三维医学图像精准分割算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的发展和医学影像技术的提高,医学图像不仅可以将患者的身体结构投影到二维平面上来观察,而且能重建出体内的三维空间模型,且成像的分辨率越来越高。医学图像分割,作为一种把图像中感兴趣的区域标注出来的方法,是许多基于医学图像的诊断、治疗和分析应用的重要基础步骤。传统的医学图像分割算法大多基于二维图像来研究,应用到三维数据中也是直接对三维数据中的每一个切片来进行二维分割,然后组合成三维目标模型。这种方法的缺点就是没有考虑到图像中与切片垂直方向上的图像信息。然而,直接在三维空间中进行分割所面临的难点主要在于:(1)受一些分割模型的限制,无法将二维平面上的曲线扩展到三维空间中的曲面,如图论中的最短路径问题2)时间效率低以至于不实用。(3)受显示技术的限制,交互方式不直观。
     本文在回顾与分析众多医学图像分割方法的基础上,基于上述出发点,研究了一系列基于三维体数据的分割方法。其中包括自动的分割方法和交互式的分割方法。具体来讲,本文的主要工作和创新点如下:
     1.一个好的滤波器对分割结果有着重要的影响,因此,本文首先给出了基于自适应加权中值的双边滤波方法。此方法综合了中值滤波和双边滤波的特点,对冲击噪声和高斯噪声同时具有抑制作用。
     2.提出了自动从头部MRI T1数据中分割大脑组织的方法。该方法首先用图分割方法来对数据进行粗分割,然后基于marching cubes方法提取此粗分割结果的表面网格,把此网格作为初始表面,利用参数曲面演化方法来对整个大脑进行分割。
     3.提出基于嵌入边缘置信度的活动线交互分割方法。此方法考虑了医学图像中感兴趣组织边缘较弱的特征,克服了传统活动线方法需要较多控制点才能把活动线限制在目标边缘上的弱点。实验证明,在达到同样分割精度条件下,本方法使用更少的控制点,这意味着操作者工作效率的提高。
     4.提出基于非线性核函数的元胞自动机交互分割方法。该方法有效减少了边缘区域元胞状态的频繁切换,从而加快了算法的收敛速度。
     5.深入研究了GPU的体系结构和用于通用计算的方法。提出了基于GPU实现的三维元胞自动机交互分割方法。实验结果显示,该方法GPU实现的运行效率是CPU版本的90倍左右。
     本文最后对全文进行了总结,并对未来的工作进行了展望。
As the development of computer techniques and medical imaging modalities, medical images can not only show the 2D projection of the patient body, but also the 3D volume. Meanwhile, the resolution of the imaging is becoming higher and higher. Medical image segmentation, as an important preprocessing step for many image based medical applications, such as computer aided diagnosis and computer aided treatment, is a technique that separates the medical image into several regions; and each region is satisfied by a predefined criteria. Unfortunately, most of the previous research on the medical image segmentation focused themselves on the 2D images. Even these method are applied on the 3D images, they usually use a slice by slice manner. One major weak point for the slice by slice techniques is that they cannot incorporate the information along the Z direction. However, applying the algorithms on the 3D medical volume is difficult due to the following reasons: (1) It is difficult to extent the curve on 2D image to surface on the 3D volume, due to the limitation of some techniques. For instance, there is no counterpart in 3D (surface) of the curves in 2D for the shortest distance path algorithm in graph theory. (2) Some 3D segmentation methods are so slow that are not suitable to use in practice. (3) It is not convenient to interactive with the volume due to the limitation of the visualization technique.
     After reviewing many popular segmentations methods, we proposed several 3D automatic and interactive segmentation schemes. Specifically, the main contributions of this work are as follows:
     1. Proposed a weighted center median based bilateral fitter, which is a combination of the median filter and bilateral filter. The proposed filter is able to surpass the impulse noise and Gaussian noise simultaneously.
