苝二酰亚胺及三嗪衍生物的合成和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苝二酰亚胺(Perylene tetracarboxylic acid diimide,简称PDI)类衍生物具有优异的热和光化学稳定性,对可见区到红外区的光有很强的吸收。是一种具有独特的光物理和光化学性质的有机光电材料。在太阳能转化、电致发光、以及生物荧光探针等领域有广泛的应用前景。近年来,对其光物理性质的研究愈来愈受到关注,并逐渐成为研究的热点。
     为了满足PDI化合物在不同领域的应用,通过对其结构进行化学修饰,以控制苝二酰亚胺类化合物的性质,是获得具有新颖的光电性质的PDI新材料重要手段之一。怎样去寻找一个有着新颖性质的结构一直是困扰人们的难题,本论文主要就这种有着优异性能的苝二酰亚胺类化合物的研究来寻找结构和性能间的联系,并尝试设计合成了一些具有特殊性质的苝二酰亚胺化合物并对其性质进行了深入的研究。
     我们的工作主要集中在以下几个方面:
     1.一种双亲性的苝二酰亚胺衍生物的合成和表征
     苝二酰亚胺(PDIs)中由于酰亚胺基团强的吸电子效应,它具有高的电子亲和式,这就使得它有可能成为一种很好的n-型有机半导体材料。科学家们通过在它的酰亚胺氮原子上引入了不同的基团,可以改变PDIs在固体时候的堆积,进而改善其半导体的性质。在PDIs的湾位引入像CN-这种吸电子基团能够非常明显的提高其作为n-型半导体的性能。
     我们设计合成了一种新型的PDI化合物,在湾位用酚氧基基团取代,一端的酰亚胺氮原子上则用疏水型的烷氧链取代。更加有趣的是,两个这样的PDI环用亲水型的三嗪环连在一起,形成具有非常好的双亲型的双层二聚体结构。这个化合物可以用Langmuir-Blodgett(LB)膜技术进行组装,形成高度有序的固体膜,以这种固体膜为半导体层的有机场效应晶体管(OFETs)具有很好的性质,其迁移率能够达到0.05 cm~2 V~(-1) s~(-1),开关比也能够达到10~3,这种性质要远远好于用相应的PDI单体形成的LB膜。
     我们的研究结果表明,在膜形成前通过共价键将有机分子组装成有序结构是提高OFET能力的一种有效方法。
     2一种新颖的PDI三聚体中能量传递的研究
     绿色植物光合作用的原初过程中包括多步快速的能量传递和电子转移。在某种意义上说,自然界的光合作用反应中心是一种分子水平上的高效率的光伏器件。因此人工模拟生物光合作用中心的光致电子转移和能量传递对太阳能的光电转换和收集具有重要的理论指导意义。苝二酰亚胺衍生物具有极高的荧光量子产率和很好的光热稳定性,是模拟光合作用的理想分子。
     我们以三聚氰胺分子为中心,连接三个苝二酰亚胺单体分子,从而合成了共价连接的苝二酰亚胺三聚体。通过分子结构模拟、吸收光谱和核磁共振光谱可知其中的两个苝二酰亚胺单体呈面对面的空间构型,能够形成二聚体,而另一个苝二酰亚胺分子则以单体形式存在。
     荧光光谱实验揭示三体中单体的荧光被淬灭,这种现象说明该三聚体分子和LH2一样,有可能存在由单体到二聚体的光激发能的传递过程。飞秒时间分辨瞬态吸收光谱证实了苝二酰亚胺三聚体分子中单体向二聚体有传能过程。在稳态吸收光谱的基础上提出了单体和二体的共激发模型,并在该模型的基础上通过对时间分辨瞬态吸收光谱进行奇异值分解获取中间体组分信息,并进一步进行全局参量光谱和动力学拟合,获得了激发态光谱及衰减动力学,从而确定了单体向二聚体传能的途径。这个发现对于设计和构建新型的人工光采集体系具有重要的作用。
     3 Marcus界面电荷重排能用二氧化钛纳米粒子的粒径以及亲水性的关系
     染料敏化TiO_2纳米晶太阳能电池是一种接近实用的高效光电转化器件,进一步提高染料敏化太阳能电池的光电转换效率对推动该类电池的实际应用有着重要的意义,界面电荷复合过程的研究将有助于人们对广电转换的本质的认识,进而推动这种电池的光电性能的提高。我们以视黄酸吸附的TiO_2纳米胶体溶液为研究系统,发展了研究胶体溶液中TiO_2纳米粒子表面特性的瞬态分子探针方法,第一次用瞬态分子探针法研究了纳米颗粒尺寸效应对羧基在TiO_2纳米晶体表面键合形态影响。用纳秒时间分辨光谱研究染料敏化二氧化钛体系的电荷复合速率,证明其尺寸效应与表面键合态及Ti原子配位数之间的关系。这一研究有助于揭示界面电荷转移过程的微观机理,探索提高光电转换效率的新途径。
     我们用瞬态分子探针法研究了视黄酸分子ATRA在单个TiO_2界面上的电荷复合过程。用Marcus公式定量地计算了ATRA敏化TiO_2体系的界面电荷重排能,解决了国际上对Marcus公式的应用一直存在的困扰。发现并阐明了TiO_2纳米粒子胶体光致亲水、疏水变换的分子机制,首次定量阐明了该现象与Marcus重排能间的关系。在我们的研究中探针分子ATRA不仅可以作为探测TiO_2纳米粒子光致亲疏水性的探针,还可以作为探测重排能变化的探针分子。
Perylene tetracarboxylic diimide(PDI) derivatives are important molecular building blocks that are currently being investigated for use in a variety of photoactive organic materials because of their low light and thermal fading rates, high luminescence efficiency,wide absorption and emission bands in visible region, and optoelectronic properties.They have been used in organic field-effect transistors, light-harvesting solar cells,photovoltaic devices,light emitting diodes,and robust organic dyes that are resistant to photobleaching.These dyes have generated great interest because of their outstanding photochemical and thermal stability,ease of synthetic modification,and desirable optical and redox characteristics.
     Driven by the demands of diverse applications,the modification on molecular structure of PDI aimed at changing the photophysical properties has attracted a lot of research interest in the past decade.
     Our research work has been focused on the following aspects:
     1.An Amphiphilic Perylenetretracarboxyl Diimide Dimer and its Application in Field Effect Transistor
     Perylene tetracarboxyl diimides(PDIs),a category of organic dyes with excellent thermal and photo stabilities,have recently been intensively studied as good n-type semiconductor due to the high electron affinity caused by the electron-withdrawing imide groups.Different functional groups have been introduced at the imide nitrogen atoms of PDIs aimed at modifying the packing in solid state and thus improving the OFETs performance.Electron withdrawing groups,such as cyanide groups,introduced to the bay positions have been proved to improve the n-type semiconductivity significantly.Solution processed films of PDIs has been fabricated into OFETs and ambipolar transport properties for PDI was observed for the first time.
     We report the design,synthesis of a novel PDI compound with phenoxy groups at the bay positions and hydrophobic alkyl subsitutents at one of the two imide nitrogens of the PDI molecule.More interestingly,two of these PDI tings were linked by a hydrophilic triazine ring to form a PDI double-decker dimer with very good amphiphilic properties.Good OFETs performance using Langmuir-Blodgett(LB) films of this compound as active layer has been achieved with the carrier mobility as high as 0.05 cm~2 V~(-1) s~(-1) and current modulation of 10~3 which is much better than that of the LB films fabricated from the corresponding PDI monomer.Our result revealed that pre-organizing the organic molecules into a stacked structure in solution by covalent bond before the film fabrication might be an efficient way to improve its OFET performance.
     2.Fluorescence Quenching in a Perylenetetracarboxylic Diimide Trimer
     The most important process in natural photosynthetic reaction center is the quick and efficient multiple-step electron and the energy transfer.This has attracted many researchers to look for ways to duplicate the reactions in simplified chemical systems.In order to expatiate the ET process,sample and effective structure is very necessary.We designed and synthesisd a PDI trimer,which composed of three PDIs connected by a triazine ring.
     The monomer-dimer structure was confirmed by the steady state absorption spectra and the H~1NMR apectra.The fluorescence spectra indicate that the fluorescence of monomer has been quenched,suggesting the presence of ET from monomer to dimer in this trimer.To gain an insight into the ET from monomer to dimer in compound trimer,time-resolved transient absorption spectra were recorded. Our finding suggests that the ET can happen efficiently and quickly between a pair of non-interacted PDI monomer and dimer.We believe that this observation is meaningful for the design and construction of novel artificial LH systems.
     3.Particle-Size-Dependent Hydrophilicity of TiO_2 Nanoparticles Characterized by Marcus Reorganization Energy of Interfacial Charge Recombination
     Size-dependent hydrophilicity of TiO2 nanoparticles has been investigated by an interface transient molecular probe method.The results show that the reorganization energy for the interfacial charge recombination of the probe molecule can be a specific parameter for characterizing the hydrophilicity of the nanoparticles which is in accordance with the density of the surface hydroxyl group as a parallel parameter.The observed hydrophilicity in terms of either reorganization energy or the density of the surface hydroxyl group decays monoexponential with the mean particle diameter.
     This determination of the reorganization energy of the interfacial charge recombination can be a practical method for evaluating the hydrophilicity of nanoparticles other than TiO_2.
引文
1. Katz, H. E.; Bao, Z.; Gilat, S. L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors [J] Acc. Chem. Res. 2001, 34, 359-369.
    
    2. Wurthner, F. Plastic Transistors Reach Maturity for Mass Applications in Microelectronics [J] Angew. Chem., Int. Ed. 2001, 40, 1037-1039.
    
    3. Angadi, M. A.; Gosztola, D.; Wasielewski, M. R. Organic light emitting diodes using poly(phenylenevinylene) doped with perylenediimide electron acceptors Mater [J] Sci. Eng. B. 1999, 63, 191-194.
    
    4. Ranke, P.; Bleyl, I.; Simmerer, J.; Haarer, D.; Bacher, A.; Schmidt, H. W. Electroluminescence and electron transport in a perylene dye [J] Appl. Phys. Lett 1997, 71, 1332-1334.
    
    5. Law, K.-Y. Organic photoconductive materials: recent trends and developments [J] Chem. Rev., 1993, 93, 449-486.
    
    6. Gregg, B. A.; Cormier, R. A. Doping Molecular Semiconductors: n-Type Doping of a Liquid Crystal Perylene Diimide [J] J. Am. Chem. Soc. 2001, 123, 7959-7960.
    
