanes with equatorial phenyl[J]. Journal of Organic Chemistry, 1985, 50(24): 4838-4843.
    [22] Hutchison AJ, de Jesus R, Wiliams M, Simke JP, Neale RF, Jackson RH, Ambrose F, Barbaz BJ, Sills MA. Benzofuro[2,3-c]pyridine-6-ols: synthesis, affinity for opioid subtypes, and antinociceptive activity[J]. Journal of Medicinal Chemistry, 1989, 32(9): 2221-2226.
    [23] Froimowitz M, Pick CG, Pasternak GW. Phenylmorphans And Analogs-Opioid Receptor Subtype Selectivity And Effect Of Conformation On Activity[J]. Journal of Medicinal Chemistry, 1992, 35(9): 1521-1525.
    [24] Burke TRJ, Bajwa BS, Jacobson AE, Rice KC, Streaty RA, Klee WA. Probes for narcotic receptor mediated phenomena 7. Synthesis and pharmacological properties of irreversible ligands specific for mu and delta opiate receptors.[J]. Journal of Medicinal Chemistry, 1984, 27(12): 1570-1574.
    [25] Mackay M, Hodgkin DC. A crystallographic examination of the structure of morphine[J]. Journal of the Chemical Society, 1955: 3621.
    [26] Van Den Hende JH, Nelson NR. The crystal and molecular structure of 7.alpha.-(1-(R)-hydroxy-1-methylbutyl)-6,14-endo-ethenotetrahydrothebaine hydrobromide (19-propyl thevinol hydrobromide)[J]. Journal of the American Chemical Society, 1967, 89(12): 2901-2905.
    [27] Sasvari K, Simon K, Bognar R, Makleit S. The crystal and molecular structure of 6-deoxy-6-azido dihydroisomorphine, C17H20N4O2[J]. Acta Crystallographica 1974, B30: 634-641.
    [28] Fedeli W, Giacomello G, Cerrini S, Vacaigo A. Crystal and molecular structure of 2-allyl-2'-hydroxy-5,9-dimethyl-6,7-benzomorphan hydrobromide monohydrate[J]. Journal of the Chemical Society(B), 1970: 1190-1195.
    [29] Karle IL, Girardi RD, Fratini AV, Karle J. The crystal structures of DL-cyclazocine and L-cycla-zocine.HBr.H20, and the absolute configuration of L-cyclazocine.HBr.H2O (2-cyclo-propyl methyl-2'-hydroxy-5,9-dimethyl-6,7-benzomorphan).[J]. Acta Crystallographica 1969, B25(1469-1479).
    [30] Sime RL, Forehand R, Sime RJ. The crystal structure of a narcotic antagonist: naloxone hydrochloride dehydrate[J]. Acta Crystallographica 1975, B31: 2326-2330.
    [31] Sime RJ, Dobler M, Sime RL. The crystal structure of a narcotic agonist/antagonist: nalbuphine hydrochloride dehydrate.[J]. Acta Crystallographica 1976, B32:809-812.
    [32] Daum SJ, Martini CM, Kullnig RK, Clarke RL. Analgesic activity of the epimeric tropane analogs of meperidine. Physical and pharmacological study.[J]. Journal of Medicinal Chemistry, 1975, 18(5): 496-501.
    [33] Zimmerman DM, Cantrell BE, Swartzendruber JK, Jones ND, Mendelsohn LG, Leander JD, Nickander RC. Synthesis and analgesic properties of N-substituted trans-4a-aryldecahydro-isoquinolines[J]. Journal of Medicinal Chemistry, 1988, 31(3): 555-560.
    [34] Froimowitz M, Salva P, Hite G J, Gianntsos G, Suzdake P, Heyman R. Conformational properties of α- and β-azabicyclane opiates. The effect of conformation on pharmacological activity[J]. Journal of Computational Chemistry, 1984, 5(4): 291-298.
    [35] Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. AM1: a new general purpose quantum mechanical model.[J]. Journal of the American Chemical Society, 1985, 107(13): 3902-3909.
    [1] Armarego WLF, Perrin DD. Purification of Laboratory Chemicals[M]. OXFORD: Butterworth-Heinemannn, A division of Reed Educational and Professional Publishing Ltd. 2000.
    [2] 曾一斌.阿片受体亚型选择性激动剂研究-7α-取代苯基-6,14-内亚乙烯基-四氢奥利文衍生物的合成[D].上海:上海医科大学,1995:
    [3] Wiley RH, Smith NR. m-Nitrostyrene[EB/OL].http://www.orgsyn.org/, 2007-04-08:
    [4] Wiley RH, Smith NR. Nitrostyrenes and 2-nitro-5-vinylfuran[J]. Journal of the American Chemical Society, 1950, 72(11): 5198-5199.
    [5] 郝敬来.镇痛新药美普他酚和4-氨基衍生物的合成研究[D].上海:复旦大学,2004:
    [6] Bently KW, Hardy DG. Novel analgesic and molecular rearrangements in the morphine-thebaine group. Ⅰ. Ketones derived from 6, 14-endo-ethenotetrahydrothebaine[J]. Journal of the American Chemical Society, 1967, 89(13): 3267-3273.
    [7] Bently KW, Hardy DG, Meek B. Novel analgesic and molecular rearrangements in the morphine-thebaine group. Ⅱ.. Alcohols derived from 6, 14-endo-etheno- and 6, 14-endo-etheno- and 6, 14-endo-ethanotetrahydrothebaine[J]. Journal of the American Chemical Society, 1967, 89(13): 3273-3280.
    [8] Bentley KW, Ball JC. Acid-catalyzed rearrangements in the nepenthone series[J]. Journal of Organic Chemistry, 1958, 23(11): 1720-1725.
    [9] Eisenbraun EJ. Cyclooctanone[EB/OL].http://www.orgsyn.org/, 2007-04-15:
    [10] Woudenberg RH, Lie TS, Maat L. Synthesis of Rigid Morphinans Doubly Bridged at Ring-C[J]. Journal of Organic Chemistry, 1993, 58(22): 6139-6142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700