     2. Proposed a hybrid scheme which can extract brain tissue from head MRI T1 scans. Given the rough segmentation by graph cut method, marching cubes based isosruface extraction is performed to extract the rough brain surface, which evolved to the exact brain surface governed by the parameterized deformable model.
     3. Proposed embedded edge confidence based live-wire segmentation method. This interactive method considered the weak but sharp edges, which are common presented in medical images. Segmentation results indicated that the proposed method required less control points compared with the conventional live-wire method, which means increased working efficiency of the operator.
     4. Proposed nonlinear kernel based interactive segmentation method using cellular automata. The proposed method increased the convergence speed and reduced the status switch time for the cells on the boundary compared with the classical method.
     5. By analyzing the architecture and generous propose computing method of the GPU, we proposed a GPU implementation of the 3D cellular automata based interactive segmentation method. Experimental results shown the 90 times faster compared with the CPU implementation.
     Finally, the conclusion of this dissertation and the prospect of the research are given.
引文
[1] R.G. Grainger and D.J. Allison,“Diagnostic radiology: a textbook of medical imaging,”RadioGraphics.
    [2] J.L. Foo,“A survey of user interaction and automation in medical image segmentation methods,”Iowa State University Human Computer Interaction Technical Report ISU-HCI-2006-02, 2006.
    [3] A.M. DiGioia III, B. Jaramaz, and B.D. Colgan,“Computer Assisted Orthopaedic Surgery: Image Guided and Robotic Assistive Technologies.,”Clinical Orthopaedics & Related Research, vol. 354, 1998, p. 8.
    [4] J.B.A. Maintz and M.A. Viergever,“A survey of medical image registration,”Medical image analysis, vol. 2, 1998, pp. 1-36.
    [5] T.R. Mackie, J. Kapatoes, K. Ruchala, W. Lu, C. Wu, G. Olivera, L. Forrest, W. Tome, J. Welsh, and R. Jeraj,“Image guidance for precise conformal radiotherapy,”International journal of radiation oncology, biology, physics, vol. 56, 2003, pp. 89-105.
    [6] H. Handels, J. Ehrhardt, W. Pl?tz, and S.J. P?ppl,“Three-dimensional planning and simulation of hip operations and computer-assisted construction of endoprostheses in bone tumor surgery,”Computer Aided Surgery, vol. 6, 2001, pp. 65-76.
    [7] D.A. Forsyth and J. Ponce, Computer Vision: A modern approach, Prentice Hall Professional Technical Reference, 2002.
    [8] O.G. Rousset, Y. Ma, and A.C. Evans, Correction for partial volume effects in PET: principle and validation, Soc Nuclear Med, 1998.
    [9] M. Malfait and D. Roose,“Wavelet-based image denoising using a Markov random field a priorimodel,”IEEE Transactions on Image Processing, vol. 6, 1997, pp. 549-565.
    [10] T. McInerney and D. Terzopoulos,“Deformable models in medical image analysis: a survey,”Medical image analysis, vol. 1, 1996, pp. 91-108.
    [11] K.S. Fu and J.K. Mui,“A survey on image segmentation,”Pattern Recognition, vol. 13, 1981, pp. 3-16.
    [12]李介谷,图像处理技术,上海交通大学出版社, 1988.
    [13]戚飞虎,模式识别与图像处理,上海交通大学出版社, 1989.
    [14]李介谷,计算机视觉的理论和实践,上海交通大学出版社, 1999.
    [15] H.K. Liu,“Two-and three-dimensional boundary detection,”Computer Graphics and Image Processing, vol. 6, 1977, pp. 123-134.
    [16] G.T. Herman and H.K. Liu,“Dynamic boundary surface detection,”ComputerGraphics and Image Processing, vol. 7, 1978, pp. 130–138.
    [17] S.W. Zucker and R. Hummel,“Three-Dimensional Edge Operator,”IEEE TRANS. PATTERN ANALY. AND MACH. INTELLIG., vol. 3, 1981, pp. 324-331.
