生物分子网络的建模与动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文就生物分子网络的建模与动力学分析方面做了一些相关的工作。首先,对相关的研究内容作一简单的介绍,包括系统生物学和合成生物学简介、生物分子网络简介、microRNAs简介、化学反应动力学简介以及分岔理论简介;然后,介绍了本文的研究工作,可以概括为以下两个方面:
     (1) MicroRNA介导的混合反馈环诱导双稳态和振荡的机制
     过去,人们一直认为在所有生物体中基因表达的调控都是调控蛋白的任务。因此,关于基因调控的大部分研究主要是集中在转录调控和翻译后调控上近年来,由于大规模实验和计算技术的发展,研究人员发现了越来越多通过非编码RNA实现的转录后调控。现在人们已经认识到,转录后调控在细胞内几乎所有细胞过程中都起到非常重要的调控作用。MicroRNAs是一类长度约为22核苷酸的单链小分子非编码RNA。当参与细胞过程时,microRNAs主要是通过与靶mRNAs的碱基互补配对而在转录后水平上对基因的表达进行负调控,最终导致靶mRNAs编码的蛋白质表达水平的下降。近来的计算和实验研究发现了大量microRNAs和转录因子共同参与的网络模体。最简单microRNA介导的模体是由一个microRNA和一个转录因子组成的混合反馈环(MFL),其中转录因子调控microRNA的表达,而转录因子本身受这个microRNA的负调控。我们基于简单的生化调控对MFL进行数学建模,并通过分岔分析对MFL模型的动力学行为进行详细的研究。研究结果表明,依赖于转录因子是抑制子或激活子,MFL可以充当双稳态开关或振子。这个功能特征与microRNAs普遍存在于诸如增殖、分化以及凋亡等发育过程是相符合的。有趣的是,我们发现在转录因子和nicroRNA的相互作用下,即使没有转录因子的协同绑定,MFL模型也可以在大参数范围内充当双稳态开关。另外,MFL模型中microRNA诱导的振荡既不需要一个额外的正反馈环,也不需要基因的自激活、转录因子的协同绑定以及饱和降解。因此,MFL可能提供了一个一般网络结构来诱导双稳态或振荡。我们期望这个结果可以为microRNAs如何调控基因的表达提供新的观点,并进一步指导实验。另外,我们也期望本研究可以为探讨由简单模块组装成的更复杂的生物分子网络提供基础。
     (2)生物分子系统中各种细胞信号形成的方式:耦合开关与振子
     随着关于调控元件和相互作用的生物数据快速的积累,生物分子网络变得越来越错综复杂。因此,要理解这些复杂生物分子网络的动力学特征,仅靠直觉推理是不可能的。为了理解一个复杂生物分子网络是如何实现其功能的,一般需要对该网络进行准确的分解和整合,以便为该网络的各种动力学行为的调控机制和定性信息提供新的见解。遗憾的是,到目前为止还没有通用的准则可以说明如何将一个复杂的网络分解成简单的模块。一种可选的方法是,先将一个复杂的网络解耦为具有特定功能的小模块或子系统,例如开关和振子;然后通过分析它们之间的相互作用来整合它们。我们通过一个具体的双向耦合网络,即耦合拨动开关和压制振子,并分析该网络的各种动力学行为来说明该方法的主要思想。虽然这种方法可能对一般的生物分子网络也成立。研究结果表明,通过调节子系统之间的耦合可以产生生物分子系统中的各种细胞信号。我们希望这里提出的方法可以有助于简化和分析更加复杂的生物分子网络。
This thesis is devoted to study some related work on the modeling and dynami-cal analysis of biomolecular networks. Firstly, a brief description of relevant researchcontexts is given, including the systems biology and synthetic biology, biomolecularnetworks, microRNA, as well as chemical reactive dynamics and bifurcation theory.Secondly, the research work of the thesis is introduced, which focuses mainly on thefollowing two aspects:
     (1) Mechanisms generating bistability and oscillations in microRNA-mediated mo-tifs
     In the past, it was believed that the regulation of gene expression is a task of reg-ulatory proteins in all organisms, and thus most research on gene regulation focusedmainly on transcriptional and post-translational regulations. In recent years, a post-transcriptional regulation manifested by small noncoding RNAs is being uncovered dueto the development of large-scale experimental and computational techniques. It has beenrecognized that the post-transcriptional regulation plays important roles in the regulationof many cellular processes. MicroRNAs are a class of about22-nucleotide non-codingRNAs. When participating in cellular processes, microRNAs mainly regulate gene ex-pression post-transcriptionally through canonical base pairing to its target mRNAs, ul-timately leading to a reduction in the levels of protein encoded by the target mRNAs.Recently computational and experimental studies have identified an abundance of mo-tifs involving microRNAs and transcriptional factors. The simplest motif is a two-nodemicroRNA-mediated feedback loop (MFL) in which a transcriptional factor regulates anmicroRNA and the transcriptional factor itself is negatively regulated by the microRNA.Here we present a general computational model for the MFL based on biochemical reg-ulations and explore its dynamics by using bifurcation analysis. Our results show thatthe MFL can behave either as switches or as oscillators, depending on the transcrip-tional factor as a repressor or an activator. These functional features are consistent withthe widespread appearance of microRNAs in fate decisions such as proliferation, dif-ferentiation, and apoptosis during development. We found that under the interplay of atranscriptional factor and an microRNA, the MFL model can behave as switches for wideranges of parameters even without cooperative binding of the transcriptional factor. Inaddition, oscillations induced by the microRNA in the MFL model require neither an ad-ditional positive feedback loop, nor self-activation of the gene, nor cooperative bindingof the transcriptional factor, nor saturated degradation. Therefore, the MFL may providea general network structure to induce bistability or oscillations. It is hoped that the resultspresented here will provide a new view on how gene expression is regulated by microR-NAs and further guidance for experiments. Moreover, the insight gained from this studyis also expected to provide a basis for the investigation of more complex biomolecularnetworks assembled by simple building blocks.
