苏云金芽胞杆菌γ-氨基丁酸代谢旁路相关基因簇的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)因其杀虫效果好、安全、高效等优点而成为农业生物防治上应用最为广泛的杀虫微生物。Bt与其它芽胞杆菌相比,一个显著特点就是在形成芽胞的同时,还能产生由杀虫蛋白组成的伴胞晶体。有关Bt伴胞晶体形成机制方面的研究主要是集中在杀虫晶体蛋白基因的表达调控上,而从代谢调控的角度研究晶体蛋白形成的分子机制目前尚未见报道。本论文围绕苏云金芽胞杆菌中与γ-氨基丁酸代谢旁路相关基因簇的结构和功能进行了一系列的研究,主要内容包括:
     本研究从国内分离得到的苏云金芽胞杆菌G03菌株中克隆了gabT和gabD基因,并分别在大肠杆菌中进行了表达和纯化。酶活测定结果表明,GabT和GabD蛋白分别呈现出γ-氨基丁酸转氨酶和琥珀酸半醛脱氢酶的活性。氨基酸序列同源性比对分析发现,这两个蛋白质在蜡样芽胞杆菌群(B. cereus group)中具有较高的相似性,而与枯草芽胞杆菌的相似性较低,分别为58%、51%。
     利用基因敲除技术分别构建了Bt HD-73菌株的gabT、gabD基因缺失突变株,同时也构建了相应的回复突变株,对gabT、gabD基因的功能进行了研究,结果表明:gabT、gabD基因敲除不会影响突变株在丰富培养基中的正常生长,但在基础培养基(含0.2%GABA)中gabT基因缺失突变株的生长会受到抑制;gabT、gabD基因敲除对晶体蛋白的表达量无显著影响,但gabT的缺失会推迟晶体蛋白的表达;gabT、gabD基因敲除均会导致芽胞产量的降低;GABA代谢旁路的功能还有待于进一步了解。
     通过对Bt HD-73菌株gab基因簇的克隆及序列分析发现,gab基因簇的结构与大肠杆菌和枯草芽胞杆菌的明显不同,而在蜡样芽胞杆菌群中基本上是一致的,说明γ-氨基丁酸代谢途径相关的基因簇结构在蜡样芽胞杆菌群中是比较保守的。通过RT-PCR转录分析发现gabD和gabT基因并未同时进行转录,其中gabT单独转录,而gabD与其上游的转录激活因子编码基因reg共转录。根据克隆并测序的gab基因簇序列,分别克隆了gabT和reg基因的启动子,并构建了相应的lacZ融合表达载体。通过β-半乳糖苷酶活性的定性和定量分析,表明gabT和reg基因的转录都是由自身的启动子调控的。以上研究结果表明gabT和gabD基因属于不同的转录单元,而gabD和reg基因组成了一个操纵子。
     利用敲除载体pMADDreg通过同源重组方法敲除reg基因后获得缺失突变株HD-73(Δreg)。发现突变菌株的生长、产芽胞和晶体蛋白的能力与出发菌株相比并无明显差异。但reg基因的缺失严重地影响了SSADH酶活性,并通过其回复突变株恢复了SSADH酶活性,说明reg基因对gabD基因的表达起正调控作用。同样地,发现reg基因对gabT基因的表达也起正调控作用。通过对reg基因的表达产物Reg蛋白的结构域分析,推测它可能是一种依赖于σ~(54)因子的激活蛋白,在蜡样芽胞杆菌群中比较保守,有关其调控作用需进一步的验证。
     总之,本研究为深入研究苏云金芽胞杆菌γ-氨基丁酸代谢旁路相关基因簇的结构和功能奠定了基础,也为进一步研究芽胞和伴胞晶体形成机制提供了线索。
Bacillus thuringiensis (Bt) has been widely used as bioinsecticidal microbe for its high toxicity, safety and the other merits. Comparing with other Bacillus species, Bt can produce large crystalline parasporal inclusions during sporulation. The study on Insecticidal Crystal Proteins (ICPs) is mainly focused on the expression and regulation of cry gene encoding ICPs. However, the research about the molecular mechanism of metabolism regulation involved in crystal protein formation is less. In this report, the structure and function of gene cluster involved inγ-aminobutyric acid (GABA) shunt in Bt were discussed.
     We characterized gabT and gabD genes cloned from B. thuringiensis strain G03 isolated in China. Both genes were expressed in E. coli BL21 (DE3) strain, and their products were purified by affinity chromatography respectively. By enzymatic assay, GabT protein showed the activity of GABA transaminase, while GabD protein exhibited SSADH activity. The amino acid sequences of two proteins, GABASE and SSADH, showed significant identity with those in the B. cereus group, but their similarity score between G03 and B. subtilis 168 was lower, only 58% and 51%, respectively.
     To determine the function of gabT and gabD of Bt HD-73 strain, the gabT, gabD gene deleted mutants were obtained by means of gene knock-out respectively, and their corresponding complementary strains were also constructed. The deletions of gabT and gabD gene could not affect the growth of mutant strains in rich culture medium, but the growth of gabT deletion mutant strain was repressed in basic medium (containing 0.2% GABA). The gabT deletion mutant strain could retard the formation of crystal protein Cry1 Ac, comparing with the host strain HD-73. The amounts of active spore both in gabT and gabD deletion mutant strains were all less than that in host strain HD-73.
     The structure of gab gene cluster in Bt HD-73 is distinctly different from that in E. coli and B. subtilis, but is common in B. cereus group by genomic sequence alignment. It means that the gene cluster involved in GABA shunt is very special in B. cereus group. The result of RT-PCR showed that gabT and gabD were not co-transcribed, in which gabT seperately was transcribed, while gabD and its upstream reg gene were co-transcribed. We had cloned the promoters of gabT and reg gene respectively, and constructed their corresponding lacZ fusion expression vectors. Assay ofβ-galactosidase activity showed that both gabT and reg gene was transcribed by its own promoter. These results indicated that gabT and gabD gene belonged to different transcription units, while gabD and reg gene formed an operon.
     The plasmid pMADDreg was constructed for knock-out of reg gene, and then introduced into HD-73 strain. Both the growth and the formation of crystal and spore were not affected in the relevant mutant strain HD-73 (Δreg) comparing with the host strain HD-73. However the activity of SSADH was almost lost in the reg deletion mutant strain, and restored in complementary strain HDHFreg. These results indicated that reg gene played a positive regulation role in gabD expression. The reg gene was also confirmed to positively regulate the gabT expression. Reg protein encoded by reg gene maybe a potentialσ~(54)-dependent transcriptional activator according to the conserved domian search in NCBI, and it is very conservative in B. cereus group by animo acid sequence alignment. Its function in transcriptional regulation need to be further confirmed.