    [18] J. Serra, Image analysis and mathematical morphology, Academic Press, Inc. Orlando, FL, USA, 1983.
    [19] J. Serra, Image analysis and mathematical morphology, Academic Press, Inc. Orlando, FL, USA, 1983.
    [20] M. Kass, A. Witkin, and D. Terzopoulos,“Snakes: Active contour models,”International journal of computer vision, vol. 1, 1988, pp. 321-331.
    [21] J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O'Bara, and M.J. Wozny,“Geometrically deformed models: a method for extracting closed geometric models form volume data,”ACM SIGGRAPH Computer Graphics, vol. 25, 1991, pp. 217-226.
    [22] L.D. Cohen, I. Cohen, and P. CEREMADE,“Finite-element methods for active contour models and balloons for2-D and 3-D images,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, 1993, pp. 1131-1147.
    [23] T. McInerney and D. Terzopoulos,“Topologically adaptable snakes,”Computer Vision, 1995. Proceedings., Fifth International Conference on, 1995, pp. 840-845.
    [24] R.T. Whitaker,“A level-set approach to 3D reconstruction from range data,”International Journal of Computer Vision, vol. 29, 1998, pp. 203-232.
    [25] H. Tek and B.B. Kimia,“Volumetric segmentation of medical images by three-dimensional bubbles,”Computer Vision and Image Understanding, vol. 65, 1997, pp. 246-258.
    [26] C.A. Davatzikos and J.L. Prince,“An active contour model for mapping the cortex,”IEEE Transactions on Medical Imaging, vol. 14, 1995, pp. 65-80.
    [27] J. Weese, M. Kaus, C. Lorenz, S. Lobregt, R. Truyen, and V. Pekar,“Shape constrained deformable models for 3D medical image segmentation,”Lecture notes in computer science, 2001, pp. 380-387.
    [28] S. Osher and J.A. Sethian,“Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,”Journal of computational physics, 1988.
    [29] M. Sussman and E.G. Puckett,“A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows,”Journal of Computational Physics, vol. 162, 2000, pp. 301-337.
    [30] R.T. Whitaker and D. Chen,“Embedded active surfaces for volume visualization,”Proceedings of SPIE, 1994, p. 340.
    [31] R.T. Whitaker,“Algorithms for implicit deformable models,”Proc. ICCV, pp. 822-827.
    [32] X. Han, C. Xu, and J.L. Prince,“A topology preserving level set method for geometric deformable models,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, 2003, pp. 755-768.
    [33] S.D. Olabarriaga and A.W.M. Smeulders,“Interaction in the segmentation of medical images: A survey,”Medical image analysis, vol. 5, 2001, pp. 127-142.
    [34] N. Otsu,“A Tlreshold Selection Method from Gray-Level Histograms,”Automatica, vol. 11, 1975, pp. 285-296.
    [35] T. Cover and P. Hart,“Nearest neighbor pattern classification,”IEEE Transactions on Information Theory, vol. 13, 1967, pp. 21-27.
    [36]李介谷,计算机模式识别技术,上海交通大学出版社, 1986.
    [37] B.V. Dasarathy, Nearest neighbor (NN) norms: NN pattern classification techniques, Los Alamitos, CA: IEEE Computer Society Press, 1991.
    [38] L. Wasserman, All of statistics: a concise course in statistical inference, Springer, 2004.
    [39] N. Friedman, D. Geiger, and M. Goldszmidt,“Bayesian network classifiers,”Machine learning, vol. 29, 1997, pp. 131-163.
    [40] G.B. Coleman and H.C. Andrews,“Image segmentation by clustering,”Proceedings of the IEEE, vol. 67, 1979, pp. 773-785.
    [41] J.C. Bezdek and R. Ehrlich,“FCM: The fuzzy c-means clustering algorithm.,”Comp. Geosci., vol. 10, 1984, pp. 191-203.
    [42] D.M. Tsai and Y.H. Chen,“A fast histogram-clustering approach for multi-level thresholding,”Pattern Recognition Letters, vol. 13, 1992, pp. 245-252.