     (2) Coupling switches and oscillators as a means to shape cellular signals inbiomolecular systems
     As biological data on regulatory components and interactions are quickly accu-mulating, biomolecular networks underlying cellular functions are becoming more andmore complicated. Dynamical properties of these complicated biomolecular networksare impossible to understand by intuitive reasoning alone. To understand how a com-plex biomolecular network functions, a decomposition or a reconstruction process of thenetwork is often needed so as to provide new insights into the regulatory mechanismsunderlying various dynamical behaviors and also to gain qualitative knowledge of thenetwork. Unfortunately, it seems that there are still no general rules on how to decom-pose a complex network into simple modules. An alternative resolution is to decomposea complex network into small modules or subsystems with specified functions such asswitches and oscillators and then integrate them by analyzing the interactions betweenthem. The main idea of this approach can be illustrated by consider-ing a bidirectionallycoupled network in this paper, i.e., coupled Toggle switch and Repressilator, and analyz-ing the occurrence of various dynamics, although the theoretical principle may hold fora general class of networks. We show that various biomolecular signals can be shapedby regulating the coupling between the subsystems. The approach presented here can beexpected to simplify and analyze even more complex biomolecular networks.
引文
[1]陈洛南,王勇,费敏锐等.从理工科视角探索系统生物学[J].科技导报,2007,25:5-9.
    [2]WATSON J D, CRICK F H C. Molecular structure of nucleic acids:a structure for deoxyribose nucleic acid[J]. Nature,1953,171:737-738.
    [3]蒋太交,薛艳红,徐涛.系统生物学—生命科学的新领域[J].生物化学与生物物理进展,2004,31:957-964.
    [4]北野宏明编,刘笔锋等译.系统生物学基础[M].北京:化学工业出版社,2007.
    [5]KITANOH. Systems biology:a brief overview[J]. Science,2002,295:1662-1664.
    [6]资治科,孙之荣.系统生物学:面向系统的生物学研究[J].系统工程理论与实践,2005,2:47-54.
    [7]MEYERS R A. Systems Biology[M]. New Jersey:Wiley,2012.
    [8]谭璐,姜璐.系统生物学与生物网络研究[J].复杂系统与复杂性科学,2005,2:1-9.
    [9]GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli[J]. Nature,2000,403:339-342.
    [10]ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators [J]. Nature,2000,403:335-338.
    [11]WANG L, SCHULTZ P G. A general approach for the generation of orthogonal tRNAs[J]. Chem Biol,2001,8:883-890.
    [12]CELLO J, PAUL A V, WIMMER E. Chemical synthesis of poliovirus cDNA:generation of infectious virus in the absence of natural template [J]. Science,2002,297:1016-1018.
    [13]MARTIN V J, PITERA D J, WITHERS S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nat Biotechnol,2003,21:796-802.
    [14]WANG L, ZHANG Z, BROCK A, et al. Addition of the Keto Functional Group to the Genetic Code of Escherichia coli[J]. Proc Natl Acad Sci USA,2003,100:56-61.
    [15]SMITH H O, HUTCHISON C A, PFANNKOCH C, et al. Generating a synthetic genome by whole genome assembly:φX174bacteriophage from synthetic oligonucleotides[J]. Proc Natl Acad Sci USA,2003,100:15440-15445.
    [16]NOIREAUX V, LIBCHABER A. A vesicle bioreactor as a step toward an artificial cell assem-bly[J]. Proc Natl Acad Sci USA,2004,101:17669-17674.
    [17]LEVSKAYA A, CHEVALIER A A, TABOR J J, et al. Synthetic biology:engineering Escherichia coli to see light[J]. Nature,2005,438:441-442.
    [18]RO D K, PARADISE E M, OUELLET M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature,2006,440:940-943.
    [19]GIBSON D G, BENDERS G A, ANDREWS-PFANNKOCK C, et al. Complete chemical synthesis, assembly and cloning of a Mycoplasma genitalium genome[J]. Science,2008,319:1215-1220.
    [20]BECKER M M, GRAHAM R L, DONALDSON E F, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice[J]. Proc Natl Acad Sci USA,2008,105:19944-19949.
    [21]SAWADA T, YOSHIZAWA M, SATO S, et al. Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts[J]. Nature Chemistry,2009,1:53-56.
    [22]GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science,2010,329:52-56.
    [23]NANDAGOPAL N, ELOWITZ M B. Synthetic Biology:Integrated Gene Circuits [J]. Science,2011,333:1244-1248.
    [24]ALON U. An Introduction to Systems Biology:the Design Principles of Biological Circuit[M]. London:Chapman&Hall/CRC,2007.
    [25]FU P, PANKE S. SYSTEMS BIOLOGY AND SYNTHETIC BIOLOGY[M]. New Jersey: Wiley,2009.
    [26]李霞,李义学,廖飞.生物信息学[J].人民卫生出版社,2010:318-340.
    [27]CHEN L, WANG R, ZHANG X. Biomolecular Networks:Methods and Applications on Systems Biology[M]. New Jersey:Wiley,2009.
    [28]CHEN L, WANG R, LI C, et al. Modeling Biomolecular Networks in Cells:Structures and Dynamics [M]. London:Springer,2010.
    [29]SAEZ-RODRIGUEZ A, J ANDKREMLING, CONZELMANN H, BETTENBROCK K, et al. Modular analysis of signal transduction networks[J]. IEEE Control Syst Mag,2004,24:35-52.
