铬渣堆场重污染土壤微生物修复及Cr(Ⅵ)污染阻隔研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个铬盐生产大国,排放的铬渣对堆存场地和周围环境造成严重的污染。目前传统的土壤铬污染修复方法均存在处理成本高、易引起二次污染等原因,不能彻底解决铬渣污染土壤的污染问题。近年来,生物法修复法因其投资小、运行费用低、无二次污染等优点,引起广泛关注并获得了较快的发展。
     论文在课题组前期从铬渣堆场分离筛选出一株高效六价铬还原菌(Pannonibacter phragmitetus BB)的基础上,提出了铬渣污染土壤“破碎-筑堆-喷淋修复-回收铬”的新工艺;利用柱浸实验优化铬渣污染土壤微生物修复的各工艺参数;在此基础上进行了铬渣污染土壤修复的半工业化试验。并通过吸附实验初步确定铬污染阻隔技术,试图优化工艺用于铬渣污染土壤的原位修复。通过以上研究,获得如下研究成果:
     1)柱浸试验研究结果表明:营养物的加入,能刺激土著微生物修复土壤中水溶性Cr(Ⅵ)、交换态Cr(Ⅵ)和碳酸盐结合态Cr(Ⅵ)。粒径、喷淋强度、初始Cr(Ⅵ)浓度、修复工艺制度是土著微生物修复铬渣污染土壤过程中的重要工艺影响参数。当粒径为O-2cm,喷淋强度为29.6-59.2 ml/min时,能取得较好的细菌修复效果;土著微生物修复铬渣污染土壤所需的时间随初始Cr(Ⅵ)浓度的提高而增加;选择多次喷淋循环的修复效果要优于一次喷淋循环。柱浸实验的结果表明土著微生物修复铬渣污染土壤的可行性,并为中试试验提供了技术参数。2)中试试验优化了铬渣污染土壤堆的现场工艺条件,并运行了25吨/批规模的铬渣污染土壤细菌修复并选择性回收金属铬的示范工程,经过7-10天的微生物修复,土壤中Cr(Ⅵ)浸出毒性浓度由53.8 mg/L降低至0.41 mg/L (HJ/T299-2007),达到《铬渣污染治理环境技术规范》(HJ/T301-2007)中用作路基材料和混凝土骨料的标准限值。中试实验结果表明铬渣污染土壤微生物修复工业化的可行性,为铬渣污染土壤的修复开辟了新的途径。
     3)糖渣对Cr(Ⅲ)和Cr(Ⅵ)的吸附以及载Fe(Ⅱ)生物炭对Cr(Ⅵ)的吸附等温线与Langmuir等温吸附模型相拟合,而生物炭对Cr(Ⅲ)的吸附与Freundlich等温吸附模型相拟合。生物炭对Cr(Ⅲ)的最大吸附容量为21.57 mg/L,远高于糖渣吸附Cr(Ⅲ)的最大吸附容量(3.38mg/L);载Fe(Ⅱ)生物炭对Cr(Ⅵ)的最大吸附量为22.92mg/L,远高于糖渣吸附Cr(Ⅵ)的最大吸附容量(0.57mg/L)。以载Fe(Ⅱ)生物炭作为阻隔材料用于铬渣污染土壤修复生化回灌修复,阻隔材料对铬的吸附容量最大可达到860mg/g。
China is one of major country to produce chromate. The discharge of chromium(Cr)-containing salg resulted in serious pollution for the deposition site and ambient environment. Nowadays, the traditional treatment methods for the remediating the Cr-contaminated soils all have the disadvantages, such as high cost and secondary pollution. The biological remediation was paid more attentions in recent years due to the low investment and low function fees.