    [43]王培珍,陈维楠,“基于二维阈值化与FCM相混合的快速图像分割方法,”中国图像图形学报, vol. 3, 1998, pp. 735-738.
    [44] R. Chellappa and A. Jain,“Markov random fields: theory and application,”Boston: Academic Press, 1993, edited by Chellappa, Rama; Jain, Anil, 1993.
    [45] J.M. Hammersley,“Stochastic models for the distribution of particles in space,”Advances in Applied Probability, 1972, pp. 47-68.
    [46] T.N. Pappas,“An adaptive clustering algorithm for image segmentation,”IEEE Transactions on Signal Processing, vol. 40, 1992, pp. 901-914.
    [47] J.C. Rajapakse, J.N. Giedd, and J.L. Rapoport,“Statistical approach to segmentation of single-channel cerebral MR images,”IEEE Transactions on Medical Imaging, vol. 16, 1997, pp. 176-186.
    [48] K. Held, E.R. Kops, B.J. Krause, W.M. Wells III, R. Kikinis, and H.W. Muller-Gartner,“Markov random field segmentation of brain MR images,”IEEE Transactions on Medical Imaging, vol. 16, 1997, pp. 878-886.
    [49] A.F. Goldszal, C. Davatzikos, D.L. Pham, M.X.H. Yan, R.N. Bryan, and S.M. Resnick,“An image-processing system for qualitative and quantitative volumetric analysis of brain images,”Journal of Computer Assisted Tomography, vol. 22, 1998, p. 827.
    [50] J. Besag,“Statistical analysis of dirty pictures*,”Journal of Applied Statistics, vol. 20, 1993, pp. 63-87.
    [51] S. Geman, D. Geman, K. Abend, T.J. Harley, and L.N. Kanal,“Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images*,”Journal of Applied Statistics, vol. 20, 1993, pp. 25-62.
    [52] S.Z. Li,“Markov random field models in computer vision,”Lecture Notes in Computer Science, vol. 801, 1994, pp. 361-370.
    [53] T.R. Reed and J.M.H. Du Buf,“A review of recent texture segmentation and feature extraction techniques,”CVGIP: Image Understanding, vol. 57, 1993, pp. 359-372.
    [54] F. Yang and T. Jiang,“Pixon-based image segmentation with Markov random fields,”IEEE transactions on image processing, vol. 12, 2003, pp. 1552-1559.
    [55] R.M. Haralick and L.G. Shapiro,“Image segmentation techniques.,”APPLICATIONS OF ARTIFICIAL INTELLIGENCE II., 1985,, vol. 548, 1985, pp. 2-9.
    [56] L. O'gorman and A.C. Sanderson,“Wedge filter technique for convex boundary estimation.,”IEEE TRANS. PATTERN ANAL. MACH. INTELLIG., vol. 7, 1985, pp. 326-331.
    [57] Y.L. Chang and X. Li,“Adaptive image region-growing,”IEEE Transactions on Image Processing, vol. 3, 1994, pp. 868-872.
    [58] S.L. Horowitz and T. Pavlidis,“Picture segmentation by a tree traversal algorithm,”Journal of the ACM (JACM), vol. 23, 1976, pp. 368-388.
    [59]尹平,王润生,“基于边缘信息的分开合并图像分割算法,”中国图像图形学报, 1998.
    [60] J.A. Maldjian, P.J. Laurienti, R.A. Kraft, and J.H. Burdette,“An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets,”Neuroimage, vol. 19, 2003, pp. 1233-1239.
    [61] J. Talairach and P. Tournoux, Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging, Thieme, 1988.
    [62] J.L. Lancaster, L.H. Rainey, J.L. Summerlin, C.S. Freitas, P.T. Fox, A.C. Evans, A.W. Toga, and J.C. Mazziotta,“Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method,”Human Brain Mapping, vol. 5, 1997.