    7. Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Horhold, H. H. Polymer—perylene diimide heterojunction solar cells [J] Appl. Phys. Lett. 2002, 81, 3085-3087.
    
    8. Hayes, R. T.; Wasielewski, M. R.; Gosztola, D. Ultrafast Photoswitched Charge Transmission through the Bridge Molecule in a Donor-Bridge-Acceptor System [J] J. Am. Chem. Soc. 2000, 122, 5563-5567.
    
    9. Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Molecular-wire behaviour in p -phenylenevinylene oligomers [J] Nature. 1998, 396, 60-63.
    
    10. Hippius, F. Schlosser, F. Wurthner. Energy Transfer in Calixarene-Based Cofacial-Positioned Perylene Bisimide Arrays [J] J. Am. Chem. Soc.2006, 128, 3870-3871.
    
    11. Tornizaki, K.; Loewe, R. S.; Kirmaier, C.; Schwartz, J. K.; Retsek, J. L.; Bocian, D.F.;Holten,D.;Lindsey,J.S.Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments[J]J.Org Chem.2002,67,6519-6534.
    12.Yukruk F,Dogan A.L.,Canpinar H,Guc D,Akkaya E.U.Water-Soluble Green Perylenediimide(PDI) Dyes as Potential Sensitizers for Photodynamic Therapy [J]Org.Lett.,2005,2885-2887.
    13.Hofkens J.,Vosch T.,Maus M.,Kohn F.,Cotlet M.,Weil T.,Herrmann A.,M(u|¨)lien K.,De Schryver F.C.Conformational rearrangements in and twisting of a single molecule[J]Chem.Phys.Lett.2001,333,255-263.
    14.Demmig S.,Langhals H.leichtl(o|¨)sliche lichtechte perylen-fluoreszenzfarbstoffe[J]Chem.Ber.1988,121,225-230.
    15.Kaiser H.,Lindner J.,Langhals H.Synthese von nichtsymmetrisch substituierten Perylen-Fluoreszenzfarbstoffen[J]Chem.Ber.1991,124,529-535.
    16.Lukao,I.,and Lanughals,H.Synthesis and fluorescent of 2,3,4,4a,1l,12,13-octahydro-1,4a,10a,14-tetraazaviolanthrone derivatives[J]Chem.Ber.1983,116,3524-3528.
    17.Franceschin M.,Alvino A.,Ortaggi G.,Biano A.New hydrosoluble perylene and coronene derivatives[J]Tetrahedron Letters,2004,45,9015-9020
    18.Ahrens M.J.,Tauber M.J.,Wasielewski M.R..Bis(n-octylamino)perylene-3,4:9,10-bis(dicarboximide)s and Their Radical Cations:Synthesis,Electrochemistry,and ENDOR Spectroscopy[J]J.Org.Chem.2006,71,2107-2114.
    19.Chen S.-Y.,Liu Y.-Q.,Qiu W.-F.,Sun X.-B.,Ma Y.-Q.,Zhu D.-B.Oligothiophene-Functionalized Perylene Bisimide System:Synthesis,Characterization,and Electrochemical Polymerization Properties[J]Chem.Mater.2005,17,2208-2215
    20.Schnurpfeil G.,Stark J.,w(o|¨)hrle D.Syntheses of uncharged,positively and negatively charged 3,4,9,10-perylene-bis(dicarboximides)[J]Dyes &pigments.1995,27,339-350.
    21. Harris F. W., Lin S. H., Li F. Organo-soluble polyimides: Synthesis and polymerization of 2,2 prime-adisubstituted-4,4 prime,5,5 prime-biphenyltetra carboxylic dianhydrides [J] Polymer. 1996, 37, 5049-5057.
    
    22. Icil H., Uzum D., Pasaogullari N. Synthesis of a new thermal and photostable reference proble for Qf measurement in AQUA: Water soluble N,N'-bis-(2-hydroxy-4-benzoic acid) -3,4,9, 10-perylene-bis(dicarboximide) [J] Spectroscopy letters. 1998,37,667-671.
    
    23. Icil H., Uzum D., Arslan E. Synthesis and spectroscopic characterization of water solube perylene tetracarboxylic diimide derivatives [J] Spectroscopy letters. 2001, 34, 605-614.
    
    24. Heinz. L., Sigrid S. Bichoromophoric perylene derivatives: every transfer from non-fluorescent choromophores [J] Chem. Eur. J. 2002, 8, 5630-5643.
    
    25. Fuller M. J., Sinks L. E., Rybtchinski B., Giaimo J. M., LI X.-Y., Wasielewski M. R. Ultrafast Photoinduced Charge Separation Resulting from Self-assembly of a Green Perylene -base Dye into π -Stacked Arrays [J] J. Phys. Chem A. 2005, 109, 970-975.
    
    26. Ahrens M. J., Sinks L. E., Rybtchinski B., Liu W.-H., Jones B. A., Giaimo J. M., Gusev A. V., Goshe A. J., Tiede D. M., Wasielewski M. R. Self-Assembly of Supramolecular Light-Harvesting Arrays fromm Covalent Multi-Chromophore Perylene-3,4:9,10-bis(dicarboximide) Building Blocks [J] J. Am. Chem. Soc. 2004, 126, 8284-8294.
    
    27. Langhals H., Jona W. The Synthesis of Perylenebisimide Monocarboxylic Acids [J] Eur.J. Org. Chem. 1998, 847-851.
    
    28. Wurthner F., Stepanenko V., Chen Z.-J., Saha-Moller C. R., Kocher N., Stalke D. Preparation and Characterization of Regioisomerically Pure 1,7-Disubstituted Perylene Bisimide Dyes [J] J. Org. Chem. 2004, 69, 7933-7939.
    
    29. Li Y.-J., Wang N., Gan H.-Y., Liu H.-B., Li H., Li Y.-L., He X.-R, Huang C.-S., Cui S., Wang S. Zhu D.-B. Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly [J] J. Org. Chem. 2005, 70, 9686-9692.
    30.Nagao Y.,Misonot.Synthesis and reaction of perylenecarboxylic acid derivatives,Ⅷ[J]Bull.Chem.Spot.Jpn.1981,54:1191-1194.
    31.Helmat T.Untersuchungen zur protonierung von perylen-3,4,9,10-tetracarsaurealkalisalzen[J]Dye and Pigments.1983,4,171-174.
    32.Langhals H.Cyclic carboxylic imide structures as structure dements of high stability-novel developments in perylene dye chemistry[J]Heterocycles.1995,40,477-500.
    33.Seybold G.,Wagenblast G.New perylene and violanthrone dyestuffs for fluorescent.Collectors[J]Dyes Pigm.1989,11,303-317.
    34.B(o|¨)hm A.,Arms H.,Herming G.,Blaschka P[J]Ger.Pat.Appl.,DE 19547209 A1,1997.
    35.Rohr U.,Schlichting P.,B(o|¨)hm A.,Groa M,Meerholz K.,Br(a|¨)uchle C,M(u|¨)llen K.Liquid crystalline coronene derivatives with extraordinary fluorescence properties [J]Angew.Chem.,Int.Ed.1998,37,1434-1437;
    (b) Rohr U.,Kohl C.,M(u|¨)llen K.,Craats A.van de,Warman J.Liquid crystalline coronene derivatives[J]J.Mater.Chem.2001,11,1789-1799.
    36.W(u|¨)rthner F.Plastic transistors reach maturity for mass application in microelectronics[J]Angew.Chem.,Int.Ed.2001,293,1119-1122.
    37.Zhao C-T,Zhang Y-X,Li R-J,Li X-Y,Jiang J-Z.Di(alkoxy)- and di(alkylthio)-substituted perylene-3,4;9,10-tetracarboxy diimides with tunable electrochemical and photophysical properties[J]J.Org.Chem.2007,72,2402-2410.
    38.Chao C-C.,Leung M.k.Photophysical and Electrochemical Properties of 1,7-Diaryl- Substituted Perylene Diimides[J]J.Org.Chem.2005,70,4323-4331;
    (b) Qiu W-F,Chen S-Y,Sun X-B,Liu Y-Q,Zhu D-B.Suzuki Coupling Reaction of 1,6,7,12-Tetrabromoperylene Bisimide[J]Org.Lett.2006,8,867-870.
    39.Rajasingh P.,Cohen R.,Shirman E.,Shimon L.J.W.,Rybtchinski B.Selective Bromination of Perylene Diimides under Mild Conditions[J]J.Org.Chem.2007,72,5973-5979.
    40.Feng J.-Q.,Zhang Y.-X.,Zhao C.-T,Li R.-J.,Xu W.,Li X.-Y.,Jiang J.-Z.Cyclophanes of Perylene Tetracarboxylic Diimide with Different Substituents at Bay Positions [J] Chem. Eur. J. 2008, 14, 7000-7010.
    
    41. Feng J.-Q., Liang B.-L., Wang D.-L., Wu H.-X., Xue L., Li X.-Y. Synthesis and Aggregation Behavior of Perylenetetracarboxylic Diimide Trimers with Different Substituents at Bay Positions [J] Langmuir. 2008, 24, 11209-11215.
    
    42. Zugenmaier, P., Duff, J. and Bluhm, T. L. Crystal and Molecular Structures of Six Differently with Halogen Substituted Bis (benzylimido) perylene [J] Cryst. Res. Technol., 2000, 35,1095-1115
    
    43. Mullen K., DotchevaD., Soluble polyimides containing perylene units arcomol [J] Chem Phys, 1994, 195, 1905.
    
    44. Nagao,Y .,Abe,Y,;misono,T., Synthesis and properties of N-alkylbromoperylene-3,4-dicarboximides [J] Dye and Pigments. 1991,16,19.
    
    45. Klebe, G., Graster, F., Hadicke, E., et. Crystallochromy as a solid-state effect: correlation of molecular conformation, crystal packing and colour in perylene-3,4:9,10-bis(dicarboximide) pigments [J] Acta Cryst.,B . 1989, 45, 69.
    
    46. Langhals, H., Funfschiling, J., Glatz, D. Spectrochim.Acta,1988, 44A, 311;
    
    47. Ford, W.E., Kamat, H.P. V. Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 4. Spectroscopic and redox properties of oxidized and reduced forms of the bis(2,5-di-tert-butylphenyl)imide derivative [J] J. Phys. Chem., 1989, 93, 6692.
    
