NAIF1基因在胃癌细胞中的功能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是常见的人消化道癌症,发病率在全部人类癌症中占据第四位,同时,胃癌的致死率达到70%,远远高于其他常见的人类癌症。胃癌的高发病率与高致死率严重影响了人类健康和生活。肿瘤的侵袭转移是影响患者预后和导致高致死率的主要原因,对胃癌细胞内侵袭转移相关分子和通路的研究有利于我们更清楚地理解其分子机制,也为胃癌的早期诊断和针对性治疗提供新的分子标志物和靶点。
     NAIF1是一个核凋亡诱导因子,前期研究发现NAIF1能够诱导HeLa细胞和MKN45细胞凋亡,凋亡通过线粒体途径发生,涉及到了Caspase9和Caspase3的活化,并且NAIF1在人胃癌组织和癌旁组织中呈现差异表达,癌旁组织高表达,胃癌组织低表达或不表达。但对NAIF1在细胞中的功能研究仅限于此,NAIF1在细胞内还参与了哪些通路、还发挥了哪些作用尚不清楚。
     本研究以NAIF1基因和胃癌细胞系为研究对象,采用了激光共聚焦、流式细胞术、transwell、real-time Q PCR、双向电泳、免疫杂交等多种实验技术,对NAIF1基因在胃癌细胞中的表达、分布、功能、功能相关机理和对蛋白表达谱的影响等进行了研究。
     我们检测到,在三株胃癌细胞系AGS、MKN45、SGC7901和一株永生化胃粘膜细胞系GES-1中,NAIF1在蛋白水平和RNA水平上均无表达。外源的NAIF1在AGS和MKN45这两株细胞中均只在细胞核内分布。过表达NAIF1能够诱导MKN45细胞产生G0/G1期的周期阻滞,并且抑制了AGS和MKN45细胞的运动能力,细胞迁移率分别下降了3倍和2.8倍。在机制研究中,我们发现NAIF1通过降低CyclinD1的表达诱导了细胞周期阻滞。在无刺激和采用血清/紫外刺激的不同情况下,NAIF1均能够降低AGS和MKN45细胞内Erk1/2>JNK的磷酸化水平,但对p38通路无影响。并且,NAIF1还降低了MKN45细胞内JNK的本底表达水平cMAPK的下游基因中,MMP2、 MMP9的表达降低。我们还发现NAIF1过表达的细胞中FAK-Ser910的磷酸化水平降低。我们推测,NAIF1可能是通过对MAPK通路的调节,来影响其下游Cyclin1、 MMP2、MMP9以及FAK的表达量或活性,进而对细胞周期和细胞的运动能力进行调控。利用蛋白质组学的方法,我们通过双向电泳实验检测到NAIF1基因在MKN45细胞内过表达后上调了5种蛋白PSMC2、PSMD13、TXNRD1、TCP1-gamma和NDUSF1的表达水平,下调了3种蛋白14-3-3epsilon RNH1和APIAOBP的表达水平。Westernblotting实验验证了TXNRD1、TCP1-gamma两种蛋白在NAIF1过表达的MKN45细胞中表达上调,14-3-3epsilon表达下调。利用基因组学的方法,我们还发现当在细胞内过表达NAIF1基因时,155个胞内基因出现了大于2倍的表达量变化,GO分析显示大部分基因参与了免疫反应调节的生物学进程。这一结果为NAIF1基因的研究提供了新的思路和方向。
     本研究是首次发现NAIF1通过调节CyclinD1的表达导致了MKN45细胞出现周期阻滞,并首次发现NAIF1通过对MAPK通路及其下游基因的调控来影响细胞的运动能力。也是首次通过蛋白质组学的方法对NAIF1基因所引起的细胞蛋白谱的表达变化做出了研究。本文的研究结果具有创新意义,揭示了NAIF1基因在细胞内涉及的新的功能和新的分子机制,对于今后理解并研究NAIF1基因的功能和作用机制具有指导意义,同时对于胃癌浸润转移的治疗也提供了新的分子靶点。
As a common digestive tract cancer, the incidence of gastric cancer occupied the fourth place of all human cancers with a lethality rate of70%, which is much higher than other common human cancers. High morbidity and high mortality rate of gastric cancer has a serious impact on human health. Tumor invasion and metastasis are the main reasons for the bad prognosis of patients and lead to high lethality rate, therefore, researching the related molecules and pathways of invasion and metastasis in gastric cancer cell will not only help us with a better understanding of the molecular mechanisms, but also provide new markers and targets for gastric cancer diagnosis and therapy.