    [30]GEARD N. Modelling Gene Regulatory Networks:Systems Biology to Complex Systems [J]. ACCS Technical Report,2004.
    [31]CAREY M, SMALE S T. Transcriptional Regulation in Eukaryotes:Concepts, Strategies, and Techniques[M].[S.l.]:Cold Spring Harbor Laboratory Press,2002.
    [32]LODISH H F, BERK A J, KAISER C A, et al. Molecular Cell Biology,6th Edition[M]. San Francisco:WH Freeman,2007.
    [33]BUSHATI N, COHEN S M. microRNA Functions[J]. Annu Rev Cell Dev Biol,2007,23:175-205.
    [34]LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75:843-854.
    [35]REINHART B J, SLACK F J, BASSON M, et al. The21-nucleotide let-7RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403:901-906.
    [36]BORGHANS J A, DE BORER R J, SEGEL L A. Extending the quasi-steady state approxima-tion by changing variables[J]. Bull Math Biol,1996,58:43-63.
    [37] WIGGINS S. Introduction to Applied Nonlinear Dynamical Systems and Chaos[M]. NewYork: Springer-Verlag,2000.
    [38] WALDHERR S, ALLGOWER A, RADDE N. Generic bifurcations in the dynamics of bio-chemical networks[J]. IEEE International Conference on Control Applications,2010:135–141.
    [39] GOTTESMAN S. THE SMALL RNA REGULATORS OF ES CHERICHIA COLI: Rolesand Mechanisms[J]. Annu Rev Microbiol,2004,58:303–328.
    [40] WATERS L S, STORZ G. Regulatory RNAs in Bacteria[J]. Cell,2009,136:615–628.
    [41] FLYNT A S, LAI E C. Biological principles of microRNA-mediated regulation: shared themesamid diversity[J]. Nat Rev Genet,2008,9:831–842.
    [42] AMBROS V. The functions of animal microRNAs[J]. Nature,2004,431:350–355.
    [43] STEFANI G, SLACK F J. Small non-coding RNAs in animal development[J]. Nat Rev MolCell Biol,2008,9:219–230.
    [44] FILIPOWICZ W, BHATTACHARYYA S N, SONENBERG N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?[J]. Nat Rev Genet,2008,9:102–114.
    [45] BARTEL D P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function[J]. Cell,2004,116:281–297.
    [46] VALENCIA-SANCHEZ M A, LIU J, HANNON G J, et al. Control of translation and mRNAdegradation by miRNAs and siRNAs[J]. Genes Dev,2006,20:515–524.
    [47] GUO H, INGOLIA N T, WEISSMAN J S, et al. Mammalian microRNAs predominantly actto decrease target mRNA levels[J]. Nature,2010,466:835–840.
    [48] TSANG J, ZHU J, VAN OUDENAARDEN A. MicroRNA-Mediated Feedback and Feedfor-ward Loops Are Recurrent Network Motifs in Mammals[J]. Mol Cell,2007,26:753–767.
    [49] SHALGI R, LIEBER D, OREN M, et al. Global and Local Architecture of the MammalianmicroRNA Transcription Factor Regulatory Network[J]. PLoS Comput Biol,2007,3(e131).
    [50] SHIMONI Y, FRIEDLANDER G, HETZRONI G, et al. Regulation of gene expression bysmall non-coding RNAs: a quantitative view[J]. Mol Syst Biol,2007,3(138).
    [51] YU X, LIN J, ZACK D J, et al. Analysis of regulatory network topology reveals functionallydistinct classes of microRNAs[J]. Nucleic Acids Res,2008,36:6494–6503.
    [52] RE A, CORA D, TAVERNA D, et al. Genome-wide survey of microRNA transcription factorfeed-forward regulatory circuits in human[J]. Mol BioSyst,2009,5:854–867.
    [53] MARTINEZ N J, ET AL. A C. elegans genome-scale microRNA network contains compositefeedback motifs with high flux capacity[J]. Genes Dev,2008,22:2535–2549.
    [54] MARTINEZ N J, WALHOUT A J M. The interplay between transcription factors and microR-NAs in genome-scale regulatory networks[J]. BioEssays,2009,31:435–445.
    [55] INUI M, MARTELLO G, PICCOLO S. MicroRNA control of signal transduction[J]. Nat RevMol Cell Biol,2010,11:252–263.
    [56] IVEY K N, SRIVASTAVA D. MicroRNAs as Regulators of Diferentiation and Cell FateDecisions[J]. Cell Stem Cell,2010,7:36–41.
    [57] JOHNSTON R J, CHANG S, ETCHBERGER J F, et al. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision[J]. Proc Natl Acad Sci USA,2005,102:12449–12454.
    [58] KIM J, ET AL. A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons[J]. Science,2007,317:1220–1224.
    [59] FAZI F, ET AL. A Minicircuitry Comprised of MicroRNA-223and Transcription FactorsNFI-A and C/EBPα Regulates Human Granulopoiesis[J]. Cell,2005,123:819–831.
    [60] LI X, CARTHEW R W. A microRNA Mediates EGF Receptor Signaling and Promotes Pho-toreceptor Diferentiation in the Drosophila Eye[J]. Cell,2005,123:1267–1277.
    [61] VISVANATHAN J, LEE S, LEE B, et al. The microRNA miR-124antagonizes the anti-neuralREST/SCP1pathway during embryonic CNS development[J]. Genes Dev,2007,21:744–749.
    [62] BRACKEN C P, GREGORY P A, KOLESNIKOFF N, et al. A Double-Negative FeedbackLoop between ZEB1-SIP1and the microRNA-200Family Regulates Epithelial-MesenchymalTransition[J]. Cancer Res,2008,68:7846–7854.