     In a word, this study will be helpful to better understand the regulation mechanism and physiological function of GABA shunt, and to further study the mechanism of sporulation and crystal formation in B. thuringiensis.
引文
1.戴经元,钱江伟,邓英,孙明,喻子牛。协同凝集反应定量检测苏云金杆菌晶体蛋白。华中农业大学学报,1998,17(3):237-240。
    2.戴经元,轩海连,孙明。用血清学方法测定苏云金芽胞杆菌晶体蛋白含量。中国生物防治,1996,12(4):178~181。
    3.顾真荣,彭中允。苏云金芽胞杆菌发酵液中晶体蛋白定量测定方法的探讨。微生物学通报,1992,19(4):197-200。
    4.郭艾英,王硕。苏云金芽胞杆菌晶体蛋白的制备方法。食品与发酵工业,2005,31(8):8-10。
    5.黄键,李一勤。cDNA微阵列在功能基因组学研究中的应用。植物学通报,2003,20:453-461.
    6.黄留玉,王恒樑,史兆兴等。微生物的功能基因组学研究。微生物学报,2003,43:432-438。
    7.李林,刘子铎,孙明等。苏云金芽胞杆菌杀虫晶体蛋白基因的表达的调控(综述)。农业生物技术学报,2004,8:45-52。
    8.罗绍彬,阎建平,戴顺英,刘娥英,张用梅,胡名瑞。酶联免疫吸附测定(ELISA)检测苏云金杆菌伴胞晶体蛋白质研究。生物防治通报,1987,3(4):145-148。
    9.王文军,钱传范,申继忠,杨韶松。活性氧对苏云金芽胞杆菌伴胞晶体的损伤作用。微生物学报,1999,39(5):469-474。
    10.阮红,Bernhard Eikmanns。转座子挽救法对转座子突变菌株中插入何点的定位分析。微生物学报,2002,42(3):327-330。
    11.喻子牛主编。 苏云金杆菌。 北京:科学出版社。 1990,200-201。
    12.袁建平,郭晓奎。基因芯片在细菌基因组学和细胞微生物学研究中的应用。生命科学,2003,15(3):178-182。
    13.张成岗,贺福初。生物信息学方法与实践。北京:科学出版社,2002,6。
    14.郑大胜,闫建平,罗绍斌,袁志明。新型杀虫蛋白VIPs研究进展。 微生物学杂志,2002,22(3):35-37。
    15.左雅慧,丁之铨,张杰。苏云金芽胞杆菌培养条件及晶体蛋白提纯方法初探。植物保护,1999(4):32-34。
    16. Agaisse H., Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal proteins? J Bacterial., 1995, 177: 6027-6032.
    17. Alex M., Lisa K., Siv G. A. Microbial genome evolution: sources of variability. Current Opinion in Microbiology, 2002, 5:506-512.
    18. Anderson I., Sorokin A., Kapatral V., et al. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiology Letters, 2005,14:665-675.
    19. Antelmann H., Scharf C, Hecker M. Phosphate Starvation-Inducible Proteins of Bacillus subtilis: Proteomics and Transcriptional Analysis. J. Bacteriol., 2000, 182: 4478-4490.
    20. Arnaud M., Chastanet A., Barbouille M. D. New Vector for Efficient Allelic Replacement in Naturally Nontransformable, Low-GC-Content, Gram-Positive Bacteria. Applied and Environment, 2004,70:6887-6891.
    21. Aronson A.I.,Tyrell D.J.,Fitz-James P.C,Bulla L.A.Relationship of the synthesis of spore coat protein and parasporal crystal protein in Bacillus thuringiensis. J.Bacterial.,1982,151:399-410.
    22. Aronson J.N.,Borris D.P.,Doerner J.R,Akers E.γ-Aminobutyric Acid Pathway and Modified Tricarboxylic Acid Cycle Activity During Growth and Sporulation of Bacillus thuringiensis.Applied Microbiology,1975,30(3) :489-492.
    23. Arturo R.R.,Jorge E.Fingerprinting of Bacillus thuringiensis Type Strains and Isolates by Using Bacillus cereus Group-Specific Repetitive Extragenic Palindromic Sequence-Based PCR Analysis.Applied and Environmental Microbiology.2005,1346-1355.
    24. Atkinson M.R.,Fisher S.H.Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis.J Bacteriol.,1991,173(1) :23-27.
    25. Baca-DeLancey R.R.,South M.M.,Ding X.,et al.Escherichia coli genes regulated by cell-to-cell signaling.Proc.Natl.Acad.Sci.USA,1999,96:4610-4614.
    26. Barbara L.S.,Stephen R.,Alexandros K.K.,et al.The Escherichia coli gabDTPC Operon:Specific γ-Aminobutyrate Catabolism and Nonspecific Induction.J.Bacteriology,2002,184(24) :6976-6986.
    27. Barrios H., Valderrama B., Morett E.Compilation and analysis of sigma(54) -dependent promoter sequences.Nucleic Acids Res.1999,27(22) :4305-4313.
    28. Barry J.S.,Alan W.B.,Denis F.Extracellular γ-Aminobutyrate Mediates Communication between Plants and Other Organisms.Plant Physiology,2006,142:1350-1352.
    29. Barry J.S.,Alan W.B.,Michael D.M.Metabolism and functions of gamma-aminobutyric acid.Trends in Plant Science,1999,4(11) :446-452.
    30. Bartel P.L.,Roecklein J.A.,SenGupta D.,Fields S.A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet.,1996,12:72-77.
    31. Bartsch K.,Johnn-Marteville A.von,Schulz A.Molecular analysis of two genes of the Escherichia coli gab cluster:nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene(gabT)and characterization of the succinic semialdehyde dehydrogenase gene (gabD).J.Bacteriol.,1990,172:7035-7042.
    32. Baum J.A.,Malvar T.Regulation of insecticidal crystal protein production in Bacillus thuringiensis.Molecular Microbiology,1995,18(1) :1-12.