     NAIF1is a nuclear apoptosis-inducing factor. Previous findings showed that NAIF1was able to induce apoptosis in HeLa cells and MKN45cells through mitochondrial pathway, and these events involved the activation of Caspase9and Caspase3, in addition, NAIF1showed a different expression between human gastric cancer tissues and adjacent tissues. However, whether NAIF1was involved in other cell functions and pathways was still unknown.
     In this study, we focus on the functions and mechanisms of NAIF1in gastric cancer cells. A variety of experimental techniques were employed including confocal scanning, flow cytometry, transwell, real-time Q PCR, two-dimensional electrophoresis and immunoblotting.
     As a result, we did not found any expression of NAIF1at RNA or protein level in gastric cancer cell AGS, MKN45, SGC7901or one immortalized gastric mucosa cell line GES-1. When NAIF1was transfected into AGS and MKN45cell, it showed that NAIF1only distributed in the nucleus. Overexpression of NAIF1led to a G1-S arrest in MKN45cells and also decreased the cell migration ability in both AGS and MKN45, with a decrement of3times in AGS or2.8times in MKN45. Immunoblotting result suggested that NAIFl induced cell cycle arrest by down-regulating the expression of CyclinDl. Besides, NAIFl was able to reduce the activity of Erkl/2and JNK with or without stimulation by UV/serum, but had no effect on P38. In addition, NAIF1was able to reduce the expression level of JNK. As a downstream gene of MAPK pathway, the down-regulation of expression of MMP2and MMP9were also observed. Moreover, inhibition of p-FAK was detected in NAIFl-overexpressed cell. Two-dimensional electrophoresis was used to indicate that overexpression of NAIF1had a effect on the protein expression profile in MKN45cells, with up-regulation of5proteins including PSMC2、PSMD13、TXNRD1、TCP1-gamma and NDUSF1, and down-regulation of3protein,14-3-3epsilon, RNH1and APIAOBP. Westernblotting was introduced to vertify the result of Two-dimensional electrophoresis.By using genomics approaches, we also found that155genes showed a>2fold change after overexpressing NAIF1in cell, correlation analysis showed most of which were involed in immune response pathways. These proteomics and genomics data provide new ideas and directions for researching NAIF1in the future.
     This is the first time to discover the ability of NAIFl in cell migration and the first time to investigate the relationship between NAIF1and MAPK pathway, as well as CyclinDl and other downstream moleculars of MAPK pathways. This research is an innovation by revealing the functions and molecular mechanisms in which NAIFl was involved, have directive significance for understanding function and molecular mechanism of NAIF1in future, and provide a new target for the therapy of tumor invasion and metastasis.
引文
An W, Han JS, Wheelan SJ, Davis ES, Coombes CE, Ye P, Triplett C, Boeke JD.(2006).Active retrotransposition by a synthetic L1 element in mice.Proc Natl Acad Sci U S A.Dec 5;103(49):18662-7.
    Aguilar-Melero P, Prieto-alamo MJ, Jurado J, Holmgren A, Pueyo C. (2013).Proteomics in HepG2 hepatocarcinoma cells with stably silenced expression of PRDX1.J Proteomics. Feb 21;79:161-71.
    Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S.(2008).Generation of pluripotent stem cells from adult mouse liver and stomach cells.Science. Aug 1;321(5889):699-702.
    Atmaca A, Pauligk C, Steinmetz K, Altmannsberger HM, J ger E, Al-Batran SE. (2011).Prognostic impact of phosphorylated mitogen-activated protein kinase expression in patients with metastatic gastric cancer. Oncology.80(1-2):130-4.
    Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D.Matrix (2000). Metallo proteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. Oct; 2(10):737-44.
    Bessereau JL, Wright A, Williams DC, Schuske K, Davis MW, Jorgensen EM.(2001).Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line.Nature.Sep 6;413(6851):70-4.
    Boyer LA, Latek RR, Peterson CL.(2004).The SANT domain:a unique histone-tail-binding module?Nat Rev Mol Cell Biol.Feb;5(2):158-63.
    Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB (2002).14-3-3 transits to the nucleus and participates in dynamic nucleo-cytoplasmic transport. J Cell Biol,156:817-828
    Campillos M, Doerks T, Shah PK, Bork P.(2006).Computational characterization of multiple Gag-like human proteins.Trends Genet.Nov;22(11):585-9.