     In our previous researches, one indigenous microbial strain with high Cr(Ⅵ) reduction efficiency was isolated and screened from the soils contaminated by chromium containing slag. Based on the previous research, a novel technique "crashing-heaping-leaching-chromium recovery" for the remediation of soils contaminated by chromium-containing slag was proposed. The optimal parameters of technique was obtained using column leaching experiment. A pilot scale experiment was further carried out. Moreover, the obstrauct technology was preminary studied using absorption experiment and attended to further optimize technique for in-situ microbial remediation of chromium-contaminated soils. The results were obtained as follows:
     1) The result of the column experiment showed the addition of culture medium could stimulate the remediation of water soluble Cr(Ⅵ), exchangeable Cr(Ⅵ) and carbonate-bonded Cr(Ⅵ) in soils contaminated by chromium-containing slag. Particle size, spray intensity, initial Cr(Ⅵ) concentration and process systems were crucial parameters. The preferable result was obtained when the partical size was less than 20mm and the spray intensity was in the range of 29.6-59.2 ml/min. With the increasing of initial Cr(Ⅵ) concentration, the time for Cr(Ⅵ) remediation in soils increased. The cyclic spray revealed better efficiency of Cr(Ⅵ) remediation than a single spray cycle. The column experiment verified that it is feasible to remedate chromium contaminated soils using indigenous microorgainism. The result can provide the technique parameters for pilot experiment.
     2) A pilot experiment was further explored to optimize condition and a demonstration project of 25 tons/batch was run. The result revealed that the soils contaminated by chromium containing slag is completely remediated after 7-10 days run. The Cr(Ⅵ) leacing concentration declined from 53.8 mg/L of the initial concentration to 0.41 mg/L (HJ/T299-2007) at 10 days, which was lower than the Cr(Ⅵ) limited value of chromium-containing slag used as roadbed material and concrete according to the Environmental Protection Technical Specifications for Pollution Treatment of the Chromium Residue ((HJ/T301-2007). It was verified that the microbial remediation of the soils contaminated by chromium-containing slag was feasible in pilot experiment. The result provides an innovative way for the remediation of chromium contaminated soils.
     3) Langmuir adsorption isotherm can well describe the adsorption of Cr(Ⅵ) and Cr(Ⅲ) by sugarcane pulp residue and Cr(Ⅵ) by Fe(Ⅱ)-loaded biochar, while the adsorption of Cr(Ⅲ) by biochar fitted to Freundlich adsorption isotherm. The maximum adsorption capacity of Cr(Ⅲ) by biochar was 21.57mg/L, which was much higher than that of sugarcane pulp residue (3.38 mg/L); The maximum adsorption capacity of Cr(Ⅵ) by Fe(Ⅱ)-loaded biochar was 22.92mg/L, which was much higher than that of sugarcane pulp residue (0.57 mg/L). Therefore, Fe(Ⅱ)-loaded biochar was used as obstacle material of pollutants and applied to the micrpbial remediation technique of chromium contaminated soils. The revealed that the maximum adsorption capacity of Cr(Ⅵ) by Fe(Ⅱ)-loaded biochar can reach up to 860mg/g.
引文
[1]骆永明.重金属污染土壤的植物修复[J].土壤,1999,23(5):161-167
    [2]考庆君,吴坤.铬的生物学作用及毒性研究进展[J].中国公共卫生,2004,20(11):1398-1400
    [3]钱小青,葛丽英,赵由才.冶金过程废水处理和应用[M].北京:冶金工业出版社,2008
    [4]张平民.工科大学化学(下册)第1版[M]..湖南:湖南教育出版社,2002
    [5]中国无机盐工业协会铬盐分会.铬盐行业“十一五”规划(讨论稿)[J].铬盐工业,2005,(2):l-13
    [6]Op Brien P, Kortenkamp A. Chemical models important in understanding the ways in which chromate can damage DNA[J]. Environ Health Perspect,1994, 102 (Sppl3):3