    33. Bechtel D.B.,Bulla L.A.Jr.Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis.J.Bacteriol.,1976,127(3) :1472-81.
    34. Belitsky B.R.Bacillus subtilis GabR,a Protein with DNA-binding and Aminotransferase Domains,is a PLP-dependent Transcriptional Regulator.J.Mol.Biol.2004,340:655-664.
    35. Belitsky B.R.,Sonenshein A.L.GabR,a member of a novel protein family,regulates utilization of g-aminobutyrate in Bacillus subtilis.Mol.Microbiol.,2002,45:569-583.
    36. Bergman N.H,Anderson E.C,Swenson E.E.,et al.Transcriptional Profiling of the Bacillus anthracis Life Cycle In Vitro and an Implied Model for Regulation of Spore Formation.J. Bacteriol.,2006,188(17) :6092-6100.
    37. Berlage J.E,Langendorf M.J.,Downs D.M.Complex Metabolic Phenotypes Caused by a Mutation in yjqF,Encoding a member of the Highly Conserved YER057C/YjgF family of Proteins.Journal of Bacteriology,1998,180:6519-6528.
    38. Bietlot H.P,Schernthaner J.P,Milne R.E,et al.Evidence that the CrylA crystal protein from Bacillus thuringiensis is associated with DNA.J.Biol.Chem.,1993,268:8240-8245.
    39. Bietlot H.P.,Vishnubhatla I.,Carey P.R.,et al.Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis.J Biochem.,1990,267(2) :309-15.
    163. Blaylock B,Jiang X,Rubio A,et al.Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization.Gene & Developmentg,2004,18:2916-2928.
    40. Bouché N.,Fait A.,Bouchez D.,et al.Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants.Proc Natl Acad Sci USA,2003,100 (11) :843-6848.
    41. Bouché N.,Fait A.,Zik M.,Fromm H.The root-specific glutamate decarboxylase(GAD1) is essential for sustaining GABA levels in Arabidopsis.Plant Mol.Biol.,2004,55:315-325.
    42. Bouché N.,Fromm H.GABA in plants:just a metabolite?Trends in Plant Science,2004,9(3) :110-115.
    43. Bouché N.,Lacombe B.,Fromm H.GABA signaling:a conserved and ubiquitous mechanism.Trends in Cell Biol.,2003,13:607-610.
    44. Bown A.W.,Shelp B.J.The metabolism and function of γ-aminobutyric acid.Plant Physiol.,1997,115:1-5.
    45. Brechtel C.E.,Hu L.,King S.C.Substrate specificity of the Escherichia coli 4-aminobutyrate carrier encoded by gabP.Uptake and counterflow of structurally diverse molecules.J Biol.Chem.,1996,271(2) :783-788.
    46. Brechtel C.E.,King S.C.4-Aminobutyrate(GABA)transporters from the amine-polyamine-choline superfamily:substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis.J Biochem.,1998,333(3) :565-571.
    47. Brown K.L.Transcriptional regulation of the Bacillus thuringiensis subsp.thompsoni crystal protein gene operon.J Bacteriol.,1993, 175(24) :7951-7957.
    48. Buck M.,Cannon W.Specific blinding of the transcription factor σ~(54) to promoter DNA.Nature,1992,358:422.
    49. Buck M.,Gallegos M.T.,Studholme D.J.,et al.The bacterial enhancer-dependent σ~N (σ~(54) )transcription factor.J Bacteriol,2000,182:4129-4136.
    50. Busch K.B.,Fromm H.Plant Succinic Semialdehyde Dehydrogenase.Cloning,Purification,Localization in Mitochondria,and Regulation by Adenine Nucleotides.Plant Physiol.,1999,121:589-598.
    51. Carmona M.,Magasanik B.Activation of transcription at σ~(54) -dependent promoters on linear templates requires intrinsic or induced bending of the DNA.J.Mol.Biol.,1996,261:348-356.
    52. Casadaban M.J.Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu.J Mol Biol.,1976,104:541-555.
    53. Chambliss K.L.,Gibson K.M.Succinic semialdehyde dehydrogenase from mammalian brain:subunit analysis using polyclonal antiserum.Int.J.Biochem.,1992,24:1493-1499.
    54. Chang L.,Grant R.,Arthur A.Regulation of the Packaging of Bacillus thuringiensis δ-Endotoxins into Inclusions.Applied and Environmental Microbiology,2001,67(11) :5032-5036.
    55. Charles J.F.,Barjac H.de.Electron microscope study of"Bacillus thuringiensis" var."Israelensis"sporulation and crystal biogenesis.Ann Microbiol(Paris),1982;133(3) :425-442.
    56. Chestukhina G.G.,Kostina L.I.,Mikhailova A.L.,et al.The Main features of Bacillus thuringiensis δ-endotoxin molecular structure.Arch.Microbiol.,1982,132:159-162.
    57. Chevrot R.,Rosen R.,Haudecoeur E.,et al.GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens.Proc.Natl.Acad.Sci.,2006,103:7460-7464.
    58. Choi S.K.,Saier M.H.Jr.Regulation of sigL Expression by the Catabolite Control Protein CcpA Involves a Roadblock Mechanism in Bacillus subtilis:Potential Connection between Carbon and Nitrogen Metabolism.J.Bacteriol.,2005,187(19) :6856-6861.
    59. Crickmore N.D.,Zeigler R.,Feitelson J.,et al.Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins.Microbiology and molecular biology reviews,1998,62:807-813.
    60. Datsenko K.A.,Wanner B.L.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.Proc Natl Acad Sci USA,2000,97:6640-6645.
    61. De'barbouille'M.,Martin-Verstraete I.,Klier A.,Rapaport G.The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ~(54) and phosphotransferase system-dependent regulators.Proc.Natl.Acad.Sci.USA,1991,88:2212-2216.
    62. Débarbouillé M.,Martin-Verstraete I.,Klier A.,Rapoport G.The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54-and phosphotransferase system-dependent regulators.Proc Natl Acad Sci USA.,1991,88(6) :2212-2216.
    63. Delecluse A.,Poncet S.,Klier A.,Rapoport G.Expression of cryⅣ A and cryⅣ B genes independently or in combination in a crystal-negative strain of Bacillus thuringiensis subsp.israelensis.Applied and Environmental Microbiology,1993,59:3922-3927.
    64. Dervyn E.,Noirot-Gros M.F.,Mervelet P.,et al.The bacterial condensin/cohesin-like protein complex acts in DNA repair and regulation of gene expression.Mol Microbiol.,2004,51:1629-1640.