    [63] XU N, PAPAGIANNAKOPOULOS T, PAN G, et al. MicroRNA-145Regulates OCT4, SOX2,and KLF4and Represses Pluripotency in Human Embryonic Stem Cells[J]. Cell,2009,137:647–658.
    [64] JUAN A H, KUMAR R M, MARX J G, et al. Mir-214-Dependent Regulation of the PolycombProtein Ezh2in Skeletal Muscle and Embryonic Stem Cells[J]. Mol Cell,2009,36:61–74.
    [65] ZHAO C, SUN G, LI S, et al. A feedback regulatory loop involving microRNA-9and nuclearreceptor TLX in neural stem cell fate determination[J]. Nat Struct Mol Biol,2009,16:365–371.
    [66] POSPISIL V, ET AL. Epigenetic silencing of the oncogenic miR-17-92cluster during PU.1-directed macrophage diferentiation[J]. EMBO J,2011,30:4450–4464.
    [67] ZHAO H, KALOTA A, JIN S, et al. The c-myb proto-oncogene and microRNA-15a com-prise an active autoregulatory feedback loop in human hematopoietic cells[J]. Blood,2009,113:505–516.
    [68] YU Z, WANG M, LI Z, et al. A cyclin D1/microRNA17/20regulatory feedback loop in controlof breast cancer cell proliferation[J]. J Cell Biol,2008,182:509–517.
    [69] BUMGARNERA S L, DOWELLB R D, GRISAFIA P, et al. Toggle involving cis-interferingnoncoding RNAs controls variegated gene expression in yeast[J]. Proc Natl Acad Sci USA,2009,106:18321–18326.
    [70] ILIOPOULOS D, HIRSCH H A, STRUHL K. An Epigenetic Switch Involving NF-κB, Lin28,Let-7MicroRNA, and IL6Links Inflammation to Cell Transformation[J]. Cell,2009,139:693–706.
    [71] SHEN-ORR S S, MILON R, MANGAN S, et al. Network motifs in the transcriptional regula-tion network of Escherichia coli[J]. Nat Genet,2002,31:64–68.
    [72] LEE T I, RINALDI N J, ROBERT F, et al. Transcriptional Regulatory Networks inS accharomyces cerevisiae[J]. Science,2002,298:799–804.
    [73] NEVOZHAY D, ADAMS R M, MURPHY K F, et al. Negative autoregulation linearizes thedose-response and suppresses the heterogeneity of gene expression[J]. Proc Natl Acad SciUSA,2009,106:5123–5128.
    [74] GOENTORO L, SHOVAL O, KIRSCHNER M W, et al. The Incoherent Feedforward LoopCan Provide Fold-Change Detection in Gene Regulation[J]. Mol Cell,2009,36:894–899.
    [75] ROSENFELD N, ELOWITZ M B, ALON U. Negative Autoregulation Speeds the ResponseTimes of Transcription Networks[J]. J Mol Biol,2002,323:785–793.
    [76] MANGAN S, ZASLAVER A, ALON U. The Coherent Feedforward Loop Serves as a Sign-sensitive Delay Element in Transcription Networks[J]. J Mol Biol,2003,334:197–204.
    [77] MANGAN S, ALON U. Structure and function of the feed-forward loop network motif[J].Proc Natl Acad Sci USA,2003,100:11980–11985.
    [78] MANGAN S, ITZKOVITZ S, ZASLAVER A, et al. The Incoherent Feed-forward LoopAccelerates the Response-time of the gal System of Escherichia coli[J]. J Mol Biol,2006,356:1073–1081.
    [79] PRILL R J, IGLESIAS P A, LEVCHENKO A. Dynamic Properties of Network Motifs Con-tribute to Biological Network Organization[J]. PLoS Biol,2005,3(e343).
    [80] OZBUDAK E M, THATTAI M, LIM H N, et al. Multistability in the lactose utilization networkof Escherichia coli[J]. Nature,2004,427:737–740.
    [81] FERRELL J J. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability[J]. Curr Opin Cell Biol,2002,14:141–148.
    [82] FERRELL J E, XIONG W. Bistability in cell signaling: How to make continuous processesdiscontinuous, and reversible processes irreversible[J]. Chaos,2001,11:227–236.
    [83] NOVAK B, TYSON J J. Design principles of biochemical oscillators[J]. Nature,2008,9:981–991.
    [84] FRANCOIS P, HAKIM V. Core genetic module: The mixed feedback loop[J]. Phys Rev E,2005,72(031908).
    [85] LIU D, CHANG X, LIU Z, et al. Bistability and Oscillations in Gene Regulation Mediated bySmall Noncoding RNAs[J]. PLoS ONE,2011,6(e17029).
    [86] WANG Y, LIU C L, STOREY J D, et al. Precision and functional specificity in mRNA de-cay[J]. Proc Natl Acad Sci USA,2002,99:5860–5865.
    [87] KAERN M, ELSTON T C, BLAKE W J, et al. STOCHASTICITY IN GENE EXPRESSION:FROM THEORIES TO PHENOTYPES[J]. Nat Rev Genet,2005,6:451–464.
    [88] GLICKMAN M H, CIECHANOVER A. The Ubiquitin-Proteasome Proteolytic Pathway: De-struction for the Sake of Construction[J]. Physiol Rev,2002,82:373–428.
    [89] KHANIN R, VINCIOTTI V. Computational Modeling of Post-Transcriptional Gene Regula-tion by MicroRNAs[J]. J Comput Biol,2008,15:305–316.
    [90] AGUDA B D, KIM Y, PIPER-HUNTER M G, et al. MicroRNA regulation of a cancer network:Consequences of the feedback loops involving miR-17-92, E2F, and Myc[J]. Proc Natl AcadSci USA,2008,105:19678–19683.