    48. Vichbeck, A., Goldberg, M.J., Kovac, C.A.,Electrochemical Propetries of Polyimides and Related Imide Compound [J] J. Electrochem. Soc., 1990, 137, 1460.
    
    49. Langhals, H.; Karolin, J.; Johansson, L. B.-A. J. Chem. Soc., Faradayrans [J] 1998, 94, 2919-2922.
    
    50. Sandrai, M., Hadel, L., Sauers, R. R., Husain, S., Krogh-Jespersen, K., Westbrook, J. D.; Bird, G. R. Conformational analysis. 19. 1,2-Dichlorotetrafluoroethane: molecular structure, composition, anti-gauche energy and entropy differences, and quadratic force field: An electron-diffraction and ab initio study [J] J. Phys. Chem., 1992, 96, 7988-7996.
    
    51. Zhao, Y.; Wasielewski, M. R. 3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors [J] Tetrahedron Lett. 1999, 40, 7047-7050.
    
    52. Lukas, A. S., Zhao, Y., Miller, S. E. and Wasielewski, M. R. Biomimetic Electron Transfer Using Low Energy Excited States: A Green Perylene-Based Analogue of Chlorophyll [J] J. Phys. Chem. B, 2002, 106, 1299-1306.
    
    53. Rademacher, A., Markle, S., and Langhals, H. Losliche Perylen -Fluoreszenzfarb stoffe mit hoher Photostabilitat [J] Chem. Ber, 1982, 115, 2927-2934.
    
    54. Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes [J] Chem. Eur. J. 2001, 7, 2245-2253.
    
    55. Wurthner, F. and Thalacker, C. (BASF AG), Ger.Pat. Appl., DE 10039232 A1, 2000 (Chem. Abstr., 2002, 136, 185323).
    
    56. Langhals, H. The extraordinarily high stability of cyclic carboxylic imides is reported in a review and demonstrated with the highly stable [J] Heterocycles, 1995, 40, 477-500.
    
    57. R. Gvishi, R. Reisfeld and Z. Burshtein, Spectroscopy and laser action of the "red perylimide dye" in various solvents [J] Chem. Phys. Lett., 1993, 213, 338-344.
    
    58. Ahrens, M. J.; Fuller, M. J.; Wasielewski, M. R. Cyanated Perylene-3, 4-dicarboximides and Perylene-3,4:9,10-bis(dicarboximide): Facile Chromophoric Oxidants for Organic Photonics and Electronics [J] Chem. Mater. 2003, 15, 2684-2686.
    
    59. Chiang, L.Y., Efficient reduction of aromatic bis-imide to their amine derivatives [J] Synthetic Commun., 1989, 19, 1885.
    
    60. Langhals, H.; Lander, J.; Kaisere, H.; Synthesis of nonsymmetrically substitutes pe rylene fluorescent dyes [J] Chem Ber, 1991,124, 529.
    
    61. Langhals, H.; Demmig, S. Potrawa, T. The Relation between Packing Effects and Solid State Fluorescence of Dyes [J] J. Prakt. Chem., 1991, 333, 733-748.
    
    62. Prathapan, S.; Yang, S. I.; Seth, J.; Miller, M. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads. 1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker [J] J. Phys. Chem. B., 2001, 105, 8237-8248.
    
    63. O'Neil, M. P., Niemczyk, M. P., Svec, W. A., Gosztda, D., Gaines, G. L.; Wasielewski, M. R. Picosecond Optical Switching Based on Biphotonic Excitation of an Electron Donor-Acceptor-Donor Molecule [J] Science, 1992, 257, 63-66.
    
    64. Wurthner, F.; Osswald, P.; Schmidt, R.; Kaiser, T. E.; Mansikkamaki, H.; Konemann, M. Synthesis and Optical and Electrochemical Properties of Core-Fluorinated Perylene Bisimides [J] Org. Lett. 2006, 8, 3765-3768.
    
    65. Mizuguchi J., Tojo K. Electronic structure of perylene pigments as viewed from the crystal structure and excitonic interactions [J] J. Phys. Chem B. 2002, 106, 767-772.
    
    66. Schlettwein D., Grant H., Meyer J. P., Oekermann T., Jaeger N. I. Molecular interactions in the thin films of hesadecafluorophthalocyaninatozinc(F16PcZn) as compared to islands of N,N-dimethylperylene-biscarboximde(MePTCDI) [J] J. Phys. Chem B. 1999, 103, 3078-3086.
    
    67. Kazmaler P. M., Hoffmann R. Atheoretical study of crystallochromy. Quantum interference effects in the spectra of perylene pigments [J] J. Am. Chem. Soc. 1994, 116,9684-9691.
    
    68. Adachi M., Murata Y., Nakamura S. Spectral similarity and difference of naphthalenetetracarboxylic dianhydride, perylenetetracarboxylic dianhydride, and their derivatives [J] J. Phys. Chem. 1995, 99(39), 14240-14246.
    
    69. Graser, F.; Hadicke, E., Liebigs. Ann. Chem., 1980, 1994-2011.
    
    70. Graser, F.; Hadicke, E., Liebigs. Ann.Chem., 1984, 483-494.
    
    71. Graser, F.; Hadicke, E.,Acta. Crystallogr., Sect. C, 1986,42:189-195.
    
    72. Zugenmaier, P.; Duff, J.; Bluhm, T. L. Cryst. Res. Technol., 2000,3: 1095-1115.
    
    73. Herbst, W.; Hunger, K. Industrial Organic Pigments: Production, Properties, Applications [M] 2nd edn., WILEY-VCH,Weinheim, 1997.
    
    74. Kazmaier, P.M.; Hoffmann, R. A Theoretical Study of Crystallochromy Quantum Interference Effects in the Spectra of Perylene Pigments[J]J.Am.Chem.Soc.,1994,116:9684-9691.
    75.W(u|¨)rthner,F.;Thalacker,C.;Diele,S.;Tschierske,C.Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes [J]Chem.Eur.J.,2001,7:2245-2253.
    76.W(u|¨)rthner,F.;Thalacker,C.(BASF AG),Ger.Pat.Appl.,DE 10039232 A1,2000(Chem.Abstr.,2002,136:185323).
    77.Chen,Z.;Debije,M.;Debaerdemaeker,T.;Osswald,P.W(u|¨)rthner,F.Tetrachloro-substituted Perylene Bisimide Dyes as Promising n-Type Organic Semiconductors:Studies on Structural,Electrochemical and Charge Transport Properties[J]ChemPhysChem,2004,5:137-140.
    78.Neuteboom,E.;Meskers,S.C.J.;Meijer,E.W.;Janssen,R.A.J.Photoluminescence of Self-organized Perylene Bisimide Polymers[J]Macromol.Chem.Phys.,2004,205,217-222.
    79..R E.Blankenship,Molecular Mechanisms of Photosynthesis[M]Blackwell Science:Oxford,2002.
    80.K.N.Ferreira,T.M.Iverson,K.Maghlaoui,J.Barber,S.Iwata,Architecture of the Photosynthetic Oxygen-Evolving Center[J]Science,2004,303,1831-1838.
    81.J.Deisenhofer,O.Epp,K.Miki,R.Huber,H.Michel,X-ray structure analysis of a membrane protein complex:Electron density map at 3(?) resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis[J]J.Mol.Biol.,1984,180,385-398.
    82.J.P.Allen,G.Feher,T.O.Yeates,H.Komiya,D.C.Rees,Structure of the Reaction Center from Rhodobacter Sphaeroides R-26:The Cofactors[J]Proc.Natl.Acad.Sci.,U.S.A.1987,84,5730-5734.
    83.C.H.Chang,O.El-Kabban,D.Tiede,J.Norris,M.Schiffer,Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides[J]Biochemistry 1991,30,5352-5360
    84.上海植物研究所,中科院北京植物研究所[M]《光合作用研究进展》,第一 集
    85.Y.Bai,T.R.sosnick,L.Mayne,S.W.Englander,proteinfoldingintermediates studied by nativestate.,hydrogen exchange[J]Science 1995(269):192-197.Y.Bai,W.Englander,Futuredirectionsinfelding:the multi-state nature of Protein structure[J]Proteins 1996(24):145
    86.J.Deisenhoper,O.Epp,K.Miki,R.Huver,H.Michel,Structure of the protein subunits in the photosynthetic reaction centers of the Rhodopseudomonas viridis at 3(?),resolution[J]Nature,1985,318,618-624.
    87.田宏健博士论文,中科院感光化学研究所,1993年,p5.
    88.N.J.Turro,Modern Molecular Photochemistry,Bejamin/Cummings;Menlo Park,CA,1978
    89.(a) Li X.,Sinks L.E.,Rybtchinski B.,Wasielewski M.R.Ultrafast aggregate -to - aggregate energy transfer within self-assembled light-Harvesting columns of Zinc phthalocyanine tetrakis(perylenediimide).J.Am.Chem.Soc.2004,126,10810-10811;
    (b)Rybtchinski B.,Sinks L.E.,Wasielewski M.R.Combining Light-harvesting and charge separation in a self-Assembled artificial photosynthetic system based on perylenediimide chromophores[J]J.Am.Chem.Soc.2004,126,12268-12269
    90.Rybtchinski B.,Sinks L.E.,Wasielewski,M.R.Photoinduced electron transfer in self-assembled dimers of 3-fold symmetric donor-acceptor molecules based on perylene-3,4:9,10-bis(dicarboximide)[J]J.Phys.Chem.A 2004,108,7497-7505.
    91.Sautter A.,Kaletas B.K.,Schmid D.G.,Dobrawa R.,Zimine M.,Jung G.,Stokkum Ivo H.M.van,Cola L.D.,Williams R.M.,and W(u|¨)rthner F.Ultrafast energy-electron transfer cascade in a multichromophoric light-harvesting molecular square[J]J.Am.Chem.Soc.2005,127,6719-6729.
    92.You C-C.,W(u|¨)rthner F.Self-Assembly of ferrocene-functionalized perylene bisimide bridging ligands with Pt(Ⅱ) comer to electrochemically active molecular squares[J]J.Am.Chem.Soc.2003,125,9716-9725.
    93. Yan P., Chowdhury A., Holman M. W., Adams D. M. Self-organized perylene diimide nanofibers [J] J. Phys. Chem. B 2005, 109, 724-730.
    