    65. Donnelly M.I.,Cooper R.A.Succinic semialdehyde dehydrogenases of Escherichia coli:their role in the degradation of p-hydroxyphenylacetate and γ-aminobutyrate.Eur J Biochem.,1981,113:555-561.
    66. Donnelly M.I.,Cooper R.A.Two succinic semialdehyde dehydrogenases are induced when Escherichia coli K-12 Is grown on gamma-aminobutyrate.J.Bacteriol.,1981,145:1425-1427.
    67. Dover S.,Halpern Y.S.Novel type of catabolite repression in the pathway of GABA breakdown in E. coli K-12. FEBS Lett.,1973,37:207-208.
    68. Dover S.,Halpern Y.S.Control of the pathway of γ-aminobutyrate breakdown in Escherichia coli K-12. J.Bacteriol.,1972,110:165-170.
    69. Dover S.,Halpern Y.S.Genetic analysis of the γ-aminobutyrate utilization pathway in Escherichia coliK-12. J.Bacteriol.,1974,117:494-501.
    70. Dover S.,Halpern Y.S.Utilization of γ-aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants.J.Bacteriol.1972,109:835-843.
    71. Elisabetta M.,Alfredo T.,Luigi C,Giuseppe F.Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat.Journal of Experimental Botany,2006,57(14) :3755-3766.
    72. Enfors S.Q.Control of in vivo proteolysis in the production of recombination proteins.Trends BiotechnoI.,1992,10:310-315.
    73. Fait A.,Yellin A.,Fromm H.GABA shunt deficiencies and accumulation of reactive oxygen intermediates:insight from Arabidopsis mutants.FEBS Lett.,2005,579:415-420.
    74. Ferson A.E.,Wray L.V.Jr,Fisher S.H.Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability.Mol Microbiol.,1996,22(4) :693-701.
    75. Fisher S.H.Regulation of nitrogen metabolism in Bacillus subtilis:vive la diffe rence.Molecular Microbiology,1999,32:223-232.
    76. Fisher S.H.,Débarbouillé M.Nitrogen source utilization and its regulation.In Bacillus subtilis and its Closest Relatives:from Genes to Cells.Sonenshein,A.L.,Hoch,J.A.,and Losick,R.(eds).Washington,DC:American Society for Microbiology Press,2002,pp.181-191.
    77. Fitz-James P.C,Gillespie J.B.,Loevvy D.A surface net on parasporal inclusion of Bacillus thuringiensis.J.Invertebr.Pathol.,1984,43:47-58.
    78. Fleischmann R.D.,Adama M.D.,White O.,et al.Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.Science,1995,269(5223) :496.
    79. Foerster H.F.γ-Aminobutyric acid as a required germinant for mutant spores of Bacillus megaterium.J.Bacteriol.,1971,108:817-823.
    80. Fran(?)ois R.C,Ross E.M.,Van T.P.,et al.Role of DNA in the Activation of the CrylA Insecticidal Crystal Protein from Bacillus thuringiensis.J.Biol.Chem.,1998,273(15) :9292-9296.
    81. Gary K.S.Functional and comparative genomics of pathogenic bacteria.Current Opinion in Microbiology 2002,5:20-26.
    82. Ge B.,Bideshi D.,Moar W.J.,Federici B.A.Differential effects of helper proteins encoded by the cry2A and cry11A operons on the formation of Cry2A inclusions in Bacillus thuringiensis.FEMS Microbiol.Lett.,1998,165(1) :35-41.
    83. Ghribi D.,Zouari N.,Jaoua S.Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by u.v.and nitrous acid affecting metabolic pathways and/or delta-endotoxin synthesis.Journal of Applied Microbiology,2004,97(2) :338-346.
    84. Gominet M.,Slamti L.,Nathalie G,et al.Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulation and for virulence.Molecular Microbiology,2001,40:963-975.
    85. Gorm A.,Birgit A.,Doreen D.,et al.A gene duplication led to specialized γ-aminobutyrate and alanine aminotransferase in yeast.FEBS,2007,274:1804-1817.
    86. Greenbaum D.,Luscombe N.M.,Jansen R.,et al.Interrelating Different Types of Genomic Data,from Proteome to secretome:Oming in on Function.Genome Research,2001,11:1463-1468.
    87. Hacker J.,Blum-Oehler G.,Muhldorfer I.,et al.Pathogenicity islands of virulent bacteria:structure,function and microbial evolution.Mol Microbiol.,1997,23(6) :1089.
    88. Haldenwang G.W.The Sigma Factors of Bacillus subtilis.Microbiological Reviews,1995,59(1) :1-30.
    89. Hallet B.,Rezs(?)hazy R.,Delcour J.IS231A from Bacillus thuringiensis is functional in Escherichia coli:transposition and insertion specificity.J.Bacteriol.,1991,173(14) :4526-4529.
    90. Han C.S.,Xie G.,Challacombe J.F.,et al.Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis.J.Bacteriol.,2006,188(9) :3382-3390.
    91. Hanson R.S.,Blicharsk J.,Szulmajster J.Relationship between the tricarboxylic acid cycle enzymes and sporulation of B.subtilis.Biochem.Biophys.Res.Commun.,1964,17:1-7.
    92. Hayes F.Transposon-Based Strategies For Microbial Functional Genomics and Proteomics.Annu.Rev.Genet,2003,37:3-29.
    93. Helgason E.,Okstad O.A.,Caugant D.A.,et al.Bacillus anthracis,Bacillus cereus,and Bacillus thuringiensis-one species on the basis of genetic evidence.Appl.Environ.Microb.,2000,66:2627-2630.
    94. Helmann J.D.,Wu M.F.W.,Kobelp P.L.,et al.Global Transcriptional Response of Bacillus subtilis to Heat Shock.Journal of Bacteriology,2001,183:7318-7328.
    95. Heimann J.D.,Chamberlim M.J.Structure and function of bacterial sigma factor.Annu Rev Biochem.,1988,57:839.
    96. Herbert B.N.,Gould H.J.Biosynthesis of the crystal protein of Bacillus thuringiensis var.tolworthil Kinetics of formation of the polypeptide components of the crystal protein in vivo.Eur.J.Biochem.,1973,37:441-448.
    97. Hershberg R.,Bejerano G,Santos-Zavaleta A.,et al.PromEC:An up-dated database of Escherichia coli mRNA promoters withexperimentally identified transcriptional start sites.Nucleic Acids Research,2001,29(1) :277.