    [63] N.C. Andreasen, R. Rajarethinam, T. Cizadlo, S. Arndt, V.W. Swayze, L.A. Flashman, D.S. O'Leary, J.C. Ehrhardt, and W.T.C. Yuh,“Automatic atlas-based volume estimation of human brain regions from MR images,”Journal of computer assisted tomography, vol. 20, 1996, p. 98.
    [64] G.E. Christensen, S.C. Joshi, and M.I. Miller,“Volumetric transformation of brain anatomy,”IEEE Transactions on Medical Imaging, vol. 16, 1997, pp.864-877.
    [65] D.L. Collins, C.J. Holmes, T.M. Peters, and A.C. Evans,“Automatic 3-D model-based neuroanatomical segmentation,”Human Brain Mapping, vol. 3, 1995.
    [66] C. Davatzikos,“Spatial normalization of 3D brain images using deformable models,”Journal of Computer Assisted Tomography, vol. 20, 1996, p. 656.
    [67] S. Sandor, R. Leahy, T.R.W. Inc, and R. Beach,“Surface-based labeling of cortical anatomy using a deformable atlas,”IEEE Transactions on Medical Imaging, vol. 16, 1997, pp. 41-54.
    [68] J.A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of research, MIT Press Cambridge, MA, USA, 1988.
    [69] G. Valli, R. Poli, S. Cagnoni, and G. Coppini,“Neural networks and prior knowledge help the segmentation of medical images,”Journal of Computing and Information Technology (CIT), vol. 6, 1998, pp. 117–133.
    [70] K.S. Oh and K. Jung,“GPU implementation of neural networks,”Pattern Recognition, vol. 37, 2004, pp. 1311-1314.
    [71] Y.J. Zhang,“A survey on evaluation methods for image segmentation,”Pattern Recognition, vol. 29, 1996, pp. 1335-1346.
    [72] D.L. Collins, A.C. Evans, C. Holmes, and T.M. Peters,“Automatic 3D segmentation of neuro-anatomical structures from MRI,”Information Processing in Medical Imaging: 14th International Conference, Ile de Berder, France, June 1995, Kluwer Academic Pub, 1995, p. 139.
    [73] R. Pichumani, C.S. Dept, and S. University, Construction of a three-dimensional geometric model for segmentation and visualization of cervical spine images, Stanford University, Dept. of Computer Science, 1997.
    [74] B. Potocnik and D. Zazula,“Assessing the Efficiency of the Image Segmentation Algorithms(Ocenjevanje Ucinkovitosti Algoritmov za Segmentiranje Slik),”RECON no. 20010117103.; Electrotechnical Review, vol. 68, 2001, pp. 97-104.
    [75] Y.J. Zhang,“Evaluation and comparison of different segmentation algorithms,”Pattern Recognition Letters, vol. 18, 1997, pp. 963-974.
    [76] D.R.K. Brownrigg,“The weighted median filter,”Communications of the ACM, vol. 27, 1984, pp. 807-818.
    [77] K. Ito and K. Xiong,“Gaussian filters for nonlinear filtering problems,”IEEE Transactions on Automatic Control, vol. 45, 2000, pp. 910-927.
    [78] J. Lu, D.M. Healy Jr, and J.B. Weaver,“Contrast enhancement of medical images using multiscale edge representation,”OPTICAL ENGINEERING-BELLINGHAM-INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING-, vol. 33, 1994, pp. 2151-2151.
    [79] P. Perona and J. Malik,“Scale-space and edge detection using anisotropicdiffusion,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, 1990, pp. 629-639.
    [80] F. Catté, P.L. Lions, J.M. Morel, and T. Coll,“Image selective smoothing and edge detection by nonlinear diffusion,”SIAM Journal on Numerical Analysis, 1992, pp. 182-193.
    [81]杨新,图像偏微分方程的原理与应用,上海交通大学出版社, 2007.
    [82] C. Tomasi and R. Manduchi,“Bilateral filtering for gray and color images,”Computer Vision, 1998. Sixth International Conference on, 1998, pp. 839-846.