    94. M.DenizYilmaz,O.AltanBozdemir, and EnginU.Akkaya*Light Harvesting and Efficient Energy Transferin a Boron-dipyrrin(BODIPY) Functionalized Perylenediimide Derivative [J] Organic Letters 2006 Vol.8,No.13 2871-2873
    
    95. Ishi-i T., Murakami K., Imai Y., Mataka S. Light-harvesting and energy-transfer system based on self-assembling perylene diimide-appended hexaazatriphenylene [J] Org. Lett. 2005, 7, 3175-3178.
    
    96. Sugiyasu K., Fujita N., Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives [J] Angew. Chem. Int. Ed. 2004, 43, 1229-1229.
    
    97. van der Boom T., Hayes R. T., Zhao Y., Bushard P. J., Weiss E. A., Wasielewski, M. R Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis (perylenediimide)porphyrin building blocks [J] J. Am. Chem. Soc. 2002, 124, 9582-9590.
    
    98. Wasielewski M. R. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis [J] J. Org. Chem. 2006, 71,5051-5066.
    
    99. Cormier R. A., Gregg B. A. Self-organization in thin films of liquid crystalline perylene diimides [J] J. Phys. Chem. B 1997, 101,11004-11006.
    
    100.Struijk C. W., Sieval A. B., Dakhorst J. E. J., van Dijk M., Kimkes P., Koehorst R. B. M., Donker H., Schaafsma T. J., Picken S. J., van de Craats A. M., Warman J. M., Zuilhof H., Sudholter E. J. R. Liquid crystalline perylene diimides: architecture and charge carrier mobilities [J] J. Am. Chem. Soc. 2000, 122, 11057-11066.
    
    101.Cormier R. A., Gregg B. A. Synthesis and characterization of liquid crystalline perylene diimides [J] Chem. Mater. 1998, 10, 1309-1319.
    
    102.Liu S.-G., Sui G., Cormier R. A., Leblanc R. M., Gregg B. A.. Self-organizing liquid crystal perylene diimide thin films: Spectroscopy, crystallinity, and molecular orientation [J] J. Phys. Chem. B 2002, 106, 1307-1315.
    103.Peeters E., van Hal P. A., Meskers S. C. J., Janssen R. A. J., Meijer E. W. Photoinduced electron transfer in a mesogenic donor- acceptor - donor system [J] Chem. Eur. J. 2002, 8, 4470-4474.
    104.Beckers E. H. A., Meskers S. C. J., Schenning A. P. H. J., Chen Z. -J., Wurthner F., Marsal P., Beljonne D., Cornil J., Janssen R. J. Influence of intermolecular orientation on the photoinduced charge transfer kinetics in self-assembled aggregates of donor-acceptor arrays [J] J. Am. Chem. Soc. 2006, 128, 649-657.
    105.Schenning A. P. H. J., Herrikhuyzen J. V., Jonkheijm P., Chen Z. -J., Wurthner F., Meijer E. W. Photoinduced electron transfer in hydrogen-bonded oligo(p-phenylene vinylene)-perylene bisimide chiral assemblies [J] J. Am. Chem. Soc. 2002, 124, 10252-10253.
    106.Jonkheijm P., Stutzmann N., Chen Z. -J, de Leeuw D. M., Meijer E. W., Schenning A. P. H. J., Wurthner F. Control of ambipolar thin film architectures by co-self-assembling oligo (p-phenylenevinylene)s and perylene bisimides [J] J. Am. Chem. Soc. 2006, 128, 9535-9540.
    107.Beckers E. H. A., Chen Z. -J, Meskers S. C. J., Jonkheijm P., Schenning A. P. H. J., Li X-Q, Osswald P., Wulrthner F., Janssen R. A. J. The importance of nanoscopic ordering on the kinetics of photoinduced charge transfer in aggregated π -conjugated hydrogen-bonded donor-acceptor systems [J] J. Phys. Chem. B 2006, 110, 16967-16978.
    108.De Feyter S., Miura A., Yao S., Chen Z. -J., Wurthner F., Jonkheijm P., Schenning A. P. H. J., Meijer E. W., De Schryver F. C. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures [J] Nano. Lett. 2005, 5, 77-81.
    109.Thalacker C., Sautter A. Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and p-n- interactions [J] Adv. Mater. 1999, 11, 754-758.
    110.Wurthner F., Bertil H., Marina L., Geoffrey L., Gregory S. H. Gelation of a highly fluorescent urea-functionalized perylene bisimide dye [J] Org. Lett. 2005, 7, 967-970.
    111.Sinks L.E.,Rybtchinski B.,Iimura M.,Jones B.A.,Goshe A.J.,Zuo X.-B.,Tiede D.M,Li X-Y.,Wasielewski M R.Self-assembly of photofunctional cylindrical nanostructures based on perylene-3,4:9,10-bis(dicarboximide)[J]Chem.Mater.2005,17,6295-6303.
    112.Tang T.-J.,Qu J.-Q.,Müllen K.,Webber S.E.Molecular layer-by-layer self-assembly of water-soluble perylene diimides through π-π and electrostatic interactions[J]Langmuir.2006,22,26-28.
    113.Locklin,J.;Li,D.W.;Mannsfeld,S.C.B.;Borkent,E.J.;Meng,H.;Advincula,R.;Bao,Z.Organic Thin Film Transistors Based on Cyclohexyl-Substituted Organic Semiconductors[J]Chem.Mater.2005,17,3366.
    114.Chesterfield,R.J.;McKeen,J.;Newman,C.R.;Frisbie,C.D.Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors[J]J.Appl.Phys.2004,95,6396.
    115.Malenfant,P.R.L.;Dimitrakopoulos,C.D.;Gelorme,J.D.;Kosbar,L.L.;Graham,T.O.;Curioni,A.;Andreoni,W.,N-type organic thin-film transistor with high field-effect mobility based on a N,N-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative[J]Appl.Phys.Lett.2002,80,2517-2519
    116.Jones,B.A.;Ahrens,M.J.;Yoon,M.;Facchetti,A.;Marks,T.J.;Wasielewski,M.R.High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility:Dicyanoperylene-3,4:9,10-bis(dicarboximides).Angew.Chem.Int.Ed.2004,43,6363-6366 Chen,H.Z.;Ling,M.M.;Mo,X.;Shi,M.M.;Wang,M.and Bao,Z.Air Stable n-Channel Organic Semiconductors for Thin Film Transistors Based on Fluorinated Derivatives of Perylene Diimides[J]Chem.Mater.2007,19,$16-824
    117.Jones,B.A.;Ahrens,M.J.;Yoon,M.;Facchetti,A.;Marks,T.J.;Wasielewski,M.R.High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility:Dicyanoperylene-3,4:9,10-bis(dicarboximides)[J]Angew.Chem.Int.Ed.2004,43,6363 -6366
    118.Chen,H.Z.;Ling,M.M.;Mo,X.;Shi,M M.;Wang,M.and Bao,Z.Air Stable n-Channel Organic Semiconductors for Thin Film Transistors Based on Fluorinated Derivatives of Perylene Diimides[J]Chem.Mater.2007,19,816-824
    119.Ling,M.M.;Erk,P.;Koenemann,G.;Locklin,M.and Bao,Z.Air-Stable n-Channel Organic Semiconductors Based on Perylene Diimide Derivatives without Strong Electron-Withdrawing Groups[J]Adv.Mater.2007,19,1123.
    120.Tang C.W.,Two-layer organic photovoltaic cell[J]Appl Phys.Lett,1986,48,183
    121.Schouwink,P.;Schafer,A.H.;Seidel,C.;Fuchs,H.The influence of molecular aggregation on the device properties of organic light emitting diodes[J]Thin Solid Films.2000,372,163-168.
    122.Schmidt-Mende,L.;Fechtenkotter,A.;Mullen,K.;Moons,E.;Friend,R.H.;Mackenzie,J.D.,Self-organized discotic liquid crystals for high-effiency organic photovoltaics[J]Science,2001,293,1119-1122.
    123.Shamrakov,D.;Reisfeld,R.,Superradiant film laser operation in red perylimide dye doped silica-polymethylmethacrylate composit[J]Chem.Phys.Lett.,1993,213,47
    124.葛培根《光合作用》[M]合肥:安徽人民教育出版社,1991,349
    125.Hippius,F.Schlosser,F.Wurthner,Energy Transfer in Calixarene-Based Cofacial-Positioned Perylene Bisimide Arrays[J]J.Am.Chem.Soc.2006,128,3870-3871.
    126.Serin,J.M.;Brousmiche,D.W.;Frechet,J.M.J.Cascade energy transfer in a conformationally mobile multichromophoric dendrimer[J]Chem.Commun.2002,2605-2607
    127.Sugiyasu,K.;Fujita,N.and Shinkai,S.,Visible-Light-Harvesting Organogel Composed of Cholesterol-Based Perylene Derivatives[J]Angew.Chem.Int.Ed.2004,43,1229-1233.
    128.He,X.;Liu,H.;Li,Y.;Wang,S.;Wang,N.;Xu,X.;Zhu,D.Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(H) Ions [J]Adv.Mater.2005,17,2811-2815.
    129.E. A. Weiss, M. J. Ahrens, L. E. Sinks, A. V. Gusev, M. A. Ratner, M. R. Wasielewski, Making a Molecular Wire: Charge and Spin Transport through para-Phenylene Oligomers [J] J.Am. Chem. Soc. 2004, 126, 5577-5584.
    
    130.Goldsmith R. H., Sinks L. E., Kelley R. F., Betzen L. J., Liu W. H., Weiss E. A., Ratner M. A., Wasielewski M. R. Wire-like charge transport at near constant bridge energy through fluorene oligomers [J] Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3540-3545.
    