    98. Higgins D.,Thompson J.,Gibson T.,et al.CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice,Nucleic Acids Res.,1994,22:4673-4680.
    99. Hofte H.,Whiteley H.R.Insecticidal proteins of Bacillus thuringiensis.Microbiol.Rev.,1989,53:242-255.
    100. Hu L.A.,King S.C.Membrane topology of the Escherichia coli γ-aminobutyrate transporter:implications on the topography and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily.J.Biochem.,1998,336:69-76.
    101. Huisman O.,Kleckner N.A.New Generalizable Test for Detection of Mutation Affecting Tn10 Transposition.Genetics,1987,116:185-189.
    102. Humphery S.L,Cordwell S.J.,Blackstock W.P.Proteome research:complementarity and limitations with respect to the RNA and DNA worlds.Electrophoresis,1997,18(8) :1217-1242.
    103. Hyun-Woo P.,Baoxue G,Leah S.B.,Brian A.F.Optimization of Cry3A Yields in Bacillus thuringiensis by Use of Sporulation-Dependent Promoters in Combination with the STAB-SD mRNA Sequence.Appl.Environ.Microbiol.,1998,64(10) :3932-3938.
    104. Hyun-Woo P.,Bideshi D.K.,Brian A.F.Molecular Genetic Manipulation of Truncated Cry1C Protein Synthesis in Bacillus thuringiensis To Improve Stability and Yield.Appl.Environ.Microbiol.,2000,66(10) :4449-4455.
    105. IEBC(International Entomopathogenic Bacillus Center)Catalogue No.1. Paris,France:Unite'des bacte'ries entomopathoge'nes,Institut Pasteur,1998.
    106. Ivanova N.,Sorokin A.,Anderson I.,et al.Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.Nature.2003,423:87-91.
    107. Ivins B.E.,Welkos S.L.,Knudson G.B.,Leblanc D.J.Transposon Tn916 mutagenesis in Bacillus anthracis.Infect.Immun.,1988,56:176-81.
    108. Jakoby W.B.Methods in Enzymology,in:S.P.Colowick,N.O.Kaplan(Eds.),Academic Press,New York,1962,pp.771-774.
    109. Jakoby W.B.,Scott E.M.Aldehyde Oxidation Ⅲ.Succinic Semialdehyde Dehydrogenase,J.Biol.Chem.,1959,234:937-940.
    110. James A.B.Tn5401,a New Class Ⅱ Transposable Element from Bacillus thuringiensis.Journal of Bacteriology,1994,176:2835-2845.
    111. John M.W.The protein protocols handbook[M].Human Press.
    112. John N.A.,David P.B.,Jeffrey F.D.,Evelyn A.γ-Aminobutyric Acid Pathway and Modified Tricarboxylic Acid Cycle Activity During Growth and Sporulation of Bacillus thuringiensis.Applied Microbiology,1975,30(3) :489-492.
    113. Jungblut P.R.Proteome analysis of bacterial pathogens.Microbes & Infection,2001,3(10) :831-840.
    114. Jurgen P.,Bert B.,Philip P.,Ursula B.P.The Rhizobium leguminosarum bv.viciae VF39 γ-aminobutyrate(GABA)aminotransferase gene(gabT)is induced by GABA and highly expressed in bacteroids.Microbiology,2002,148,615-623.
    115. Kahane S.,Levitz R.,Halpern Y.S.Specificity and Regulation of γ-Aminobutyrate Transport in Escherichia coli.J Bacteriol.,1978,135(2) :295-299.
    116. Karata(?) A.Y.,(?)etin S.,(?)zcengiz G.The effects of insertional mutations in comQ,comP,srfA,spoH,spo0A and abrB-genes on bacilysin biosynthesis in Bacillus subtilis.Biochmia et BiophysicaActa,2003,1626:51-56.
    117. Karen K.H.,Lawrence O.T.,Richard T.O.,et al.Fluorescent Amplified Fragment Length Polymorphism Analysis of Bacillus anthracis,Bacillus cereus,and Bacillus thuringiensis Isolates.Applied and Environmental Microbiology,2004,70(2) :1068-1080.
    118. Karin B.B.,Hillel F.Plant Succinic Semialdehyde Dehydrogenase.Cloning,Purification,Localization in Mitochondria,and Regulation by Adenine Nucleotides.Plant Physiology,1999,121:589-597.
    119. Kinnersley A.M.,Turano F.J.γ-Aminobutyric acid(GABA)and plant responses to stress.Crit Rev Plant Sci.,2000,19:479-509.
    120. Kriegstein A.R.GABA puts the brake on stem cells.Nature Neuroscience,2005,8:1132-1133.
    121. Kumar S.,Tamura K.,Nei M.MEGA3:Integrated Software for Molecular Evolutionary Genetics Analysis and sequence alignment.Brief.in Bioinform.,2004,5:150-163.
    122. Kunst F.,Ogasawara N.,Moszer I.,et al.The complete genome sequence of the Gram-positive bacterium Bacillus subtilis.Nature,1997,390:249-256.
    123. Kuramohi M.,Deshpand M.,KarypisG.,et al.Promoter Prediction for Prokaryotes[R].USA:Minnesota University TR-01-030,2001.
    124. Kustu S.,Santero E.,Keener J.,et al.Expression of σ~(54) (ntrA)-dependent genes is probably united by a common mechanism.Microbiol.Rev.,1989,53:367-376.
    125. Lai E.M.,Phadke N.D.,Kachman M.T.,et al.Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis.J.Bacteriol.,2003,185:1443-54.
    126. Leventhal A.G.,Wang Y.,Pu M.,Zhou Y.,Ma Y.GABA and its agonists improved visual cortical function in senescent monkeys.Science,2003,300:812-815.
    127. Lewin B.GeneⅧ[M].Oxford University Press,2004:457-465.
    128. Li Z.S.,Donato F.D.,Piggot P.J.Compartmentalization of Gene Expression during Sporulation of Bacillus subtilis Is Compromised in Mutants Blocked at Stage Ⅲ of Sporulation.Journal of Bacteriology,2004,186:2221-2223.
    129. Lin D.C.,Levin P.A.,Grossman A.D.Bipolar localization of a chromosome partition protein in Bacillus subtilis.Proc Natl Acad Sci U S A.,1997,94(9) :4721-4726.