    [91] LEVINE E, ZHANG Z, KUHLMAN T, et al. Quantitative Characteristics of Gene Regulationby Small RNA[J]. PLoS Biol,2007,5(e229).
    [92] LEVINE E, HWA T. Small RNAs establish gene expression thresholds[J]. Curr Opin Micro-biol,2008,11:574–579.
    [93] AGUDA B D, CLARKE B L. Bistability in chemical reaction networks: Theory and applica-tion to the peroxidase oxidase reaction[J]. J Chem Phys,1987,87:3461–3470.
    [94] TYSON J J, CHEN K C, NOVAK B. Snifers, buzzers, toggles and blinkers: dynamics ofregulatory and signaling pathways in the cell[J]. Curr Opin Cell Biol,2003,15:221–231.
    [95] XIE Z R, YANG H T, LIU W C, et al. The role of microRNA in the delayed negative feedbackregulation of gene expression[J]. Biochem Biophys Res Commun,2007,358:722–726.
    [96] WANG R, JING Z, CHEN L. Modelling periodic oscillation in gene regulatory networks bycyclic feedback systems[J]. Bull Math Biol,2005,67:339–367.
    [97] LIPSHTAT A, LOINGER A, BALABAN N Q, et al. Genetic Toggle Switch without Cooper-ative Binding[J]. Phys Rev Lett,2006,96(188101).
    [98] ZHADANOV V P. Bistability in gene transcription: Interplay of messenger RNA, protein, andnonprotein coding RNA[J]. BioSystems,2009,96:75–81.
    [99] MENGEL B, HUNZIKER A, PEDERSEN L, et al. Modeling oscillatory control in NF-κB,p53and Wnt signaling[J]. Curr Opin Genet Dev,2010,20:656–664.
    [100] SNEPPEN K, KRISHNA S, SEMSEY S. Simplified Models of Biological Networks[J]. AnnuRev Biophys,2010,39:43–59.
    [101] TIAN X J, ZHANG X P, LIU F, et al. Interlinking positive and negative feedback loops createsa tunable motif in gene regulatory networks[J]. Phys Rev E,2009,80(011926).
    [102] PFEUTY B, KANEKO K. The combination of positive and negative feedback loops confersexquisite flexibility to biochemical switches[J]. Phys Biol,2009,6(046013).
    [103] SUEL J, GARCIA-OJALVO J, LIBERMAN L M, et al. An excitable gene regulatory circuitinduces transient cellular diferentiation[J]. Nature,2006,440:545–550.
    [104] SUEL J, KULKARYNI R P, DWORKIN J, et al. Tunability and Noise Dependence in Difer-entiation Dynamics[J]. Science,2007,315:1716–1719.
    [105] MAAMAR H, RAJ A, DUBNAU D. Noise in Gene Expression Determines Cell Fate inBacillus subtilis[J]. Science,2007,317:526–529.
    [106] MITARAI N, ANDERSSON A M C, KRISHNA S, et al. Efcient degradation and expressionprioritization with small RNAs[J]. Phys Biol,2007,4:164–171.
    [107] ALTUVIA S, WAGNER E G. Switching on and of with RNA[J]. Proc Natl Acad Sci USA,2000,97:9824–9826.
    [108] KRUTZFELDT J, RAJEWSKY N, BRAICH R, et al. Silencing of microRNAs in vivo with-antagomirs.[J]. Nature,2005,438:685–689.
    [109] ELMEN J, LINDOW M, SCHUTZ S, et al. LNA-mediated microRNA silencing in non-humanprimates[J]. Nature,2008,452:896–899.
    [110] BALAZSI G, VAN OUDENAARDEN A, COLLINS J J. Cellular Decision Making and Bio-logical Noise: From Microbes to Mammals[J]. Cell,2011,144:910–925.
    [111] VILAR J, KUEH H Y, BARKAI N, et al. Mechanisms of noise-resistance in genetic oscilla-tors[J]. Proc Natl Acad Sci USA,2002,99:5988–5992.
    [112] KEPLER T B, ELSTON T C. Stochasticity in Transcriptional Regulation: Origins, Conse-quences, and Mathematical Representations[J]. Biophys J,2001,81:3116–3136.
    [113] TIWARI A, RAY J C, NARULA J, et al. Bistable responses in bacterial genetic networks:designs and dynamical consequences[J]. Math Biosci,2011,231:76–89.
    [114] NOVICK A, WEINER M. Enzyme induction as an all-or-none phenomenon[J]. Proc NatlAcad Sci USA,1957,43:553–566.
    [115] MARKEVICH N I, HOEK J B, KHOLODENKO B N. Signalling switches and bistability aris-ing from multiple phosphorylation in protein kinase cascades[J]. J Cell Biol,2004,164:353–359.
    [116] MURRAY A W, KIRSCHNER M W. Dominoes and clocks: the union of two views of the cellcycle[J]. Science,1989,246:614–621.
    [117] FERRELL J J, MACHLEDER E M. The biochemical basis of an all-or-none cell fate switchin Xenopus Oocytes[J]. Science,1998,280:895–898.
    [118] ARKIN A, ROSS J, MCADAMS H H. Stochastic kinetic analysis of developmental pathwaybifurcation in phageλ-infected Escherichia coli cells[J]. Genetic,1998,149:1633–1648.
    [119] LAURENT M, KELLERSHOHN N. Multistability: a major means of diferentiation andevolution in biology systems[J]. Trends Biochem Sci,1999,24:418–422.
    [120] XIONG W, FERRELL J J. A positive-feedback-based bistable-memory module.that gov-erns a cell fate decision[J]. Nature,2003,426:460–465.