    Carlson BA, Yoo MH, Tobe R, Mueller C, Naranjo-Suarez S, Hoffmann VJ, Gladyshev VN, Hatfield DL.(2012). Thioredoxin reductase 1 protects against chemically induced hepatocarcinogenesis via control of cellular redox homeostasis.Carcinogenesis. Sep; 33(9):1806-13.
    Casola C, Lawing AM, Betran E, Feschotte C.(2007).PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes.Mol Biol Evol. Aug;24(8):1872-88.
    Cerbone A, Toaldo C, Pizzimenti S, Pettazzoni P, Dianzani C, Minelli R, Ciamporcero E, Roma G, Dianzani MU, Canaparo R, Ferretti C, Barrera G.(2012). AS601245, an anti-Inflammatory JNK inhibitor, and clofibrate have a synergistic effect in inducing cell responses and in affecting the gene expression profile in CaCo-2 colon cancer cells. PPAR Res.269751.
    Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L.(2010).The purple cauliflower arises from activation of a MYB transcription factor.Plant Physiol.Nov;154(3):1470-80. doi: 10.1104/pp.110.164160.
    Cooley L, Kelley R, Spradling A.(1988).Insertional mutagenesis of the Drosophila genome with single P elements.Science. Mar 4;239(4844):1121-8.
    Crowe DL, Tsang KJ, Shemirani B. (2001).Jun N-terminal kinase 1 mediates transcriptional induction of matrix metalloproteinase 9 expression. Neoplasia. Jan-Feb; 3(I):27-32.
    Dalal SN, Yaffe MB, DeCaprio JA. (2004).14-3-3 family members act coordinately to regulate mitotic progression. Cell Cycle. May; 3(5):672-7.
    Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T.(2005).Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice.Cell. Aug 12;122(3):473-83.
    Drabek D, Zagoraiou L, deWit T, Langeveld A, Roumpaki C, Mamalaki C, Savakis C, Grosveld F.(2003).Transposition of the Drosophila hydei Minos transposon in the mouse germ line.Genomics. Feb;81(2):108-11.
    Fidler. (2003).The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited. Nat. Rev. Cancer 3,453-458.,
    Ghislain M, Udvardy A, Mann C.S. cerevisiae(1993).26S protease mutants arrest cell division in G2/metaphase.Nature. Nov 25; 366(6453):358-62.
    Grabundzija I, Wang J, Sebe A, Erdei Z, Kajdi R, Devaraj A, Steinemann D, Szuhai K, Stein U, Cantz T, Schambach A, Baum C, Izsvak Z, Sarkadi B, Ivies Z.Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells.Nucleic Acids Res.(2013). Feb 1;41 (3):1829-47.
    Grzebelus D, Yau YY, Simon PW.(2006).Master:a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.).Mol Genet Genomics. May;275(5):450-9.
    Guggenheim DE, Shah MA.Gastric (2013).Cancer epidemiology and risk factors.J Surg Oncol. Mar; 107(3):230-6.
    Hanahan D, Weinberg RA.Hallmarks of cancer:the next generation.Cell.2011 Mar 4;144(5):646-74.
    Hauck, C. R., Sieg, D. J., Hsia, D. A., Loftus, J. C., Gaarde, W. A., Monia,B-P.and Schlaepfer, D. D. (2001). Inhibition of focal adhesion kinaseexpression or activity disrupts epidermal growth factor-stimulated signalingpromoting the migration of invasive human carcinoma cells. Cancer Res.61,7079-7090.
    Huang C, Jacobson K, Schaller MD.(2004).MAP kinases and cell migration.J Cell Sci. Sep 15;117(Pt20):4619-28.
    Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K.(2003). JNK phosphorylates paxillin and regulates cell migration. Nature. Jul 10; 424(6945):219-23.
    Huang.C. Schaller, M. D. and Jacobson, K. (2004). A role of JNK-paxillin signaling in cell migration. Cell Cycle 3,4-6.
    Hu BS, Hu H, Zhu CY, Gu YL, Li JP. (2013). Overexpression of GOLPH3 is associated with poor clinical outcome in gastric cancer.Tumour Biol. Feb; 34(1):515-20.
    Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E.Bombesin,(2003). Lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910:requirement for ERK activation. J Biol Chem. Jun 20;278(25):22631-43.