    130. Lin J.,Xu J.,Luo J.,et al.Prediction of prokaryotic promoters based on prediction of transcriptional units.ACTA Biochimica et Biophysica SINICA,2003,35(4) :317-324.
    131. Liu G,Tian Y.Q.,Yang H.H.,et al.A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces Ansochromogenes that also influences colony development.Molecular Microbiology,2005,55(6) :1855-1866.
    132. Liu W.S.,Peterson P.E.,Carter R.J.,et al.Crystal Structures of Unbound and Aminooxyacetate-Bound Escherichia coli γ-Aminobutyrate Aminotransferase.Biochemistry,2004,43:10896-10905.
    133. Lloyd K.G.,Morselli P.L.,Bartholini G.GABA and affective disorders.Med.Biol.,1987,65:159-165.
    134. Locy R.D.,Wu S-J.,Bisnette J.,et al.The regulation of GABA accumulation by heat stress induced increases in cytoplasmic calcium.In:NATO ARW Series:Plant Tolerance to Abiotoc Stresses in Agriculture:Role of Genetic Engineering.JH Cherry,ed.2000.
    135. Ma(?)der U.,Antelmann H.,Buder T,et al.Bacillus subtilis functional genomics:genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics.Mol Genet Genomics,2002,268:455-467.
    136. Magasanik B.Regulation of nitrogen utilization.In:Neidhardts F C,eds.Escherichia coli and Salmonella:Cellular and Molecular Biology.Washington:ASM Press,1996. 86.
    137. Makita Y.,Nakao M.,Ogasawara N.,et al.DBTBS:database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics.Nucleic Acids Research,2004,32(Database issue):D75-D77.
    138. Marta P.,James A.H.,John F.B.Functional Genomics of Gram-Positive Microorganisms.Journal of Bacteriology,2004,186(4) :903-909.
    139. Meenakshi K.,Jayaraman K.On the formation of crystal proteins during sporulation in Bacillus thuringiensis var.thuringiensis.Arch Microbiol.,1979,120(1) :9-14.
    140. Mehta P.K.,Hale T.I.,Christen P.Aminotransferases:demonstration of homology and division into evolutionary subgroups.Eur.J.Biochem.,1993,214:549-561.
    141. Mehta P.K.,Hale T.I.,Christen P.Evolutionary relationships among aminotransferases:Tyrosine aminotransferase,histidinol-phosphate aminotransferase,and aspartate aminotransferase are homologous proteins.Eur.J.Biochem.,1989,186:249-253.
    142. Merrick M.In a class of its own:the RNA polymerase sigma factor σ ~(54) (σ~N).Mol.Microbiol.,1993,10:903-909.
    143. Metzer E.,Halpern Y.S.Mutations affecting the regulation of γ-aminobutyrate utilization in Escherichia coli K-12. Curr.Microbiol.,1980,4:51-55.
    144. Metzer E.,Halpern Y.S.In vivo cloning and characterization of the gabCTDP gene cluster of Escherichia coli K-12. J.Bacteriol.,1990,172:3250-3256.
    145. Metzer E.,Levitz R.,Halpern Y.S.Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of γ-aminobutyrate.J.Bacteriol.,1979,137:1111-1118.
    146. Metzner M.,Germer J.,Hengge R.Multiple stress signal integration in the regulation of the complex σS-dependent csiD-ygaF-gabDTP operon in Escherichia coli.Molecular Microbiology,2004,51(3) ,799-811.
    147. Mikkola A.R.,Carblerg G.A.,Vaara T,Gylenberg H.G.Comparison of inclusion in different Bacillus thuringiensis strains:An electron microscope study.FEMS.Microbiol.Lett.1982,13:401-408.
    148. Miller J.H.Experiments in molecular genetics,3rd ed.Cold Spring Harbor Laboratory Press.Cold Spring Harbor,N.Y.1977.
    149. Minnich S.A.,Aronson A.I.Regulation of protoxin synthesis in Bacillus thuringiensis.J.Bacteriol.,1984,158:447-454.
    150. Mohammad I.A.,Ruey-Hua L.,Shu-Chen G.C.A novel senescence-associated gene encoding γ-aminobutyric acid(GABA):pyruvate transaminase is upregulated during rice leaf senescence.Physiologia Plantarum,2005,123:1-8.
    151. Moreno M.S.,Schneider B.L.,Maile R.R.,et al.Catabolite repression mediated by the CcpA protein in Bacillus subtilis:novel modes of regulation revealed by whole-genome analyses.Mol Microbiol.,2001,39:1366-1381.
    152. Moses L.J.,Katy M.C,Darren D.S.,Philip N.R.Activation of the gab Operon in an RpoS-Dependent Manner by Mutations That Truncate the Inner Core of Lipopolysaccharide in Escherichia coli.J.Bacteriol.,2004,186(24) :8542-8546.
    153. Nickerson K.W.,DePinto J.,Bulla L.A.Jr.Sporulation of Bacillus thuringiensis without concurrent derepression of the tricarboxylic acid cycle.J.Bacteriol.1974,117:321-323.
    154. Niegemann E.,Schulz A.,Bartsch K.Molecular organization of the Escherichia coli gab cluster:nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene.Arch Microbiol.,1993,160(6) :454-460.
    155. Nishimura M.S,Nishiitsutsuji-Uwo J.Sporeless mutants of Bacillus thuringiensis.Ⅲ.The process of crystal formation.Tissue Cell,1980,12(2) :233-41.
    156. Noirot P.,Noirot-Gros M.F.Protein interaction networks in bacteria.Current Opinion in Microbiology,2004,7:505-512.
    157. Oosthuizen M.C,Steyn B.,Theron J.,et al.Proteomic Analysis Reveals Differential Protein Expression by Bacillus cereus during Biofilm Formation.Appl Environ Microbiol.,2002,68(6) :2770-2780.
    158. Palanivelu R.,Brass L.,Edlund A.F,Preuss D.Pollen Tube Growth and Guidance Is Regulated by POP2,an Arabidopsis Gene that Controls GABA Levels.Cell,2003,114,(1) :47-59.
    159. Park Ki-Bum,Oh Suk-Heung.Enhancement of γ-aminobutyric acid production in Chungkukjang by applying a Bacillus subtilis strain expressing glutamate decarboxylase from Lactobacillus brevis.Biotechnology Letters,2006,28:1459-1463.