    [83] E. Bardinet, L.D. Cohen, and N. Ayache,“A parametric deformable model to fit unstructured 3D data,”1995.
    [84] S.M. Smith,“Fast robust automated brain extraction,”Human Brain Mapping, vol. 17, 2002.
    [85] Y. Boykov and M.P. Jolly,“Interactive graph cuts for optimal boundary and region segmentation of objects in ND images,”International Conference on Computer Vision, Vancouver, BC, Canada, 2001, pp. 105–112.
    [86] V. Kolmogorov and R. Zabin,“What energy functions can be minimized via graph cuts?,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, 2004, pp. 147-159.
    [87] C. Rother, V. Kolmogorov, and A. Blake,“" GrabCut": interactive foreground extraction using iterated graph cuts,”ACM Transactions on Graphics (TOG), vol. 23, 2004, pp. 309-314.
    [88] J. Zhu-Jacquot,“Graph Cuts Segmentation with Geometric Shape Priors for Medical Images,”IEEE Southwest Symposium on Image Analysis and Interpretation, 2008. SSIAI 2008, 2008, pp. 109-112.
    [89] S. Kirkpatrick,“Optimization by simulated annealing: Quantitative studies,”Journal of Statistical Physics, vol. 34, 1984, pp. 975-986.
    [90] J.S. Yedidia, W.T. Freeman, and Y. Weiss,“Generalized belief propagation,”Advances in neural information processing systems, 2001, pp. 689-695.
    [91] D.M. Greig, B.T. Porteous, and A.H. Seheult,“Exact maximum a posteriori estimation for binary images,”Journal of the Royal Statistical Society. Series B (Methodological), 1989, pp. 271-279.
    [92] A. Tucker,“A Note on Convergence of the Ford-Fulkerson Flow Algorithm,”Mathematics of Operations Research, 1977, pp. 143-144.
    [93] L. Ford and D. Fulkerson,“Flows in networks,”1962.
    [94] A.V. Goldberg and R.E. Tarjan,“A new approach to the maximum-flow problem,”Journal of the ACM (JACM), vol. 35, 1988, pp. 921-940.
    [95] J. Park, D. Metaxas, A.A. Young, and L. Axel,“Deformable models with parameter functions for cardiac motion analysis from tagged MRI data,”IEEE Transactions on Medical Imaging, vol. 15, 1996, pp. 278-289.
    [96] W.E. Lorensen and H.E. Cline,“Marching cubes: A high resolution 3D surfaceconstruction algorithm,”Proceedings of the 14th annual conference on Computer graphics and interactive techniques, ACM New York, NY, USA, 1987, pp. 163-169.
    [97] C. Montani, R. Scateni, and R. Scopigno,“Discretized marching cubes,”Visualization, 1994, pp. 281-287.
    [98] C. Xu and J.L. Prince,“Snakes, shapes, and gradient vector flow,”IEEE Transactions on image Processing, vol. 7, 1998, pp. 359-369.
    [99] C. Xu and J.L. Prince,“Gradient vector flow: A new external force for snakes,”1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997. Proceedings., 1997, pp. 66-71.
    [100] N. Paragyios, O. Mellina-Gottardo, and V. Ramesh, Gradient vector flow fast geodesic active contour, Google Patents, 2002.
    [101] C. Xu and J.L. Prince,“Gradient vector flow deformable models,”Handbook of Medical Image Processing and Analysis, 2008, p. 181.
    [102] F. Shi and J. Yang,“Live-wire-based image segmentation with embedded edge confidence,”Optical Engineering, vol. 48, 2009, p. 037007.
    [103] W.A. Barrett and E.N. Mortensen,“Fast, accurate, and reproducible live-wire boundary extraction,”Lecture Notes in Computer Science, vol. 1131, 1996, pp. 183-192.
    [104] W.A. Barrett and E.N. Mortensen,“Interactive live-wire boundary extraction,”Medical Image Analysis, vol. 1, 1997, pp. 331-341.