    [121] HUANG S, EICHLER G, BAR-YAM Y, et al. Cell fates as high-dimensional attractor statesof a complex gene regulatory network[J]. Phys Rev Lett,2005,94(128701).
    [122] TYSON J J, ALBERT R, GOLDBETER A, et al. Biological switches and clocks[J]. J R SocInterface,2008,5:S1–S8.
    [123] MONOD J, JACOB F. General conclusions: teleonomic mechanisms in cellular metabolism,growth, and diferentiation[J]. Cold Spring Harb Symp Quant Biol,1961,26:389–401.
    [124] KOBILER O, ROKNEY A, FRIEDMAN N, et al. Quantitative kinetic analysis of the bacte-riophageλgenetic network[J]. Proc Natl Acad Sci USA,2005,102:4470–4475.
    [125] BAGOWSKI C P, FERRELL J J. Bistability in the JNK cascade[J]. Curr Biol,2001,11:1176–1182.
    [126] BAGOWSKI C P, BESSER J, FREY C R, et al. The JNK cascade as a biochemical switch inmammalian cells: ultrasensitive and all-or-none responses[J]. Curr Biol,2003,13:315–320.
    [127] SHA W, MOORE J, CHEN K, et al. Hysteresis drives cell-cycle transitions in Xenopus laevisegg extracts[J]. Proc Natl Acad Sci USA,2003,100:975–980.
    [128] TYSON J J, CSIKASZ-NAGY A, NOVAK B. The dynamics of cell cycle regulation[J]. BioEs-says,2002,24:1095–1109.
    [129] CROSS F R, ARCHAMBAULT V, MILLER M, et al. Testing a mathematical model of theyeast cell cycle[J]. Mol Biol Cell,2002,13:52–70.
    [130] POMERENING J R, SONTAG E D, FERRELL J J. Building a cell cycle oscillator: hysteresisand bistability in the activation of Cdc2[J]. Nat Cell Biol,2003,5:346–351.
    [131] MEHRA S, CHARANIYA S, TAKANO E, et al. A bistable gene switch for antibiotic biosyn-thesis: the butryolactone regulon in Streptomyces coelicolor[J]. PLoS ONE,2008,3(e2724).
    [132] PETER I S, DAVIDSON E H. Modularity and design principles in the sea urchin embryo generegulatory network[J]. FEBS Lett,2009,583:3948–3958.
    [133] DAVIDSON E H. Emerging properties of animal gene regulatory networks[J]. Nature,2010,468:911–920.
    [134] LASLO P, SPOONER C J, WARMFLASH A, et al. Multilineage transcriptional priming anddetermination of alternate hematopoietic cell fates[J]. Cell,2006,126:755–766.
    [135] BECKSEI A, SERAPHIN B, SERRANO L. Positive feedback in eukaryotic gene networks:cell diferentiation by graded to binary response conversion[J]. EMBO J,2001,20:2528–2535.
    [136] ATKINSON M R, SAVAGEAU M A, MYERS J T, et al. Development of genetic circuitryexhibiting toggle switch or oscillatory behavior in Escherichia coli[J]. Cell,2003,113:597–607.
    [137] KRAMER B P, VIRETTA A U, DAOUD-EL-BABA M, et al. An engineered epigenetic trans-gene switch in mammalian cells[J]. Nat Biotechnol,2004,22:867–870.
    [138] KRAMER B P, FUSSENEGGER M. Hysteresis in a synthetic mammalian gene network[J].Proc Natl Acad Sci USA,2005,102:9517–9522.
    [139] AJO-FRANKLIN C M, DRUBIN D A, ESKIN J A, et al. Rational design of memory ineukaryotic cells[J]. Genes Dev,2007,21:2271–2276.
    [140] LAHAV G, ROSENFELD N, A S, et al. Dynamics of the p53-mdm2feedback loop in indi-vidual cell[J]. Nat Genet,2004,36:147–150.
    [141] HOFFMANN A, LEVCHENKO A, SCOT M L, et al. The ikappaB-NF-κB signaling module:temporal control and selective gene activation[J]. Science,2002,298:1241–1245.
    [142] NELSON D E, IHEKWABA A E, ELLIOTT M, et al. Oscillations in NF-κB signaling controlthe dynamics of gene expression[J]. Science,2004,306:704–708.
    [143] TAY S, HUGHEY J J, LEE T K, et al. Single-cell NF-κB dynamics reveal digital activationand analogue information processing[J]. Nature,2010,466:267–271.
    [144] LEV BAR-OR R, MAYA R, SEGEL L A, et al. Generation of oscillations by the p53-Mdm2feedback loop: a theoretical and experimental study[J]. Proc Natl Acad Sci USA,2000,97:11250–11255.
    [145] HIRATA H, YOSHIURA S, OHTSUKA T, et al. Oscillatory expression of the bHLH factorHes1regulated by a negative feedback loop[J]. Science,2002,298:840–843.
    [146] Biochemical oscillations and cellular rhythms[M]. Cambridge, UK: Cambridge UniversityPress,1996.
    [147] GOLDBETER A. Computational approaches to cellular rhythms[J]. Nature,2002,420:238–245.
    [148] GHOSH A, CHANCE B. Oscillations of glycolytic intermediates in yeast cells[J]. BiochemBiophys Res Commun,1964,16:174–181.
    [149] CHANCE B, HESS B, BETZ A. DPNH oscillations in a cell-free extract of S.carlsbergensis[J]. Biochem Biophys Res Commun,1964,16:182–187.
    [150] PYE K, CHANCE B. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of S accharomyces carlsbergensis[J]. Proc Natl Acad Sci USA,1966,55:888–894.