    160. Perreten V.,Fawer L.V.,Slickers P.,et al.Microarray-Based Detection of 90 Antibiotic Resistance Genes of Gram-Positive Bacteria.Journal of Clinical Microbiology,2005,43:2291-2302.
    161. Pestova E.V.,Morrison A.Isolation and Characterization of Three Streptococcus pneumoniae Transformation-Specific Loci by Use of a lacZ Reporter Insertion Vector.J.Bacteriology,1998,180:2701-2710.
    162. Petit M.A.,Bruand C,Jannier L.,et al.Tn10-Derived Transposon Active in Bacillus subtilis.J.Bacteriol.,1990,172:6736-6740.
    163. Ping C,Lan W.,Yu Z.,Arthur A.Subspecies-Dependent Regulation of Bacillus thuringiensis Protoxin Genes.Applied and Environmental Microbiology,1999,65(5) :1849-1853.
    164. Price C.W.,Fawcett P.,Ceremonie H.,Su N.,et al.Genome-wide analysis of the general stress response in Bacillus subtilis.Mol.Microbiol,2001,41:757-774.
    165. Radnedge L.,Agron P.G,Hill K.K.,et al.Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis.Appl.Environ.Microb.2003,69:2744-2764.
    166. Rain J.C,Selig L.,De Reuse H.,et al.The protein-protein interaction map of Helicobacter pylori.Nature,2001,409:211-215.
    167. Ramos F.,el Guezzar M.,Grenson M.,Wiame J.M.Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae.Eur J Biochem.,1985,149:401-404.
    168. Rang C,Vachon V.,Coux F.,et al.Exchange of domain I from Bacillus thuringiensis Cry1 Toxins Influences protoxin stability and crystal formation.Curr Microbiol.,2001,43(1) :1-6.
    169. Read T.D.,Peterson S.N.,Tourasse N.,et al.The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria.Letters to Nature,2003,423:81-86.
    170. Reitzer L.J.Sources of nitrogen and their utilization In Escherichia coli and Salmonella typhimurium:Cellular and Molecular Biology.Neidhardt,F.C,Curtiss,R.I.,Ingraham,J.L.,et al.(eds).Washington,DC:American Society for Microbiology Press,1996,pp.380-390.
    171. Reitzer L.,Schneider B.L.Metabolic Context and Possible Physiological Themes of σ~(54) -Dependent Genes in Escherichia coli.Microbiol Mol Biol Rev.,2001,65(3) :422-444.
    172. Rigali S.,Derouaux A.,Giannotta F.,Dusart J.Subdivision of the helix-turn-helix GntR family of
    bacterial regulators in the FadR,HutC,MocR,and YtrA subfamilies.J.Biol.Chem.,2002,277:12507-12515.
    173. Rondon M.L.,Raffel S.L.,Goodman R.M.,et al.Toward functional genomics in bacteria:Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus.Proc Natl.Acad.Sci.USA.1999,96:6451-6455.
    174. Sakharova Z.V.,Ignatenko I.N.,Khovrychev M.P.,et al.Sporulation and crystal formation in Bacillus thuringiensis during growth limitation via nutrient sources.Mikrobiologiia,1984;53(2) :279-84.
    175. Salgado H.,Gama-Castro S.,Martnez-Antonio A.RegulonDB(version 4. 0) :transcriptional regulation,operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Research,2004,32(Database issue):D303-D306.
    176. Sambrook J.,Fritsch E.F.,Maniatis T.Molecular cloning:a laboratory manual,2nd ed.Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.1989.
    177. Sanchez M.,Alvarez M.A.,Balana R.,Garrido-Pertierra A.Properties and functions of two succinic-semialdehyde dehydrogenases from Pseudomonas putida.Biochim Biophys Acta,1988,953:249-257.
    178. Satya N.V.,Nair P.M.Metabolism,enzymology and possible roles of γ-aminobutyrate in higher plants.Phytochemistry,1990,29:369-375.
    179. Schneider B.L,Ruback S.,Kiupakis A.K.,et al.The Escherichia coli gabDTPC Operon:Specific γ-Aminobutyrate Catabolism and Nonspecific Induction.J.Bacteriol,2002,184(24) :6976-6986.
    180. Schnepf E.,Crickmore N.,Van Rie J.,et al.Bacillus thuringiensis and Its Pesticidal Crystal Proteins.Microbiology And Molecular Biology Reviews,1998,62(3) :775-806.
    181. Scott E.M.,Jakoby W.B.Soluble γ-aminobutyric-glutamic transaminase from Pseudomonas fluorescens.J.Biol.Chem.1959,234(4) :932-936.
    182. Serio A.W.,Pechter K.B.,Sonenshein A.L.Bacillus subtilis Aconitase Is Required for Efficient Late-Sporulation Gene Expression.J.Bacteriol.,2006,188(17) :6396-6405.
    183. Shaibe E.,Metzer E.,Halpern Y.S.Metabolic pathway for the utilization of L-arginine,L-ornithine,agmatine,and putrescine as nitrogen sources in Escherichia coli K-12. J.Bacteriol.1985,163:933-937.
    184. Shao Z.Z.,Liu Z.D.,Yu Z.N.Effects of the 20-Kilodalton Helper Protein on Cry1Ac Production and Spore Formation in Bacillus thuringiensis.Appl.Environ.Microbiol.,2001,67(12) :5362-5369.
    185. Sharp M.D.,Pogliano K.An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation.Proc Natl Acad Sci U S A.,1999,96(25) :14553-14558.
    186. Shelp B.J.,Bown A.W.,MacLean M.D.Metabolism and function of γ-aminobutyric acid.Trends in Plant Sci.,1999,4:446-452.
    187. Silhavy T.J.,Berman M.L.,Enquist L.W.Experiments with Gene Fusions.Cold Spring Harbor,New York:Cold Spring Harbor Laboratory.1984.
    188. Singer T.P.,Oestreicher G,Hogue P.,et al.Regulation of succinate dehydrogenase in higher plants.Plant Physiol.,1973,52:616-621.
    189. Smirnoff W.A.The formation of crystals in Bacillus thuringiensis var thuringiensis Berliner before sporulation at low temperature incubation.J.Insect Pathol.,1963,5:242-250.
    190. Smith D.B.,Johnson K.S.Single-step purification of peptides expressed in E. coli as a fusion with glutathione S-transferase.Gene,1988,67:31-40.