    Ivics Z, Hackett PB, Plasterk RH, Izsvak Z.(1997).Molecular reconstruction of Sleeping Beauty, a Tcl-like transposon from fish, and its transposition in human cells.Cell. Nov 14;91(4):501-10.
    Ivies Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak Z.(2009).Transposon-mediated genome manipulation in vertebrates.Nat Methods. Jun;6(6):415-22.
    Jemal A et al. (2011).Global Cancer Statistics.CA Cancer J Clin. Mar-Apr; 61(2):134
    Jones DH, Martin H, Madrazo J, Robinson KA, Nielsen P, Roseboom PH, Patel Y, Howell SA, Aitken A. (1995). Expression and structural analysis of 14-3-3 proteins. J Mol Biol, 245:375-384
    Jones JM, Gellert M.(2004).The taming of a transposon:V(D)J recombination and the immune system.Immunol Rev.Aug;200:233-48.
    Jurka J, Kapitonov VV.(2001).PIFs meet Tourists and Harbingers:a superfamily reunion.Proc Natl Acad Sci U S A. Oct 23;98(22):12315-6.
    Kapitonov VV, Jurka J.(1999).Molecular paleontology of transposable elements from Arabidopsis thaliana.Genetica.107(1-3):27-37.
    Kapitonov VV, Jurka J.(2004).Harbinger transposons and an ancient HARBI1 gene derived from a transposase.DNA Cell Biol. May;23(5):311-24.
    Klein T, Bischoff R. (2011).Physio logy and pathophysiology of matrix metalloproteases.Amino Acids. Jul; 41(2):271-90.
    Kraemer R, Nguyen H, March KL, Hempstead B.NGF.(1999). Activates similar intracellular signaling pathways in vascular smooth muscle cells as PDGF-BB but elicits different biological responses. Arterioscler Thromb Vasc Biol. Apr; 19(4):1041-50.
    Kuramitsu Y, Baron B, Yoshino S, Zhang X, Tanaka T, Yashiro M, Hirakawa K, Oka M, Nakamura K.(2010). Proteomic differential display analysis shows up-regulation of 14-3-3 sigma protein in human scirrhous-type gastric carcinoma cells. Anticancer Res. Nov;30(11):4459-65.
    Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, Cheng SL. (2001). Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. Apr 27; 276(17):14443-50.
    Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, Cheng SL.(2001). Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. Apr 27; 276(17):14443-50.
    Lander ES, Linton LM, Birren B, et al.(2001).Initial sequencing and analysis of the human genome.Nature. Feb 15;409(6822):860-921.
    Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodavsky 1.(1996). Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1.Proc Natl Acad Sci U S A. Jul 9; 93(14):7069-74.
    Lin LL, Huang HC, Juan HF. (2012).Discovery of biomarkers for gastric cancer:a proteomics approach. J Proteomics. Jun 18; 75(11):3081-97.
    Liu, Z. X., Yu, C. F., Nickel, C., Thomas, S. and Cantley, L. G. (2002).Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J. Biol. Chem.277,10452-10458
    Lukas J, Bartkova J, Bartek J. (1996). Convergence of mitogenic signaling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol. Dec; 16(12):6917-25.
    Luo Q, Zhao M, Zhong J, Ma Y, Deng G, Liu J, Wang J, Yuan X, Huang C.(2011). NAIF1 is down-regulated in gastric cancer and promotes apoptosis through the caspase-9 pathway in human MKN45 cells.Oncol Rep. Apr; 25(4):1117-23.
    Lv B, Shi T, Wang X, Song Q, Zhang Y, Shen Y, Ma D, Lou Y.(2006). Overexpression of the novel human gene, nuclear apoptosis-inducing factor 1, induces apoptosis. Int J Biochem Cell Biol.38(4):671-83.
    Milton AH, Khaire N, Ingram L, O'Donnell AJ, La Thangue NB. (2006).14-3-3 proteins integrate E2F activity with the DNA damage response. EMBO J. Mar 8; 25(5):1046-57.
    Moon SK, Kim HM, Lee YC, Kim CH. (2004). Disialoganglioside (GD3) synthase gene expression suppresses vascular smooth muscle cell responses via the inhibition of ERK1/2 phosphorylation, cell cycle progression, and matrix metalloproteinase-9 expression. J Biol Chem. Aug 6; 279(32):33063-70.