    131.Miller M., Lammi R. Prathapan K., S., Holten D., Londsey J. S. A tightly coupled linear array of perylene, bis(porphyrin), and phthalocyanine units that functions as a photoinduced energy-transfer cascade [J] J. Org. Chem. 2000, 65, 6634-6638.
    (1)Gamier,F.Organic-Based Electronics a la Carte[J]Acc.Chem.Res.1999,32,209-215.
    (2)Horowitz,G..Organic Field-Effect Transistors[J]Adv.Mater.1998,10,365-377.
    (3)O'Neil,M.;Kelly,S.M.Liquid Crystals for Charge Transport,Luminescence,and Photonics[J]Adv.Mater.2003,15,1135-1146.
    (4)Perepichka,I.F.;Perepichka,D.F.;Meng,H.;Wudl.F.Light-Emitting Polythiophenes[J]Adv.Mater.2005,17,2281-2305.
    (5)Sun,Y.;Liu,Y.;Zhu,D.Advances in organic field-effect transistors[J]J.Mater.Chem.2005,15,53-65.
    (6)Gundlach,D.J.;Lin,Y.Y.;Jackson,T.N.;Nelson,S.F.;Schlom,D.G Pentacene organic thin-film transistors-molecular ordering and mobility[J]IEEE Electron Device Lett.1997,18,87-89.
    (7)Lin,Y.Y.;Gundlach,D.J.;Nelson,S.F.;Jackson,T.N.Stacked pentacene layer organic thin-film transistors with improved characteristics[J]IEEE Electron Device Lett.1997,18,606-608.
    (8)Afzali,A.;Dimitrakopoulos,C.D.;Breen,T.L.High-Performance,Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor[J]J.Am.Chem.Soc.2002,124,8812-8813.
    (9)Mas-Torrent,M.;Durkut,M.;Hadley,P.;Ribas,X.;Rovira,C.High Mobility of Dithiophene-Tetrathiafulvalene Single-Crystal Organic Field Effect Transistors [J]J.Am.Chem.Soc.2004,126,984-985.
    (10)Dimitrakopoulos,C.D.;Brown,A.R.;Pomp,A.Molecular beam deposited thin films ofpentacene for organic field effect transistor applications[J]J.Appl.Phys.1996,80,2501-2508.
    (11)Dimitrakopoulos,C.D.;Mascaro,D.J.Organic thin-film transistors:A review of recent advances [J] IBM J. Res. Dev. 2001, 45,11-27.
    
    (12) Xiao, K.; Liu, Y. Q.; Yu, G.; Zhu, D. B. Influence of the substrate temperature during deposition on film characteristics of copper phthalocyanine and field-effect transistor properties [J] Appl. Phys. A 2003, 77, 367-370.
    
    (13) Bendikov, M.; Wudl, E; Perepichka, D. F. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics [J] Chem. Rev. 2004, 104, 4891-4945.
    
    (14) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Hutchison, G.R.; Ratner, M. A.; Marks, T. J. Building Blocks for N-Type Molecular and Polymeric Electronics. Perfluoroalkyl- versus Alkyl-Functionalized Oligothiophenes (nTs; n = 2-6). Systematic Synthesis, Spectroscopy, Electrochemistry, and Solid-State Organization [J] J. Am. Chem. Soc. 2004, 126, 13480-13501.
    
    (15) Kwon, O.; Coropceanu, V.; Gruhn, N. E.; Durivage, J. C.; Laquindanum, J. G.; Katz, H. E.; Cornil, J.; Bredas, J. L. Characterization of the molecular parameters determining charge transport in anthradithiophene [J] J. Chem. Phys. 2004, 120, 8186-8194.
    
    (16) Hutchison, G.R.; Ratner, M. A.; Marks, T. J. Intermolecular Charge Transfer between Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing on Hopping Transport in Organic Semiconductors [J] J. Am. Chem. Soc. 2005, 127, 16866-16881.
    
    (17) Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Ponomarenko, S.; Kirchmeyer, S.; Weber, W. Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors [J] Adv. Mater. 2003, 15,917-922.
    
    (18) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Katz, H. E.; Marks, T. J. Building Blocks for n-Type Organic Electronics: Regiochemically Modulated Inversion of Majority Carrier Sign in Perfluoroarene-Modified Polythiophene Semiconductors [J] Angew. Chem. Int. Ed. 2003, 42, 3900-3903.
    
    (19) Miao, Q.; Lefenfeld, M.; Nguyen, T.-Q.; Siegrist, T.; Kloc, C.; Nuckolls, C. Self-Assembly and Electronics of Dipolar Linear Acenes [J] Adv. Mater. 2005, 17,407-412.
    (20)Anthony,J.E.;Eaton,D.L.;Parkin,S.R.ARoad Map to Stable,Soluble,Easily Crystallized Pentacene Derivatives[J]Org.Lett.2002,4,15-18.
    (21)Anthony,J.E.;Brooks,J.S.;Eaton,D.L.;Parkin,S.R.Functionalized Pentacene:Improved Electronic Properties from Control of Solid-State Order [J]J.Am.Chem.Soc.2001,123,9482-9483.
    (22)Meng,H.;Bendikov,M.;Mitchell,G.;Holgeson,R.;Wudl,F.;Bao,Z.;Siegrist,T.;Kloc,C.;Chen,C.-H.Tetramethylpentacene:Remarkable Absence of Steric Effect on Field Effect Mobility[J]Adv.Mater.2003,15,1090-1093.
    (23)Simpson,C.D.;Wu,J.;Watson,M.D.;Müllen,K.From graphite molecules to columnar superstructures - an exercise in nanoscience[J]J.Mater Chem.2004,14,494-504.
    (24)An,Z.;Yu,J.;Jones,S.C.;Barlow,S.;Yoo,S.;Domercq,B.;Prins,P.;Siebbeles,L.D.A.;Kippelen,B.;Marder,S.R.High Electron Mobility in Room-Temperature Discotic Liquid-Crystalline Perylene Diimides[J]Adv.Mater.2005,17,2580-2583.
    (25)Videlet,C.;Ackermann,J.;Blanchard,P.;Raimundo,J.M.;Frere,P.;Allian,M.;Bettignies,R.;Levilliain,E.;Roncali,J.Field-Effect Transistors Based on Oligothienylenevinylenes:From Solution π-Dimers to High-Mobility Organic Semiconductors[J]Adv.Mater.2003,15,306-310.
    (26) Sokolov,A.N.;Friscic,T.L.;MacGillivray,R.Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals[J]J.Am.Chem.Soc.2006,128,2806-2807.
    (27)Würthner,F.Plastic Transistors Reach Maturity for Mass Applications in Microelectronics[J]Angew.Chem.Int.Ed.2001,40,1037-1039.
    (28)Kraft,A.Organic Field-Effect Transistors - The Breakthrough at Last[J]ChemPhysChem 2001,2,163-165.
    (29)Dimitrakopoulos,C.D.;Malenfant,P.R.L.Organic Thin Film Transistors for Large Area Electronics[J]Adv.Mater.2002,14,99-117.
    (30) Locklin, X.; Li, D.; Mannsfeld, S. C. B.; Borkent, E.-J.; Meng, H.; Advincula, R.; Bao, Z. Organic Thin Film Transistors Based on Cyclohexyl-Substituted Organic Semiconductors [J] Chem. Mater. 2005, 17, 3366-3374.
    
    (31) Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E. J.; Von Dijk, M.; Kimkes, P.; Koehorst, R. B. M.; Donker, H.; Schaafsma, T. J.; Picken, S. J.; Van de Craats, A. M.; Warman, J. M.; Zuilhof, H.; Sudholter, E. J. R. Liquid Crystalline Perylene Diimides: Architecture and Charge Carrier Mobilities [J] J. Am. Chem. Soc. 2000, 122, 11057-11066.
    
    (32) Chen, Z.; Debije, M. G.; Debaerdemaeker, T.; Osswald, P.; Wurthner, F. Tetrachloro-substituted Perylene Bisimide Dyes as Promising n-Type Organic Semiconductors: Studies on Structural, Electrochemical and Charge Transport Properties [J] ChemPhysChem 2004, 5, 137-140.
    
    (33) Jones, B. A; Ahrens, M. J.; Yoon, M. -H.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides) [J] Angew. Chem. Int. Ed. 2004,43, 6363-6366.
    
    (34) Singh, T. B.; Erten, S.; Gunes, S.; Zafer, C.; Turkmen, G..; Kuban, B.; Teoman, Y.; Sariciftci, N.S.; Icli, S. [J] Org. Electron. 2006, 7,480 - 489.
    
    (35) Gritzner, G. Polarographic half-wave potentials of cations in nonaqueous solvents [J] Pure Appl. Chem. 1990, 62, 1839.
    
    (36) Honig, E. P.; Hengst, J. H. T.; Engelsen, D. D. Langmuir-blodgett deposition ratios [J] J. Colloid Interface Sci. 1973, 45, 92-102.
    
    (37) Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G.; Liu, Y. Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes [J] Langmuir 2005, 21, 6527-6531.
    
    (38) Bielejewska, A. G.; Marjo, C. E.; Prins, L. J.; Timmerman, P.; Jong, F.; Reinhoudt, D. N. Thermodynamic Stabilities of Linear and Crinkled Tapes and Cyclic Rosettes in Melamine-Cyanurate Assemblies: A Model Description [J] J. Am. Chem. Soc. 2001, 123, 7518-7533.
    
    (39) Wurthner, F.; Thalacker, C.; Sautter, A. Hierarchical Organization of Functional Perylene Chromophores to Mesoscopic Superstructures by Hydrogen Bonding and π-π Interactions [J] Adv. Mater. 1999, 11, 754-758.
    
    (40) van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss, E. A.; Wasielewski, M. R. Charge Transport in Photofunctional Nanoparticles Self-Assembled from Zinc 5,10,15,20-Tetrakis(perylenediimide)porphyrin Building Blocks [J] J. Am. Chem. Soc. 2002, 124, 9582-9590.
    
    (41) Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M. Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates [J] Acc. Chem. Res. 1995, 28, 37-44.
    
    (42) Lehn, J.-M. Supramolecular Chemistry, VCH, Weinheim [M] 1995, 161-179.
    
    (43) Seto, C. T.; Whitesides, G.M. Molecular self-assembly through hydrogen bonding: supramolecular aggregates based on the cyanuric acid-melamine lattice [J] J. Am. Chem. Soc. 1993, 115, 905-906.
    
    (44) Whitesides, G.M.; Mathias, J. P.; Simanek, E. E. Self-Assembly through Hydrogen Bonding: Peripheral Crowding - A New Strategy for the Preparation of Stable Supramolecular Aggregates Based on Parallel, Connected CA3.cntdot.M3 Rosettes [J] J. Am. Chem. Soc. 1994, 116, 4326-4330.
    
    (45) Mammen, M.; Simanek, E. E.; Whitesides, G.M. Predicting the Relative Stabilities of Multiparticle Hydrogen-Bonded Aggregates Based on the Number of Hydrogen Bonds and the Number of Particles and Measuring These Stabilities with Titrations Using Dimethyl Sulfoxide [J] J. Am. Chem. Soc. 1996, 118, 12614-12623.
    