    191. Snedden W.A.,Fromm H.Regulation of the γ-aminobutyrate-synthesizing enzyme,glutamate decarboxylase,by calcium/calmodulin:a mechanism for rapid activation in response to stress.In:Plant Responses to Environmental Stresses:From Phytohormones to Genome Reorganization(H.R.Lernered.).Marcel Dekker,Inc.,New York,1999,pp.549-574.
    192. Srinivas G,Vennison S.J.,Sudha S.N.,et al.Unique regulation of crystal protein production in Bacillus thuringiensis subsp.yunnanensis is mediated by the cry protein-encoding 103-megadalton plasmid.Appl.Environ.Microbiol.,1997,63(7) :2792-2797.
    193. Stein L.Genome annotation:from sequence to biology.Nat Rev Genet.,2001,2(7) :493.
    194. Steinmetz M.,Richter R.Easy Cloning of Mini-Tn10 Insertions from the Bacillus subtilis Chromosome.Journal of Bacteriology,1994,176:1761-1763.
    195. Steven C.K.,Brown-Istvan L.Use of the transport specificity ratio and cysteine-scanning mutagenesis to detect multiple substrate specificity determinants in the consensus amphipathic region of the Escherichia coli GABA(γ-aminobutyric acid)transporter encoded by gabP.J. Biochem.,2003,376, 633-644.
    196. Studholme D.J.,Dixon R.Domain Architectures of σ~(54) -Dependent Transcriptional Activators.J Bacteriol.,2003,185(6) :1757-1767.
    197. Sullivan M.A.,Yasbin R.E.,Young F.E.New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments.Gene,1984,29:21-26.
    198. Tam C,Glass E.M.,Anderson D.M.,Missiakas D.Transposon mutagenesis of Bacillus anthracis strain Sterne using Bursa aurealis.Plasmid,2006,56:74-7.
    199. Tian J.,Bryk R.,Itoh M.,et al.Variant tricarboxylic acid cycle in Mycobacterium tuberculosis:Identification of α-ketoglutarate decarboxylase,Proc.Natl.Acad.Sci.2005,102:10670-10675.
    200. Tosato V.,Bruschi C.V.Knowledge of the Bacillus subtilis genome:impacts on fundamental science and biotechnology.Appl Microbiol Biotechnol.,2004,64:1-6.
    201. Varju P.,Katarova Z.,Madarasz E.,Szabo G.GABA signaling during development:new data and old questions.Cell Tissue Res.,2001,305:239-246
    202. Wallace W.,Secor J.,Schrader L.Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature,darkness,or mechanical manipulation,Plant Physiol.,1984,75,170-175.
    203. Wang C,Mao R.,Van De C.M.,et al.Glucagon-like peptide-1 stimulates GABA formation by pancreatic-cells at the level of glutamate decarboxylase.Am J Physiol Endocrinol Metab,2007,292:1201-1206.
    204. Wang C.,Zhang H.B.,Wang L.H.,Zhang L.H.Succinic semialdehyde couples stress respone to quorum-sensing signal decay in Agrobacterium tumefacie.Mol.Microbiol.,2006,62:45-56.
    205. Ward E.S.,Ellar D.J.Assignment of the δ-endotoxin gene of Bacillus thuringiensis var israelensis to a specific plasmid by curing analysis.FEBS,1983,158:45-49.
    206. Wasinger V.C.,Cordwell S.J.,Cerpa-Poljak A.,et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium.Electrophoresis,1995,16(7) :1090-1094.
    207. Wiegeshoff F.,Beckering C.L.,Debarbouille M.,Marahiel M.A.Sigma L Is Important for Cold Shock Adaptation of Bacillus subtilis.J Bacteriol.,2006,188(8) :3130-3133.
    208. Woese C.R.,Morowita H.J.,Hutchinson C.A.Analysis of action on L-alanine analogues in spore germination.J.Bacteriol.,1958,76:578-588.
    209. Wong H.C.,Chang S.Identification of a positive retroregulator that stabilizes mRNAs in bacteria.Proc.Natl.Acad.Sci.USA,1986,83:3233-3237.
    210. Wu D.,Federici B.A.A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis.J.Bacteriol.,1993,175(16) :5276-5280.
    211. Wu J.,Benson A.K.,Newton A.Global regulation of a sigma 54-dependent flageilar gene family in Caulobacter crescentus by the transcriptional activator F1bD.J.Bacteriol.,1995,177:3241.
    212. Yamane K.,Kumano M.,Kurita K.The 25 degrees-36 degrees region of the Bacillus subtilis chromosome:determination of the sequence of a 146 kb segment and identification of 113 genes.Microbiology,1996,142:3047-3056.
    213. Yasemin I.,Bülent I.,Gülay (?).Regulation of crystal protein biosynthesis by Bacillus thuringiensis:I.Effects of mineral elements and pH.Research in Microbiology,2002,153(9) :599-604.
    214. Yasemin I.,Bülent Ⅰ.,Gülay (?).Regulation of crystal protein biosynthesis by Bacillus thuringiensis:Ⅱ.Effects of carbon and nitrogen sources.Research in Microbiology,2002,153(9) :605-609.
    215. Yonaha K.,Suzuki K.,Toyama S.4-Aminobutyrate:2-oxoglutarate aminotransferase of Streptomyces griseus:purification and properties.Eur.J.Biochem.,1985,146:101-106.
    216. Yonaha K.,Toyama S.γ-Aminobutyrate:a-ketoglutarate aminotransferase from Pseudomonas sp.F-126:purification,crystallization,and enzymologic properties.Arch.Biochem.Biophys.,1980,200:156-164.
    217. Yoshida K.I.,Yamaguchi H.,Kinehara M.,et al.Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box.Molecular Microbiology,2003,49:157-165.
    218. Yousten A.A.,Hanson R.S.Sporulation of tricarboxylic acid cycle mutants of Bacillus subtilis.J.Bacteriol.,1972,109:886-894.
    219. Yousten A.A.,Rogoff M.H.Metabolism of Bacillus thuringiensis in relation to spore and crystal formation.J.Bacteriol.1969,100:1229-1236.
    220. Zaboura M.,Halpem Y.S.Regulation of γ-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes.J.Bacteriol.,1978,133:447-451.
    221. Zhulin I.B.,Taylor B.L.,Dixon R.PAS domain S-boxes in Archaea,Bacteria and sensors for oxygen and redox.Trends Biochem.Sci.,1997,22:331-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700