    Muslin AJ, Xing H. (2000).14-3-3 proteins:regulation of subcellular localization by molecular interference. Cell Signal,12:703-709.
    NagaseH(1998)Cell surface activation of progelatinaseA(proMMP-2) and cell migration. Cell Res 8:179-186
    Nguyen M, Arkell J, Jackson CJ (2001).Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol 33:960-970.
    Okita K, Ichisaka T, Yamanaka S.(2007).Generation of germline-competent induced pluripotent stem cells.Nature. Jul 19;448(7151):313-7.
    Oktay, M., Wary, K. K., Dans,M., Birge, R. B., & Giancotti, F. G.(1999). Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. Journal of Cell Biology, 145,1461-1469.
    Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, Minami A. (2002). Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and-13 in rat osteoblasts-Relevance to intracellular signaling pathways. J Biol Chem. Mar 8;277(10):7865-74.
    Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET, Cance WG.(1995). Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. Jul 1; 55(13):2752-5.
    Owens LV, Xu L, Dent GA, Yang X, Sturge GC, Craven RJ, Cance WG. (1996). Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol. Jan; 3(1):100-5.
    Peng L, Zhou Y. Wang Y, Mou H. Zhao Q. (2013). Prognostic Significance of COX-2 immunohistochemical expression in colorectal cancer:a meta-analysis of the literature. PLoS One.;8(3):e58891.
    Pestell RG. Albanese C. Reutens AT, Segall JE. Lee RJ, Arnold A. (1999). The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev. Aug; 20(4):501-34.
    Rushforth AM. Saari B. Anderson P.(1993).Site-selected insertion of the transposon Tcl into a Caenorhabditis elegans myosin light chain gene.Mol Cell Biol.Feb;13(2):902-10.
    Sabapathy K. Hochedlinger K, Nam SY, Bauer A. Karin M. Wagner EF.(2004). Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell. Sep 10; 15(5):713-25.
    Shibata, K., Kikkawa. F., Nawa, A.. Thant, A. A., Naruse, K., Mizutani, S., et al. (1998). Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Mar 1; 58(5):900-3.
    Sampieri CL. de la Pea S, Ochoa-Lara M, Zenteno-Cuevas R, Leon-Cordoba K. (2010). Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis. World J Gastroenterol. Mar 28; 16(12):1500-5.
    Selenius.M. et al. (2010) Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxid. Redox Signal.12.867-880.
    Shin M. Yan C. Boyd D. (2002). An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation. DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim Biophys Acta. May 8; 1589(3):311-6.
    Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G.(2009).Induced pluripotent stem cell generation using a single lentiviral stem cell cassette.Stem Cells. Mar;27(3):543-9.
    Talmadge and Fidler, (2010). AACR centennial series:the biology of cancer metastasis: historical perspective. Cancer Res.70.5649-5669.
    Takahashi K. Yamanaka S.(2006).Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell. Aug 25;126(4):663-76.
    Tanaka K, Tsurumi C. (1997). The 26S proteasome:subunits and functions. Mol Biol Rep. Mar;24(1-2):3-11.
    Volff JN. (2006).Turning junk into gold:domestication of transposable elements and the creation of new genes in eukaryotes.Bioessays. Sep;28(9):913-22.
    Wang BW, Chang H, Lin S, Kuan P, Shyu KG.(2003).Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells.Cardiovasc Res.2003 Aug 1;59(2):460-9.
    Webb DJ, Nguyen DH, Gonias SL. (2000). Extracellular signal-regulated kinase functions in the urokinase receptor-dependent pathway by which neutralization of low density lipoprotein receptor-related protein promotes fibrosarcoma cell migration and matrigel invasion. J Cell Sci. Jan; 113 (Pt 1):123-34.
    Weiner TM, Liu ET, Craven RJ, Cance WG. (1993). Expression of focal adhesion kinase gene and invasive cancer. Oct 23; 342(8878):1024-5.
    Woessner JF Jr. (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. May; 5(8):2145-54.
    Yan GR, Xu SH, Tan ZL, Yin XF, He QY. (2011) Proteomics characterization of gastrokine 1-induced growth inhibition of gastric cancer cells. Proteomics. Sep; 11(18):3657-64.
    Zhang D, Ma Q, Wang Z, Zhang M, Guo K, Wang F, Wu E.(2011). p2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFicB pathway. Mol Cancer. Nov 26; 10:146.
    Zhang X, Jiang N, Feschotte C, Wessler SR.(2004).PIF- and Pong-like transposable elements:distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements.Genetics. Feb;166(2):971-86.
    Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR.(2001).P instability factor:an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases.Proc Natl Acad Sci U S A. Oct 23;98(22):12572-7.
    Zhao J, Guan JL. (2009). Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. Jun; 28(1-2):35-49.
    Zhao, J. H., Reiske, H., & Guan, J. L. (1998). Regulation of the cell cycle by focal adhesion kinase. Journal of Cell Biology,143,1997-2008.
    Zhao, J., Pestell, R., & Guan, J. L. (2001). Transcriptional activation of cyclin Dl promoter by FAK contributes to cell cycle progression. Molecular Biology of the Cell,12, 4066-4077
    Zhao X, Guan JL. (2011). Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. Jul 18;63(8):610-5.
    Zwaal RR, Broeks A, van Meurs J, Groenen JT, Plasterk RH.(1993).Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank.Proc Natl Acad Sci U S A. Aug 15;90(16):7431-5.
    蔡中瑞,沈健康,王天翔.(2012).基因表达谱芯片胃癌差异表达基因的筛选.中华肿瘤防治杂志[J].2012(1).Vol19,No.1:28-32.
    Abe, M. K., W. L. Kuo, M. B. Hershenson, and M. R. Rosner. (1999) Extracellular signal-regulated kinase 7(ERK7), a novel ERK with a C-terminal domain that regulates its activity, its cellular localization, and cell growth. Mol. Cell. Biol.19:1301-1312.
    Abe, M. K., et al. (2002) ERK8, a new member of the mitogen-activated protein kinase family. J. Biol. Chem.277:16733-16743.
    Aberg, E., et al. (2006) Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4.J. Biol. Chem. 281:35499-35510.
    Alexander Plotnikov, Eldar Zehorai, Shiri Procaccia, Rony Seger. (2011) The MAPK cascades:Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta.2011 Sep; 1813(9):1619-33.
    Bode, A. M., and Z. Dong. (2007) The functional contrariety of JNK. Mol.Carcinog. 46:591-598
    Bogoyevitch. M. A., K. R. Ngoei, T. T. Zhao, Y. Y. Yeap, and D. C. Ng. (2010) c-Jun N-terminal kinase (JNK) signaling:recent advances and challenges. Biochim. Biophys. Acta 1804:463-475.
    Bollig. F.et al.(2003) Affinity purification of ARE-binding proteins identifies polyA-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization. Biochem. Biophys. Res. Commun.301:665-670.
    Bonni. A., et al.(1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358-1362.
    Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N,Tanaka Y et al. (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969-1978.
    Bulavin DV, Fornace Jr AJ. (2004) P38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 92:95-118.
    Chen N, Nomura M, She QB, Ma WY, Bode AM, Wang L, Flavell RA, and Dong Z (2001) Suppression of skin tumorigenesis in c-Jun NH2-terminal kinase-2-deficient mice. Cancer Res 61:3908-3912.
    Chiosis G. (2006) Targeting chaperones in transformed systems-a focus on Hsp90 and cancer. Expert Opin Ther Targets 10:37-50.
    Choi, K. W., and S. Benzer. (1994) Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell 78:125-136.
    Coulombe, P., and S. Meloche. (2007) Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim. Biophys. Acta 1773:1376-1387.
    Cuadrado, A.,and A. R. Nebreda. (2010) Mechanisms and functions of p38 MAPK signalling. Biochem. J.429:403-417.
    Davies, H., G.R. Bignell, C. COX, et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417:949-954.
    Derijard, B., et al. (1994) JNK1:A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025-1037.
    Dhillon AS, Hagan S, Rath O, et al.(2007) MAP kinase signalling pathways in cancer. Oncogene.26(22):3279-90.
    Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye S, Marais R et al. (2006) Sorafenib in advanced melanoma:a phase Ⅱrandomised discontinuation trial analysis. Br J Cancer 95:581-586.
    Han, J., J. D. Lee, L. Bibbs, and R. J. Ulevitch.(1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808-811.
    Henrich, L. M., et al. (2003) Extracellular signal-regulated kinase 7, a regulator of hormone-dependent estrogen receptor destruction. Mol. Cell.Biol.23:5979-5988.
    Ishitani, T., et al. (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399:798-802.
    Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T,Sakakibara M et al. (2003) Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 97:3017-3026.