    [105] E.W. Dijkstra,“A note on two problems in connexion with graphs,”numerische Mathematik, vol. 1, 1959, pp. 269-271.
    [106] A.X. Falcao, J.K. Udupa, and F.K. Miyazawa,“An ultra-fast user-steered image segmentation paradigm: live wireon the fly,”IEEE Transactions on Medical Imaging, vol. 19, 2000, pp. 55-62.
    [107] P. Meer and B. Georgescu,“Edge detection with embedded confidence,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, 2001, pp. 1351-1365.
    [108] J. Canny,“A computational approach to edge detection,”IEEE Transactions on pattern analysis and machine intelligence, 1986, pp. 679-698.
    [109] A.X. Falc?o and J.K. Udupa,“A 3D generalization of user-steered live-wire segmentation,”Medical Image Analysis, vol. 4, 2000, pp. 389-402.
    [110] W. Wieclawek and E. Pietka,“Live-Wire-Based 3D Segmentation Method,”Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 5645-5648.
    [111] G. Hamarneh, J. Yang, C. McIntosh, and M. Langille,“3D live-wire-based semi-automatic segmentation of medical images,”Proceedings of SPIE Medical Imaging: Image Processing, 2005, pp. 1597–1603.
    [112] S. Wolfram,“Theory and applications of cellular automata,”Advanced Series onComplex Systems, Singapore: World Scientific Publication, 1986, 1986.
    [113] S. Wolfram,“Cellular automata,”Los Alamos Science, vol. 9, 1983, p. 42.
    [114] W. Li, G. Han, K. Zou, G. Gu, and X. Zhang,“Natural Image Matting Using Cellular Automata,”Convergence Information Technology, 2007. International Conference on, 2007, pp. 1746-1751.
    [115] V. Vezhnevets, V. Konouchine, and R. Moscow,““GrowCut”-Interactive Multi-Label ND Image Segmentation By Cellular Automata,”Proc. of Graphicon, Citeseer, 2005, pp. 150–156.
    [116] S. Hu, E.A. Hoffman, and J.M. Reinhardt,“Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images,”IEEE Transactions on Medical Imaging, vol. 20, 2001, pp. 490-498.
    [117] M.J. Zelefsky, S.A. Leibel, P.B. Gaudin, G.J. Kutcher, N.E. Fleshner, E.S. Venkatramen, V.E. Reuter, W.R. Fair, C.C. Ling, and Z. Fuks,“Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer,”The Journal of Urology, vol. 162, 1999, pp. 1550-1550.
    [118] J.E. Cates, A.E. Lefohn, and R.T. Whitaker,“GIST: an interactive, GPU-based level set segmentation tool for 3D medical images,”Medical Image Analysis, vol. 8, 2004, pp. 217-231.
    [119] J. Kruger and R. Westermann,“Acceleration techniques for GPU-based volume rendering,”IEEE Visualization, 2003. VIS 2003, 2003, pp. 287-292.
    [120] T. Pock, M. Unger, D. Cremers, and H. Bischof,“Fast and exact solution of Total Variation models on the GPU,”IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPR Workshops 2008, 2008, pp. 1-8.
    [121] F. Xu and K. Mueller,“Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware,”IEEE Transactions on Nuclear Science, vol. 52, 2005, pp. 654-663.
    [122] S. Hissoiny, B. Ozell, and P. Després,“Fast convolution-superposition dose calculation on graphics hardware,”Medical Physics, vol. 36, 2009, p. 1998.
    [123] R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics, Pearson Higher Education, 2004.
    [124] K. Proudfoot, W.R. Mark, S. Tzvetkov, and P. Hanrahan,“A real-time procedural shading system for programmable graphics hardware,”Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM New York, NY, USA, 2001, pp. 159-170.
    [125] D. G?ddeke and A. Appendix, GPGPU-Basic Math Tutorial, Univ. Dortmund, Fachbereich Mathematik, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700