    [7]Legrand L, EI Figuigui A, Mercier F, et al.. Reduction of aqueous chromate by Fe(Ⅱ)/Fe(Ⅲ) carbonate green rust:kinetic and mechanistic studies[J]. Environmental Science & Technology,2004,38 (17):4587-4595
    [8]周保学,周定.铬与人体健康[J].化学世界,2000(3):112
    [9]Gibb HJ, Lees PSJ, Pinsky PF. Lung cancer among workers in chromium chemical production[J]. American Journal of Industrial Medicine,2000,38:115-126
    [10]陈巧珠.微量元素铬与人体健康[J].宁德师专学报:自然科学版,2003,1(3):244-246
    [11]胡望均.常见有毒化学品环境事故应急处理技术与监测方法[M].北京:中国环境科学出版社,1993,75-77
    [12]董春莲,吕林萍.太原电镀厂铬鼻病10年动态观察[J].卫生与职业病,1994(4):49
    [13]聂永丰.三废处理工程技术手册[M].北京:化学工业出版社,2000.521-528
    [14]汤克勇.铬的污染源及其危害[J].皮革科学与工程,1997,7(1):33-48
    [15]黎宏道.环境污染与卫生检测[M].北京:人民卫生出版社,1981
    [16]张宝莉.农业环境保护[M].北京:化学工业出版社,2002
    [17]钟维科,樊摇波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272
    [18]吴迪梅.河北省污水灌溉对农业环境的影响及经济损失评估[D].北京:中国 农业大学,2003
    [19]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-371
    [20]弓成,王海燕,黄丽岩.北京市土壤重金属形态分析[J].城市环境与城市生态,2006,19(5):38-40
    [21]Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7): 844-850
    [22]李字庆,陈玲,仇雁翎.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2):154-155
    [23]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[J].海洋湖沼通报,2002,3(3):25-35
    [24]Singh AK, Hasnain SI, Banerjee DK. Grain size and geochemical parti—tioning of heavy metals in sediments of the Damodar River— Atributary of the lower Ganga[J], India. Environmental Geology,1999,39(1):91-98
    [25]韩春梅,王淋山,巩宗强.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502
    [26]李桂菊.铬在植物及土壤中的迁移与转化[J].中国皮革,2004,33(5):30-34
    [27]李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律[J].工业安全与环保,2005,31(3):31-33
    [28]周加祥,刘铮.铬污染土壤修复技术研究展望[J].环境污染治理技术与设备.2000,1(4):569-573
    [29]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76
    [30]Meegoda JN, Ezeldin AS, Fang HY, et al. Waste immobilization technologies[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2002,7(1):46-58
    [31]Polettini A, Pomi R, Valente M. Remediation of a Heavy Metal-Contaminated Soil by Means of Agglomeration[J]. Journal of Environmental Science and Health, Part A,2004,39(4):999-1010
    [32]Khan FA, Puts RW. In Situ Abiotic Detoxification and Immobilization of Hexavalent Chromium[J]. Ground Water Monitoring & Remediation,2003, 23(1):77-84
    [33]Shariatmadari N, Weng CH, Daryaee H. Enhancement of Hexavalent Chromium [Cr(Ⅵ)] Remediation from Clayey Soils by Electrokinetics Coupled with a Nano~Sized Zero~Valent iron Barrier[J]. Environmental Engineering Science. 2009,26(6),1071-1079
    [34]Ridley M. Summary conclusions for the pilot in-situ chromium reduction test at riverbank army ammunitions plant[J]. Technical Report.2007,25,1173-1187
    [35]张瑞华,孙红文.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤[J].环境科学.2007,28(5),1131-1136.
    [36]孙俊,戴儒南,兰叶青.Al3+对酒石酸还原Cr(Ⅵ)的催化作用[J].环境科学学报.2007,27(8),1331-1335
    [37]田晓芳,高显超,国静,兰叶青.过渡金属离子Mn(Ⅱ)和Fe(Ⅲ)对草酸还原Cr(Ⅵ)的催化作用[J].南京农业大学学报,2009,32(40):160-164
    [38]Li C, Lan YQ, Deng BL. Catalysis of manganese (Ⅱ) on chromium (Ⅵ) reduction by citrate [J]. Pedosphere,2007,17(3):318-323
    [39]Higgins T E. In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue [J]. Air &Waste Manage. Assoc.,1998,48, 1100-1106
    [40]Thmos E, Higgins AR, Halloran, et al. Traditional and Innovative Treatment Methods for Cr(Ⅵ) in soil. Journal of Soil Contamination,1998,6(6),767-797
    [41]Davis A, Olsen RL. The geochemistry of chromium migration and remediation in the subsurface [J]. Ground Water,1995,33 (5):759-768.