    [151] HESS B, BOITEUX A. Oscillatory phenomena in biochemistry[J]. Annu Rev Biochem,1971,40:237–258.
    [152] GERISCH G, FROMM H, HUESGEN A, et al. Control of cell-contact sites by cyclic AMPpulses in diferentiating Dictyostelium cells[J]. Nature,1975,255:547–549.
    [153] OLSEN L F, DEGN H. Oscillatory kinetics of the peroxidase oxidase reaction in an opensystem. Experimental and theoretical studies[J]. Biochim Biophys Acta,1978,523:321–334.
    [154] OLSEN L F, DEGN H. Chaos in an enzyme reaction[J]. Nature,1977,267:177–178.
    [155] GOODWIN B. Oscillatory behavior in enzymatic control processes[J]. Adv Enzyme Regul,1965,3:425–438.
    [156] HIGGINS J. The theory of oscillating reactions[J]. Ind Eng Chem,1967,59:18–62.
    [157] PRIGOGINE I, LEFEVER R. Symmetry breaking instabilities in dissipative systems. II[J]. JChem Phys,1968,48:1695–1700.
    [158] SEL.KOV E E. Self-oscillations in glycolysis[J]. Eur J Biochem,1968,4:79–86.
    [159] EVANS T, ROSENTHAL E T, YOUNGBLOM J, et al. Cyclin: a protein specified by maternalmRNA in sea urchin eggs that is destroyed at each cleavage division[J]. Cell,1983,33:389–396.
    [160] GERHART J, WU M, KIRSCHNER M. Cell cycle dynamics of an M-phase-specific cytoplas-mic factor in Xenopus laevis oocytes and eggs[J]. J Cell Biol,1984,98:1247–1255.
    [161] DUNLAP J C. Molecular bases for circadian clocks[J]. Cell,1999,96:271–290.
    [162] PURCELL O, SAVERY N J, GRIERSON C S, et al. A comparative analysis of syntheticgenetic oscillators[J]. J R Soc Interface,2010,7:1503–1524.
    [163] GUANTES R, POYATOS J F. Dynamical principles of two-component genetic oscillators[J].PLoS Comput Biol,2006,2(e30).
    [164] BARKAI N, LEIBLER S. Biological rhythms: circadian clocks limited by noise[J]. Nature,2000,403:267–268.
    [165] TIGGES M, MARQUEZ-LAGO T T, STELLING J, et al. A tunable synthetic mammalianoscillator[J]. Nature,2009,457:309–312.
    [166] TIGGES M, DENERVAUD N, GREBER D, et al. A synthetic low-frequency mammalianoscillator[J]. Nucl Acids Res,2010,38:2702–2711.
    [167] SMOLEN P, BAXTER D A, BYRNE J H. Frequency selectivity, multistability, and oscillationsemerge from models of genetic regulatory systems[J]. Am J Physiol,1998,274:C531–C542.
    [168] HASTY J, DOLNIK M, ROTTSCHAFER V, et al. Synthetic gene network for entraining andamplifying cellular oscillations[J]. Phys Rev Lett,2002,88(148101).
    [169] STRICKER J, COOKSON S, BENNETT M R, et al. A fast, robust and tunable synthetic geneoscillator[J]. Nature,2008,456:516–519.
    [170] HASTY J, ISAACS F, DOLNIK M, et al. Designer gene networks: towards fundamentalcellular control[J]. Chaos,2001,11:207–220.
    [171] FUNG E, WONG W, SUEN J, et al. A synthetic gene-metabolic oscillator[J]. Nature,2005,435:118–122.
    [172] KIM J, WINFREE E. Synthetic in vitro transcriptional oscillators[J]. Mol Syst Biol,2011,7(465).
    [173] KHOLODENKO B N. Cell-signalling dynamics in time and space[J]. Nat Rev Mol Cell Biol,2006,7:165–176.
    [174] SPORNS O, KOTTER R. Motifs in brain networks[J]. PLoS Biol,2004,2(e369).
    [175] KIM T H, KIM J, HESLOP-HARRISON P, et al. Evolutionary design principles and functionalcharacteristics based on kingdom-specific network motifs[J]. Bioinformatics,2011,27:245–251.
    [176] BRANDMAN O, MEYER T. Feedback loops shape cellular signals in space and time[J].Science,2008,322:390–395.
    [177] MAEDA Y T, SANO M. Regulatory dynamics of synthetic gene networks with positive feed-back[J]. J Mol Biol,2006,359:1107–1124.
    [178] KARMAKAR R, BOSE I. Positive feedback, stochasticity and genetic competence[J]. PhysBiol,2007,4:29–37.
    [179] HORNUNG G, BARKAI N. Noise propagation and signal sensitivity in biological networks:a role for positive feedback loop[J]. PLoS Comput Biol,2008,4(e8).
    [180] FREEMAN M. Feedback control of intercellular signalling development[J]. Nature,2000,408:313–319.
    [181] HAYER A, BHALLA U S. Molecular switches at the synapse emerge from receptor and kinasetrafc[J]. PLoS Comput Biol,2005,1:137–154.
    [182] SMITS W K, KUIPERS O P, VEENING J W. Phenotypic variation in bacteria: the role offeedback regulation[J]. Nat Rev Microbiol,2006,4:259–271.
    [183] MAAMAR H, DUBNAU D. Bistability in the Bacillus subtillis K-state (competence) systemrequires a positive feedback loop[J]. Mol Microbiol,2005,56:615–624.
    [184] BECSKEI A, SERRANO L. Engineering stability in gene networks by autoregulation[J].Nature,2000,405:590–593.
    [185] WOLF D M, ARKIN A P. Motifs, modules and games in bacteria[J]. Curr Opin Microbiol,2003,6:125–134.