    (46) Ishi-i, T.; Crego-Calama, M.; Timmerman, P.; Reinhoudt, D. N.; Shinkai, S. Enantioselective Formation of a Dynamic Hydrogen-Bonded Assembly Based on the Chiral Memory Concept [J] J. Am. Chem. Soc. 2002, 124, 14631-14641.
    
    (47) Ni, Y.; Puthenkovilakom, R. R.; Huo, Q. Synthesis and Supramolecular Self-Assembly Study of a Novel Porphyrin Molecule in Langmuir and Langmuir-Blodgett Films [J] Langmuir 2004, 20, 2765-2771.
    (48)Weck,M.;Fink,R.;Ringsdorf,H.Molecular Recognition via Hydrogen Bonding at the Air-Water Interface:An Isotherm and Fourier Transform Infrared Reflection Spectroscopy Study[J]Langmuir 1997,13,3515-3522.
    (49)Koyano,H.;Bissel,P.;Yoshihara,K.;Ariga,K.;Kunitake,T.Effect of Melamine-Amphiphile Structure on the Extent of Two-Dimensional Hydrogen-Bonded Networks Incorporating Barbituric Acid[J]Chem.Eur.J.1997,3,1077-1082.
    (50)Huo,Q.;Russell,K.C.;Leblanc,R.M.Effect of Complementary Hydrogen Bonding Additives in Subphase on the Structure and Properties of the 2-Amino-4,6-dioctadecylamino-1,3,5-triazine Amphiphile at the Air-Water Interface:Studies by Ultraviolet-Visible Absorption Spectroscopy and Brewster Angle Microscopy[J]Langmuir 1998,14,2174-2186.
    (51)Huo,Q.;Dziri L.;Desbat,B.;Russell,K.C.;Leblanc,R.M.Polarization-Modulated Infrared Reflection Absorption Spectroscopic Studies of a Hydrogen-Bonding Network at the Air-Water Interface[J]J.Phys.Chem.B 1999,103,2929-2934.
    (52)Hasegawa,T.;Hatada,Y.;Nishijo,J.;Umemura,J.;Huo,Q.;Leblanc,R.M.Hydrogen Bonding Network Formed between Accumulated Langmuir-Blodgett Films of Barbituric Acid and Triaminotriazine Derivatives[J]J.Phys.Chem.B 1999,103,7505-7513.
    (53)(a) Y.Wang,Y.Chen,R Li,Sh.Wang,W.Su,P.Ma,M.R.Wasielewski,X.Li,J.Jiang,Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor[J]Langmuir,2007,23,5836-5842.
    (b) Ch.Zhao,Y.Zhang,R.Li,X.Li,J.Jiang,Di(alkoxy)- and Di(alkylthio)-Substituted Perylene-3,4;9,10-tetracarboxy Diimides with Tunable Electrochemical and Photophysical Properties[J]J.Org.Chem.2007,72,2402-2410.
    (54) C.C.Chao,M.K.Leung,Y.O.Su,K.Y.Chiu,T.-H.Lin,S.J.Shieh,S.C Lin,Photophysical and Electrochemica Properties of 1,7-Diaryl-Substituted Perylene Diimides[J]J.Org.Chem.,2005,70,4323-4331
    (55) Y.Wang,Y.Chen,R.Li,Sh.Wang,W.Su,P.Ma,M.R.Wasielewski,X.Li,J.Jiang,Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor[J]Langmuir,2007,23,5836-5842.
    (56) Kasha,M.;Rawls,H.R.;E1-Bayoumi,M.A.The Excition Model Molecular Spectroscopy[J]Pure Appl.Chem.1965,11,371-392.
    (57) Ahren,M.J.;Sinks,L.E.;Rybtchinski,B.;Liu,W.;Jones,B.A.;Giaimo,J.M.;Gusev,A.V.;Goshe,A.;Tiede,D.M.;Wasielewki,M.R.Self-Assembly of Supramolecular Light-Harvesting Arrays from Covalent Multi-Chromophore Perylene-3,4:9,10-bis(dicarboximide) Building Blocks[J]J.Am.Chem Soc.2004,126,8284-8294.
    (58) AM1 calculations were performed using HyperChem(TM),Hypercube,Inc.,1115 NW 1114th Street,Gainesville,Florida 32601,USA.
    (59)(a)Franz Lux.U.-E.Bufe.Isocyanide Complexes of Thorium and Uranium Halides,Isocyanide Complexes of Thorium and Uranium Halides[J]Angew.Chem.Int.Ed.Eng.1971,10,274-275.
    (b).H.Fendler,Membrane Mimetic Chemistry,John Wiley & Sons,New York,1982,Chapter,p78-79.
    (c)W.D.Harkins,Physical Chemistry of Surface Films,Reinhold,New York,1952.
    (d) A.W.Adamson,Physical Chemistry of Surface,4th edition,John Wiley,New York,1982.
    (60)(a)沈家骢,张希等,分子沉积膜[J]自然科学进展,1997,7(1),1.
    (b)D.Tabor,Babylonian lecanomancy:An ancient text on the spreading of oil on water[J]J.Colloid Interface S ci.,1980,75,240-245.
    (60)隋森芳,王少鹏,LB膜及其在生物学中的应用[J]生物工程进展,1991,58(1),1
    (62)(a)I.Langmuir The constitution and fundamental properties of solids and liquids.Ⅱ,liquids[J]J.Am.Chem.Soc.,1917,39,1848-1906.
    (b)K.Blodgett,Films Built by Depositing Successive Monomolecular Layers on a Solid Surface[J]J.Am.ChemSoc.,1935,57,1007-1022;
    (c),K.Blodgett,Monomolecular films of fatty acids on glass[J]J.Am.Chem.Soc. 1934,56,495-495.
    
    (63) Ulman, A. An Introduction to Ultrathin Organic Film: from Langmuir-Blodgett to Self-assembly [J] Academic Press: San Diego, 1991.
    
    (64) Petty, M. C. Possible applications for Langmuir-Blodgett films [J] Thin solid films 1992,210-211,417-426.
    
    (65) S. M. Sze, Physics of Semiconductor Devices; [M] John Wiley & Sons: New York, 1981.
    
    (66) Carrie L. Donley, Wei Xia, Britt A. Minch, Rebecca A. P. Zangmeister,Anthony S. Drager, Kenneth Nebesny, David F. O'Brien, and Neal R. Armstrong Thin Films of Polymerized Rodlike Phthalocyanine Aggregates [J] Langmuir 2003, 19, 6512-6522
    
    (67) Katz, H. E.; Bao, Z. N.; Gilat, S. L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors [J] Acc. Chem. Res. 2001, 34, 359-369.
    
    (68) Facchetti, A.; Deng, Y.; Wang, A.; Koide, Y.; Sirringhaus, H.; Marks, T. J.; Friend, R. H. Tuning the Semiconducting Properties of Sexithiophene by α,ω -Substitution - α, ω -Diperfluorohexylsexithiophene: The First n-Type Sexithiophene for Thin-Film Transistors [J] Angew. Chem. Int. Ed. 2000, 39, 4547-4551.
    
    (69) Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility [J] Adv. Mater. 2003, 15, 33-38.
    
    (70) Bao, Z. N.; Lovinger, A. J.; Dodabalapur, A. Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors [J] Adv. Mater. 1997, 9, 42-44.
    1. Energy Information Administration (2005) Annual Energy Outlook. (US Dept of Energy,Washington, DC)
    
    2. Hoffert, M. I.; Caldeira, K.; Jain, A. K.; Haites, E. F.; Harvey, L. D. D.; Potter, S. D.;Schlesinger, M. E.; Schneider, S. H.; Watts, R. G.; Wigley, T. M. L.; Wuebbles, D. J., Energy implications of future stabilization of atmospheric CO2 content [J] Nature 1998, 395,881-884.
    
    3. United Nations Development Program (2003) World Energy Assessment Report: Energy and the Challengeof Sustainability.
    
    4. Wigley,T.M. L.; Richels, R.; Edmonds,J.A, Economic and environmental choices in the stabilization of atmospheric CO2 concentrations [J] Nature 1996,379,240-243
    
    5. Lewis,N.S.; Nocera, D.G.,Proc.Natl.Acad. Sci.U.S.A.2006,103,15729-15735
    
    6. Shaheen,S.E.; Ginley,D.S.; Jabbour,G.E.,Mater.Res.Bull.2005,30,10-19
    
    7. Peumans,P.; Yakimov,A; Forrest,S.R.,J.Appl.Phys.2003,93,3693-3723
    
    8. Lakowicz, J. R., Principles of Fluorescence Spectroscopy, ed.; Kluwer: Dordrecht,
    
    9. .Gobets, B.; vanGrondelle, R.,Biochim.Biophys.Acta 2001,1507,80-99
    
    10. C. C. Chao, M. K. Leung, Y. O. Su, K. Y. Chiu, T.-H. Lin, S. J. Shieh, S. C Lin, Photophysical and Electrochemica Properties of 1, 7-Diaryl-Substituted Perylene Diimides, J. Org. Chem., 2005, 70, 4323-4331
    
    11. Y. Wang, Y. Chen, R. Li, Sh. Wang, W. Su, P. Ma, M. R. Wasielewski, X. Li, J. Jiang , Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor, Langmuir, 2007, 23, 5836-5842.
    