    [42]刘长河.铬渣堆场地下混凝土防渗墙技术及应用[J].无机盐工业,2005,37(3):45-47
    [43]Pichtel J, Pichtel TM. Comparison of solvents for ex situ adsorption of chromium and lead from contaminated soil [J]. Environmental engineering science,1997, 14(2):97-104
    [44]Bhattachary P, Mukherjee AM, Jacks G, et al. Metal contamination at a wood preservation site:characterization and experiment studies on remediation[J]. Science of The Total Environment.2002,6(1-3),165-180
    [45]Pichtel J, Pichtel TM. Comparison of solvents for ex situ adsorption of chromium and lead from contaminated soil[J]. Environmental engineering science,1997, 14(2):97-104
    [46]McKinley WS, Pratt RC, Mcphilips LC. Cleaning up chromium[J]. Civil Engineering.1992,62 (3):69-71
    [47]Li Z, Yu JW, Neretnieks I. A new approach to electrokinetic remediation of soils polluted by heavy metals[J]. Journal of Contaminant Hydrology,1996,22(3-4): 241-253
    [48]Reddy KR, Chinthamreddy S. Effects of initial form of chromium on electrokinetic remediation in clays[J]. Advances in environmental Research, 2003,7(2):353-365
    [49]Reddy KR, Xu CY, Chinthamreddy S. Assessment of electrokinetic adsorption of heavy metals from soils by sequential extraction analysis[J]. Journal of Hazardous Materials,2001,84(2):279-296
    [50]Sanjay K, Arora A, Shekhar R, et al. Electroremediation of Cr(VI) contaminated soils:kinetics and energy efficiency[J]. Colloids and Surfaces:Physicochem. Eng. Aspects,2003,22 (1):253-259
    [51]Gent DB, Bricka R M, Alshawabkeh A N, et al. Bench and field-scale evaluation of chromium and cadmium extraction by electrokinetics[J]. Journal of Hazardous Materials,2004,110(13):53-62
    [52]周东美,仓龙,邓昌芬.过氧化氢对铬在黄棕壤中电动过程的影响[J].土壤学报,2005,42(1):59-63
    [53]周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学,2005,25(1):10-63
    [54]孟凡生,王业耀.铬(Ⅵ)污染土壤电动修复影响因素研究[J].农业环境科学学,2006,25(4):983-987
    [55]黄健,邱胜鹏,魏榕,等.动电技术在铬污染土壤修复中的应用及研究现状[J].工业安全与环保,2006,32(8):6-9
    [56]Reeves RD, Baker AJM. Metal-accumulating plants[M]. In Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment. Edited by Raskin I, Ensley BD:John Wiley & Sons,2000.193-229
    [57]张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物-李氏禾(Leersia hexandra Swartz) [J].生态学报,2006,26(3):950-953
    [58]张学洪,罗亚平,黄海涛,等.某电镀厂土壤重金属污染及植物富集特征[J].桂林工学院学报,2005,25(3):289-292
    [59]关晓辉,秦玉春,秦玉华,等.纳米Fe304负载的浮游球衣菌去除cr(Ⅵ)的研究[J].环境科学,2007,28(9):2096-2100
    [60]Srivastava S, Thakur IS. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for adsorption of hexavalent chromium in soil microcosm[J]. Soil Biology and Biochemistry,2006,38(7):1904-1911
    [61]Tseng JK, Bielefeldt AR. Low-temperature chromium(Ⅵ) biotransformation in soil with varyingelectron acceptors[J]. Journal of Environmental Quality,2002, 31(6):1831-1841
    [62]Jeyasingh J, Philip L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions[J]. Journal of Hazardous Materials,2005,118(1-3):113-120
    [63]常文越,陈晓东等.含铬(Ⅵ)废物堆放场所土壤/地下水的污染特点及土著微生物的初步生物解毒实验研究[J].环境污染及其防治,31-33
    [64]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方[M].北京:中国环境科学出版社,1998
    [65]国家环保部.土壤总铬的测定—火焰原子吸收分光光度法[M].北京:中国环境科学出版社,2009
    [66]Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7): 844-850
    [67]梅海军,李霞,张大威等.“无钙焙烧”技术在我国的发展及应用前景[J].铬盐工业,2004,46-52
    [68]Kappes DW. Technical advance in precious metals heap leching[M]. Economics and Practice of heap leaching in gold mining, August,1988:59-61
    [69]Gheju M. Kinetics of hexavalent chromium reduction by scrap iron[J]. Journal of Hazardous Materials.2006,135:66-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700