    [186] BAUTISTA D M, HOTH M, LEWIS R S. Enhancement of calcium signalling dynamics andstability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells[J].J Physiol,2002,541:877–894.
    [187] NICHOLLS D, AKERMAN K. Mitochondrial calcium transport[J]. Biochim Biophys Acta,1982,683:57–88.
    [188] YANG L, MACLELLAN W R, HAN Z, et al. Multisite phosphorylation and network dynamicsof cyclin-dependent kinase signaling in the eukaryotic cell cycle[J]. Biophys J,2004,86:3432–3443.
    [189] BRANDMAN O, FERRELL J J, LI R, et al. Interlinked fast and slow positive feedback loopsdrive reliable cell decisions[J]. Science,2005,310:496–498.
    [190] ZHANG X P, CHENG Z, LIU F, et al. Linking fast and slow positive feedback loops createsan optimal bistable switch in cell signaling[J]. Phys Rev E,2007,76(031924).
    [191] SMOLEN P, BAXTER D A, BYRNE J H. Interlinked dual-time feedback loops can enhancerobustness to stochasticity and persistence of memory[J]. Phys Rev E,2009,79(031902).
    [192] KIM J R, YOON Y, CHO K H. Coupled feedback loops form dynamic motifs of cellularnetworks[J]. BioPhys J,2008,94:359–365.
    [193] KIM J R, JUNG S H, CHO K H. Interlinked mutual inhibitory positive feedbacks inducerobust cellular memory efects[J]. FEBS Lett,2007,581:4899–4904.
    [194] KIM D, KWON Y, CHO K H. Coupled positive and negative feedback circuits form an essen-tial building block of cellular signalling pathways[J]. BioEssays,2007,29:85–90.
    [195] TSAI T Y, CHOI Y S, MA W, et al. Robust, tunable biological oscillations from interlinkedpositive and negative feedback loops[J]. Science,2008,321:126–129.
    [196] GUO X, WANG X F. Signaling cross-talk between TGF-β/BMP and other pathways[J]. CellRes,2009,19:71–88.
    [197] ZHOU T, ZHANG J, YUAN Z, et al. Synchronization of genetic oscillators[J]. Chaos,2008,18(037126).
    [198] GONZE D. Coupling oscillations and switches in genetic networks[J]. BioSystems,2010,99:60–69.
    [199] SRIRAM K, SOLIMAN S, FAGES F. Dynamics of the interlocked feedback loops explainingthe robust epigenetic switching in Candida albicans[J]. J Theor Biol,2009,258:71–88.
    [200] WANG R, CHEN L, AIHARA K. Construction of genetic oscillators with interlocked feedbacknetworks[J]. J Theor Biol,2006,242:454–463.
    [201] ANGELI D, FERRELL J J, SONTAG E D. Detection of multistability, bifurcations, andhysteresis in a large class of biological positive-back systems[J]. Proc Natl Acad Sci USA,2004,101:1822–1827.
    [202] ACAR M, BECSKEI A, VAN OUDENAARDEN A. Enhancement of cellular memory byreducing stochastic transitions[J]. Nature,2005,435:228–232.
    [203] ZHANG X P, LIU F, CHENG Z, et al. Cell fate decision mediated by p53pulses[J]. Proc NatlAcad Sci USA,2009,106:12245–12250.
    [204] BUCHLER N E, GERLAND U, HWA T. On schemes of combinatorial transcription logic[J].Proc Natl Acad Sci USA,2003,100:5136–5141.
    [205] CHICKARMANE V, RAY A, SAURO H M, et al. A model for p53dynamics triggered byDNA damage[J]. SIAM J Appl Dyn Syst,2007,6:61–78.
    [206] WANG R, ZHOU T, JING Z, et al. Modelling periodic oscillation of biological systems withmultiple timescale networks[J]. Syst Biol,2004,1:71–84.
    [207] TIAN T, BURRAGE K. Stochastic models for regulatory networks of the genetic toggleswitch[J]. Proc Natl Acad Sci USA,2006,103:8372–8377.
    [208] WANG J, ZHANG J, YUAN Z, et al. Noise-induced switches in network systems of the genetictoggle switch[J]. BMC Syst Biol,2007,1(50).
    [209] LOINGER A, BIHAM O. Stochastic simulations of the repressilator circuit[J]. Phys Rev E,2007,76(051917).
    [210] GARCIA-OJALVO J, ELOWITZ M B, STROGATZ S H. Modeling a synthetic multicel-lular clock: repressilators coupled by quorum sensing[J]. Proc Natl Acad Sci USA,2004,101:10955–10960.
    [211] LEVINE A J, OREN M. The first30years of p53: growing ever more complex[J]. Nat RevCancer,2009,9:749–758.
    [212] CHEN X, XU H, YUAN P, et al. Integration of external signaling pathways with the coretranscriptional network in embryonic stem cells[J]. Cell,2008,133:1106–1117.
    [213] MA W, TRUSINA A, EI-SAMAD H, et al. Defining network topologies that can achievebiochemical adaptation[J]. Cell,2009,138:760–773.
    [214] BONEV B, STANLEY P, PAPALOPULU N. MicroRNA-9modulates Hes1ultradian oscilla-tions by forming a double-negative feedback loop[J]. Cell Reports,2012,2:10–18.
    [215] YAMAKUCHI M, LOWENSTEIN C J. MiR-34, SIRT1, and P53: the feedback loop[J]. CellCycle,2009,8:712–715.
    [216] CHEN F, HU S J. Efect of microRNA-34a in cell cycle,diferentiation, and apoptosis: areview[J]. J Biochem Molecular Toxicology,2012,26:79–86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700