    12. McLuskey, K.; Prince, S. M.; Cogdell, R. J.; Isaacs, N. W. Biochemistry 2001, 40, 8783-8789.
    
    13. Han, J.; Wang, W.; Li, A. D. Q. Folding and Unfolding of Chromophoric Foldamers Show Unusual Colorful Single Molecule Spectral Dynamics [J] J. Am.Chem.Soc.,2006,128,672-673.
    14.Giaimo,J.M.;Lockard,J.V.;Sinks,L.E.;Scott,A.M.;Wilson,T.M.;Wasielewski,M.R.Excited Singlet States of Covalently Bound,Cofacial Dimers and Trimers of Perylene-3,4:9,10-bis(dicarboximide)s[J]J.Phys.Chem.A 2008,112,2322-2330.
    15.Wang,Y.;Chen,Y.;Li,R.;Wang,S.;Su,W.;Ma,P.;Wasielewski,M.R.;Li,X.;Jiang,J.Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor[J]Langmuir 2007,23,5836-5842.
    16.Wasielewski,M.R.J.Org.Chem.2006,71,5051-5066.(b) Gust,D.;Moore,T.A.;Moore,A.L.Mimicking Photosynthetic Solar Energy Transduction[J]Acc.Chem.Res.2001,34,40-48.
    17.(a) Rybtchinski,B.;Sinks,L.E.;Wasielewski.M.R.Combining Light-Harvesting and Charge Separation in a Self-Assembled Artificial Photosynthetic System Based on Perylenediimide Chromophores[J]J.Am.Chem.Soc.2004,126,12268-12269.
    (b) Wang,W.;Wan,W.;Zhou,H.H.;Niu,S.;Li,A.D.Q.Alternating DNA and n-Conjugated Sequences.Thermophilic Foldable Polymers[J]J.Am.Chem.Soc.2003,125,5248-5249.
    18.(a) Zhang,L.;Yang,J.;Wang,L.;Yang,G;Weng,Y.Direct Observation of Interracial Charge Recombination to the Excited-Triplet State in All-trans-Retinoic Acid Sensitized TiO2 Nanoparticles by Femtosecond Time-Resolved Difference Absorption Spectroscopy[J]J.Phys.Chem.B,2003,107,13688-13697.
    (b) Chen,X.;Zhang,L.;Weng,Y.;Du,L.;Ye,M.;Yang,G;Fujii,R.;Rondonuwu,F.S.;Koyama,Y.;Wu,S.;Zhang,J.Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State.[J]Biophys.J.2005,88,4262-4273.
    1. Baral, S.; Fojtik, W. H. Photochemistry and radiation chemistry of colloidal semiconductors. 12. Intermediates of the oxidation of extremely small particles of cadmium sulfide, zinc sulfide, and tricadmium diphosphide and size quantization effects (a pulse radiolysis study). [J] J. Am. Chem. Soc. 1986, 108, 375-378.
    
    2. Heng, L. A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles . Chem. Rev. 1989, 89, 1861-1873.
    
    3. Sclafani, A.; Palmisano, L.; Schiavello, M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion . [J] J. Phys. Chem. 1990, 94, 829-832.
    
    4. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. [J] Science 1996, 271, 933-937.
    
    5. Serpone, N.; Lawless, D.; Khairutdinov, R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? [J] J. Phys. Chem. 1995, 99, 16646-16649.
    
    6. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. [J] Nature 1994, 370, 354-357.
    
    7. Linsebigler, A. L.; Lu, G.; Yates, Jr. J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results . [J] Chem. Rev. 1995, 95, 735-738.
    
    8. Hagfeldt, A.; Gratzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. [J] Chem. Rev. 1995, 95, 49-68.
    
    9. Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. [J] Chem. Rev. 1993, 93, 341-357.
    
    10. Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle. [J] J. Phys. Chem. B 2003, 107, 1028-1035.
    
    11. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. [J] Nature 1997,388,431-432.
    
    12. Feng, X.; Zhai, J.; Jiang, L. The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films. [J] Angew. Chem. Int. Ed. 2005, 44,5115-5118.
    
    13. Zhang, X.; Jin, M.; Liu, Z.; Tryk, D. A.; Nishimoto, S.; Murakami, T.; Fujishima, A. Superhydrophobic TiO2 Surfaces: Preparation, Photocatalytic Wettability Conversion, and Superhydrophobic-Superhydrophilic Patterning. [J] J. Phys. Chem. C 2007, 111, 14521-14529.
    
    14. Zhang, X.; Jin, M.; Liu, Z.; Nishimoto, S.; Saito, H.; Murakami, T.; Fujishima, A. Preparation and Photocatalytic Wettability Conversion of TiO2-Based Superhydrophobic Surfaces. [J] Langmuir 2006, 22, 94779479.
    
    15. Zhang, Q. -L.; Du, L. -C.; Weng, Y. -X.; Wang, L.; Chen, H. -Y.; Li, J. -Q. Particle-Size-Dependent Distribution of Carboxylate Adsorption Sites on TiO2 Nanoparticle Surfaces: Insights into the Surface Modification of Nanostructured TiO2 Electrodes. [J] J. Phys. Chem. B 2004, 108, 15077-15083.
    
    16. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A., Shimohigoshi, M.; Watanabe, T. Photogeneration of Highly Amphiphilic TiO2 Surfaces. [J] Adv. Mater. 1998, 10, 135-138
    
    17. Zhang, L.; Yang, J.; Wang, L.; Yang, G.-Z.; Weng, Y. -X. Direct Observation of Interfacial Charge Recombination to the Excited-Triplet State in All-trans-Retinoic Acid Sensitized TiO2 Nanoparticles by Femtosecond Time-Resolved Difference Absorption Spectroscopy. [J] J. Phys. Chem. B 2003, 107, 13688-13697.
    