    Jaeschke, A., et al. (2006) JNK2 is a positive regulator of the cJun transcription factor. Mol. Cell 23:899-911.
    Janda. E., K. LEHMANN, I. KILLISCH, et al. (2002) Ras and TGFβ cooperatively regulateepithelial cell plasticity and metastasis:dissection of Ras signaling pathways. J. Cell Biol.156:299-313.
    Kant. S., et al.(2006) Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5. J. Biol. Chem.281:35511-35519.
    Karin, M. (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431-436.
    Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi D, Flavell RA, and Davis RJ (2003) Suppression of Ras-stimulated transformation by the JNK signal transductionpathway. Genes Dev 17:629-637.
    Klinger.S., et al.(2009) Loss of Erk3 function in mice leads to intrauterine growth restriction, pulmonary immaturity, and neonatal lethality. Proc. Natl. Acad. Sci. U. S. A. 106:16710-16715.
    Kyriakis, J. M., et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156-160.
    Marie Cargnello,and Philippe P. Roux. (2011) Activation and Function of the MAPKs and Their Substrates,the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev.2011 Mar;75(1):50-83.
    Mulloy, R.,S. Salinas, A. Philips, and R. A. Hipskind. (2003). Activation of cyclin D1 expression by the ERK5 cascade. Oncogene 22:5387-5398.
    Ohkawara, B., et al. (2004) Role of the TAK1-NLK-STAT3 pathway in TGF-beta-mediated mesoderm induction. Genes Dev.18:381-386.
    Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J, Feramisco JR, Karin M, and Wang JY (2000) Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 14:574-584.
    Raman, M., W. Chen, and M. H. Cobb. (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100-3112.
    Rapp UR, Gotz R, Albert S. (2006) BuCy RAFs drive cells into MEK addiction. Cancer Cell 9:9-12.
    Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB et al. (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer.J Clin Oncol 22: 4456-4462.
    Saelzler, M. P., et al. (2006) ERK8 down-regulates transactivation of the glucocorticoid receptor through Hic-5. J. Biol. Chem.281:16821-16832
    Schumacher.S, et al. (2004) Scaffolding by ERK3 regulates MK5 in development. EMBO J. 23:4770-4779.
    Seternes, O. M., et al. (2004) Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J.23:4780-4791.
    Sharp S, Workman P. (2006) Inhibitors of the HSP90 molecular chaperone:current status. Adv Cancer Res 95:323-348.
    Shaul, Y. D. and R. Seger.(2007) The MEK/ERK cascade:from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773:1213-1226.
    She QB, Chen N, Bode AM, Flavell RA, and Dong Z (2002) Deficiency of c-Jun-NH2-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 62:1343-1348.
    Smit, L., et al. (2004) Wnt activates the Takl/Nemo-like kinase pathway. J. Biol. Chem. 279:17232-17240.
    Thornton. T. M, M. Rincon. (2009) Non-classical p38 map kinase functions:cell cycle checkpoints and survival. Int. J. Biol. Sci.5:44-51.
    Wang. X., et al. (2006) Activation of extracellular signal-regulated protein kinase 5 downregulates FasL upon osmotic stress. Cell Death Differ.13:2099-2108.
    Wagner. E. F. and A. R. Nebreda. (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer.9:537-549.
    Webb, C.P., L. Van Aelst, M.H. Wigler & G.F. Woude. (1998) Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc. Natl. Acad. Sci. USA 95: 8773-8778.
    Wilhelm S, Chien DS. (2002) BAY 43-9006:preclinical data. Curr Pharm Des 8: 2255-2257.
    Xie, H., M.A. Pallero, K. Gupta, et al. (1998) EGF receptor regulation of cell motility:EGF induces disassembly of focal adhesions independently of the motility-associated PLCy signaling pathway. J. Cell Sci. 111(Part 5):615-624.
    Yan, C. H. Luo, J. D. Lee, J. Abe, and B. C. Berk. (2001) Molecular cloning of mouse ERK5/BMK1 splices variants and characterization of ERK5 functional domains. J. Biol. Chem.276:10870-10878
    Yan, L., et al. (2003) Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev. Biol.3:11
    Yoshida S, Fukino K, Harada H, Nagai H, Imoto I, Inazawa J, Takahashi H,Teramoto A, and Emi M (2001) The c-Jun NH2-terminal kinase3 (JNK3) gene:genomic structure, chromosomal assignment, and loss of expression in brain tumors. J Hum Genet 46:182-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700