    18. Weng, Y. -X.; Li, L.; Liu, Y.; Wang, L.; Yang, G. -Z. Surface-Binding Forms of Carboxylic Groups on Nanoparticulate TiO2 Surface Studied by the Interface-Sensitive Transient Triplet-State Molecular Probe.[J]J.Phys.Chem.B 2003,107,4356-4363.
    19.Wang,R.;Sakai,N.;Fujishima,A.;Watanabe,T.;Hashimoto,K.Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces.[J]J.Phys.Chem.B 1999,103,2188-2194.
    20.Du,L.-C.;Weng,Y.-X.Photoinduced Charge Recombination at Dye-Sensitized Individual TiO2 Nanoparticles and Its Application in Probe for the Local Polarity Change around the Nanoparticle in Solution.[J]J.Phys.Chem.C 2007,111,4567-4577.
    21.Marcus,R.A.;Sutin,N.Biochim.[J]Biophys.Acta 1985,811,265.
    22.Papageorgiou,N.;Barbe,C.;Gr(a|¨)tzel,M.Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films.[J]J.Phys.Chem.B 1998,102,4156-4164.
    23.Sakai,N.;Wang,R.;Fujishima,A.;Watanabe,T.;Hashimoto,K.Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces.[J]Langmuir 1998,14,5918.
    24.Premkumar,.[J]J.Chem.Mater.2005,17,944.
    25.Wang,C.-y.;Groenzin,H.;Schultz,M.J.Molecular Species on Nanoparticulate Anatase TiO2 Film Detected by Sum Frequency Generation:Trace Hydrocarbons and Hydroxyl Groups.[J]Langmuir 2003,19,7330.
    26.Zhang,G.;Wu,C.The Water/Methanol Complexation Induced Reentrant Coil-to-Globule-to-Coil Transition of Individual Homopolymer Chains in Extremely Dilute Solution.[J]J.Am.Chem.Soc.2001,123,1376-1380.
    27.Martini,I.;Hodak,J.H.;Hartland,G..Dynamics of Semiconductor-to-Dye Electron Transfer for Anthracene Dyes Bound to Different Sized TiO2 Particles.[J]J.Phys.Chem.B 1999,103,9104-9111.
    28.Weng,Y.-X.;Wang,Y.-Q.;Asbury,J.B.;Ghosh,H.N.;Lian,T.[J]J.Phys.Chem.B 2000,104,
    (1)Gamier,F.Acc.Chem.Res.1999,32,209-215.
    (2)Horowitz,G Adv.Mater 1998,10,365-377.
    (3)O'Neil,M.;Kelly,S.M.Adv.Mater 2003,15,1135-1146.
    (4)Perepichka,I.F.;Perepichka,D.F.;Meng,H.;Wudl.F.Adv.Mater 2005,17,2281-2305.
    (5)Sun,Y.;Liu,Y.;Zhu,D.J.Mater Chem.2005,15,53-65.
    (6)Gundlach,D.J.;Lin,Y.Y.;Jackson,T.N.;Nelson,S.F.;Schlom,D.G IEEE Electron Device Lett.1997,18,87-89.
    (7)Lin,Y.Y.;Gundlach,D.J.;Nelson,S.F.;Jackson,T.N.1EEE Electron Device Lett.1997,18,606-608.
    (8)Afzali,A.;Dimitrakopoulos,C.D.;Breen,T.L.J.Am.Chem.Soc.2002,124,8812-8813.
    (9)Mas-Torrent,M.;Durkut,M.;Hadley,P.;Ribas,X.;Rovira,C.J.Am.Chem.Soc.2004,126,984-985.
    (10)Dimitrakopoulos,C.D.;Brown,A.R.;Pomp,A.J.Appl.Phys.1996,80,2501-2508.
    (11)Dimitrakopoulos,C.D.;Mascaro,D.J.1BMJ.Res.Dev.2001,45,11-27.
    (12)Xiao,K.;Liu,Y.Q.;Yu,G.;Zhu,D.B.Appl.Phys.A 2003,77,367-370.
    (13)Bendikov,M.;Wudl,F.;Perepichka,D.F.Chem.Rev.2004,104,4891-4945.
    (14)Facchetti,A.;Yoon,M.-H.;Stem,C.L.;Hutchison,GR.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc.2004,126,13480-13501.
    (15)Kwon,O.;Coropceanu,V.;Gruhn,N.E.;Durivage,J.C.;Laquindanum,J.G;Katz,H.E.;Cornil,J.;Bredas,J.L.J.Chem.Phys.2004,120,8186-8194.
    (16)Hutchison,G R.;Ratner,M A.;Marks,T.J.J.Am.Chem.Soc.2005,127,16866-16881.
    (17)Halik,M.;Klauk,H.;Zschieschang,U.;Schmid,G;Ponomarenko,S.;Kirchmeyer,S.;Weber,W.Adv.Mater.2003,15,917-922.
    (18)Facchetti,A.;Yoon,M-H.;Stem,C.L.;Katz,H.E.;Marks,T.J.Angew.Chem.Int.Ed.2003,42,3900-3903.
    (19)Miao,Q.;Lefenfeld,M.;Nguyen,T.-Q;Siegrist,T.;Kloc,C.;Nuckolls,C.Adv.Mater.2005,17,407-412.
    (20)Anthony,J.E.;Eaton,D.L.;Parkin,S.R.Org.Lett.2002,4,15-18.
    (21)Anthony,J.E.;Brooks,J.S.;Eaton,D.L.;Parkin,S.R.J.Am.Chem.Soc.2001,123,9482-9483.
    (22)Meng,H.;Bendikov,M;Mitchell,G;Holgeson,R.;Wudl,F.;Bao,Z.;Siegrist,T.;Kloc,C.;Chen,C.-H.Adv.Mater.2003,15,1090-1093.
    (23)Simpson,C.D.;Wu,J.;Watson,M.D.;Müllen,K.J.Mater Chem.2004,14,494-504.
    (24)An,Z.;Yu,J.;Jones,S.C.;Barlow,S.;Yoo,S.;Domercq,B.;Prins,P.;Siebbeles,L.D.A.;Kippelen,B.;Marder,S.R.Adv.Mater 2005,17,2580-2583.
    (25)Videlet,C.;Ackermann,J.;Blanchard,P.;Raimundo,J.M.;Frere,P.;Allian,M.;Bettignies,R.;Levilliain,E.;Roncali,J.Adv.Mater.2003,15,306-310.
    (26)Sokolov,A.N.;Friscic,T.L.;MacGillivray,R.J.Am.Chem.Soc.2006,128,2086-2087.
    (27)Würthner,F.Angew.Chem.Int.Ed.2001,40,1037-1039.
    (28)Kraft,A.ChemPhysChem 2001,2,163-165.
    (29)Dimitrakopoulos,C.D.;Malenfant,P.R.L.Aav.Mater.2002,14,99-117.
    (30)Locklin,J.;Li,D.;Mannsfeld,S.C.B.;Borkent,E-J.;Meng,H.;Advincula,R.;Bao,Z.Chem.Mater 2005,17,3366-3374.
    (31)Struijk,C.W.;Sieval,A.B.;Dakhorst,J.E.J.;Von Dijk,M.;Kimkes,P.;Koehorst,R.B.M.;Donker,H.;Schaafsma,T.J.;Picken,S.J.;Van de Craats,A.M;Warman,J.M.;Zuilhof,H.;Sudh(o|¨)lter,E.J.R.J.Am.Chem.Soc.2000,122,11057-11066.
    (32)Chen,Z.;Debije,M.G.;Debaerdemaeker,T.;Osswald,P.;Würthner,F.ChemPhysChem 2004,5,137-140.
    (33)Jones,B.A.;Ahrens,M.J.;Yoon,M.-H.;Facchetti,A.;Marks,T.J.;Wasielewski,M.R.Angew.Chem.Int.Ed.2004,43,6363-6366.
    (34)Singh,T.B.;Erten,S.;Günes,S.;Zafer,C.;Turkmen,G..;Kuban,B.;Teoman,Y.;Sariciftci,N.S.;Icli,S.Org.Electron.2006,7,480 - 489.
    (35)Gritzner,G.PureAppl.Chem.1990,62,1839.
    (36)H(o|¨)nig,E.P.;Hengst,J.H.T.;Engelsen,D.D.J.Colloid Interface Sci.1973,45,92-102.
    (37)Su,W.;Jiang,J.;Xiao,K.;Chen,Y.;Zhao,Q.;Yu,(3.;Liu,Y.Langmuir 2005,21,6527-6531.
    (38)Bielejewska,A.G.;Marjo,C.E.;Prins,L.J.;Timmerman,P.;Jong,F.;Reinhoudt,D.N.J Am.Chem.Soc.2001,123,7518-7533.
    (39)Würthner,F.;Thalacker,C.;Sautter,A.Adv.Mater 1999,11,754-758.
    (40)van der Boom,T.;Hayes,R.T.;Zhao,Y.;Bushard,P.J.;Weiss,E.A.;Wasielewski,M.R.J.Am.Chem.Soc.2002,124,9582-9590.
    (41)Whitesides,G.M.;Simanek,E.E.;Mathias,J.P.;Seto,C.T.;Chin,D.N.;Mammen,M.;Gordon,D.M.Acc.Chem.Res.1995,28,37-44.
    (42)Lehn,J.-M.Supramolecular Chemistry,VCH,Weinheim 1995,161-179.
    (43)Seto,C.T.;Whitesides,G.M.J.Am.Chem.Soc.1993,115,905-906.
    (44)Whitesides,G.M.;Mathias,J.P.;Simanek,E.E.J.Am.Chem.Soc.1994,116,4326-4330.
    (45)Mammen,M;Simanek,E.E.;Whitesides,G M.J.Am.Chem.Soc.1996,118,12614-12623.
    (46)Ishi-i,T.;Crego-Calama,M.;Timmerman,P.;Reinhoudt,D.N.;Shinkai,S.J.Am.Chem.Soc.2002,124,14631-14641.
    (47)Ni,Y.;Puthenkovilakom,R.R.;Huo,Q.Langmuir 2004,20,2765-2771.
    (48)Week,M.;Fink,R.;Ringsdorf,H.Langmuir 1997,13,3515-3522.
    (49)Koyano,H.;Bissel,P.;Yoshihara,K.;Ariga,K.;Kunitake,T.Chem.Eur.J.1997,3,1077-1082.
    (50)Huo,Q.;Russell,K.C.;Leblanc,R.M.Langmuir 1998,14,2174-2186.
    (51)Huo,Q.;Dziri L.;Desbat,B.;Russell,K.C.;Leblanc,R.M.J.Phys.Chem.B 1999,103,2929-2934.
    (52)Hasegawa,T.;Hatada,Y.;Nishijo,J.;Umemura,J.;Huo,Q.;Leblanc,R.M J.Phys.Chem.B 1999,103,7505-7513.
    (53)Kasha,M.;Rawls,H.R.;El-Bayoumi,M.A.Pure Appl.Chem.1965,11,371-392.
    (54)Ahren,M.J.;Sinks,L.E.;Rybtchinski,B.;Liu,W.;Jones,B.A.;Giaimo,J.M.;Gusev,A.V.;Goshe,A.;Tiede,D.M.;Wasielewki,M.R.J.Am.Chem Soc.2004,126,8284-8294.
    (55)AM1 calculations were performed using HyperChem(TM),Hypercube,Inc.,1115 NW 1114th Street,Gainesville,Florida 32601,USA.
    (56)Ulman,A.An Introduction to Ultrathin Organic Film:from Langmuir-Blodgett to Self-assembly,Academic Press:San Diego,1991.
    (57)Petty,M.C.Thin solid films 1992,210-211,417-426.
    (58)S.M.Sze,Physics of Semiconductor Devices;John Wiley & Sons:New York,1981.
    (59)Katz,H.E.;Bao,Z.N.;Gilat,S.L.Acc.Chem.Res.2001,34,359-369.
    (60)Facchetti,A.;Deng,Y.;Wang,A.;Koide,Y.;Sirringhaus,H.;Marks,T.J.;Friend,R.H.Angew.Chem.Int.Ed.2000,39,4547-4551.
    (61)Facchetti,A.;Mushrush,M.;Katz,H.E.;Marks,T.J.Adv.Mater.2003,15,33-38.
    (62)Bao,Z.N.;Lovinger,A.J.;Dodabalapur,A.Adv.Mater.1997,9,42-44.
    (1)(a) Hu,X.;Schulten,K.Phys.Today 1997,29-34.
    (b) McLuskey,K.;Prince,S.M.;Cogdell,R.J.;Isaacs,N.W.Biochemistry 2001,40,8783-8789.
    (c)McDermott,G.;Prince,S.M.;Freer,A.A.;Hawthornthwaite-Lawless,A.M.;Papiz,M.Z.;Cogdell,R.J.;Isaacs,N.W.Nature 1995,374,517-521.
    (2)(a) Wasielewski,M.R.J.Org.Chem.2006,71,5051-5066.
    (b) Gust,D.;Moore,T.A.;Moore,A.L.Acc.Chem.Res.2001,34,40-48.
    (c) Kim,D.;Osuka,A.Acc.Chem.Res.2004,37,735-744.
    (3)Some representative works:
    (a) Huiiser,A.;Savenijie,T.J.;Kotlewski,A.;Picken,S.J.;Siebbeles,L.D.A.Adv.Mater 2006,18,2234-2239.
    (b) Hoeben,F.J.M.;Shklyarevskiy,I.O.;Pouderoijen,M.J.;Engelkamp,H.;Schenning,A.P.H.J.;Christianen,P.C.M.;Maan,J.C.;Meijer,E.W.Angew.Chem.lnt.Ed.2006,45,1232-1236.
    (d) Li,X.;Sinks,L.E.;Rybtchinski,B.;Wasielewski,M.R.J.Am.Chem.Soc.2004,126,10810-10811.
    (4)Letsinger,R.L.;Wu,T.;Yang,J-S.;Lewis,F.D.Photochem.Photobiol.Sci.,2008,7,854-859.
    (5)(a) Whitesides,G.M.;Simanek,E.E.;Mathias,J.P.;Seto,C.T.;Chin,D.N.;Mammen,M.;Gordon,D.M.Acc.Chem.Res.1995,28,37-44.
    (b) Seto,C.T.;Whitesides,G.M.d.Am.Chem.Soc.1993,115,905-906.
    (c) Whitesides,G.M.;Mathias,J.P.;Simanek,E.E.J.Am.Chem.Soc.1994,116,4326-4330.
    (d)Mammen,M.;Simanek,E.E.;Whitesides,G.M.J.Am.Chem.Soc.1996,118,12614-12623.
    (e) Ishi-i,T.;Crego-Calama,M.;Timmerman,P.;Reinhoudt,D.N.;Shinkai,S.d.Am.Chem.Soc.2002,124,14631-14641.
    (6)Han,J.;Wang,W.;Li,A.D.Q.J.Am.Chem.Soc.,2006,128,672-673.
    (7)Giaimo,J.M.;Lockard,J.V.;Sinks,L.E.;Scott,A.M.;Wilson,T.M.;Wasielewski,M.R.J.Phys.Chem.A 2008,112,2322-2330.
    (8) Wang, Y.; Chen, Y.; Li, R.; Wang, S.; Su, W.; Ma, P.; Wasielewski, M. R.; Li, X.; Jiang, J. Langmuir 2007,23,5836-5842.
    
    (9) (a) Rybtchinski, B.; Sinks, L. E.; Wasielewski. M. R. J. Am. Chem. Soc. 2004, 126, 12268-12269. (b) Wang, W.; Wan, W.; Zhou, H. H.; Niu, S.; Li, A. D. Q. J. Am. Chem. Soc. 2003,125, 5248-5249.
    
    (10) (a) Zhang, L.; Yang, J.; Wang, L.; Yang, G.; Weng, Y. J. Phys. Chem. B, 2003,707, 13688-13697. (b) Chen, X.; Zhang, L.; Weng, Y.; Du, L.; Ye, M.; Yang, G.; Fujii, R.; Rondonuwu, F. S.; Koyama, Y.; Wu, S.; Zhang, J. Biophys. J. 2005, 88,4262-4273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700