基于图形处理器的大规模结构计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图形处理器(graphics processing units, GPUs)有较强的并行数值运算功能,基于图形处理器的通用计算(genera l purpose GPU computations, GPGPU computations)正应用于更广泛的领域。本文使用OpenGL着色语言编写GPU片元处理程序,应用GPU加速大规模结构计算。
     对基于GPU的通用计算进行了叙述。描述了GPU的硬件结构、处理管线、基于GPU通用计算的概念与方法、以及OpenGL着色语言。简述了影射与缩减等流操作,提出了纹理边长不是2的幂的新纹理缩减算法。研究了应用GPU实现密集矩阵运算的数据结构、矩阵与矩阵乘法和矩阵与向量乘法的GPU算法。应用GPU实现求解线性方程组的高斯消元法和共轭梯度法。并研究稀疏矩阵与向量乘法的GPU实现算法。
     本文应用GPU实现了以下结构计算问题:①结构的动响应。分别用幂法和QR法计算结构的第一和所有自振频率。使用GPU加速Wilson-θ法和Newmark法计算,以计算结构的动响应。②大规模有限元法计算。应用基于GPU的不完全Cholesk y分解预处理共轭梯度法求解大型稀疏有限元线性方程组。③无网格法计算。应用GPU加速无单元Galerkin法计算,并用于计算线弹性问题、弹塑性问题和几何非线性问题。④线性分子结构力学方法计算。计算分析了扶手型和锯齿型碳纳米管的杨氏模量随直径变化的变化规律,并自由度超过10万的碳纳米管的拉伸变形,比较基于GPU和基于CPU的运算时间。⑤非线性分子结构力学方法计算。研究了非线性分子结构力学方法的基本原理和计算步骤,推导了碳原子键拉伸或压缩、弯曲和扭转力系数的非线性计算公式,给出了增量Newton-Raphson法求解非线性分子结构力学方法问题的算法。并给出了应用GPU加速非线性分子结构力学方法计算的算法,使用该算法,计算碳纳米管的拉伸和扭转非线性响应,比较基于GPU和基于CPU的计算的运算时间。以上计算表明,基于GPU的计算有良好的计算精度,随着自由度的增大,GPU所耗费的运算时间比CPU少,证实GPU能加速中、大自由度的结构计算。
     虽然基于GPU的通用计算正应用于更多的领域,但基于GPU的计算有只提供单精度实数运算、程序编写较繁琐、数据传输效率不高等不足之处。
     在应用GPU加速分子动力学方法计算,并应用于碳纳米管的计算分析;用GPU搜索无网格法影响域内结点;把GPU作为存储器,分块存储大规模有限元问题的刚度矩阵,使用PC机求解大规模有限元问题等方面有待进一步的研究。
Graphics processing units (GPUs) are powerful parallel processors, and genera l purposeGPU computations (GPGPU computations) are implemented in ma ny fields. In thisdissertation, OpenGL shading la nguage is used to compile GPU fragment programs, andGPUs are employed to accelera te the computations for large scale structures.
     GPGPU computations are described. GPU hardware architectures, processing pipelines,the concept and procedure for GPGPU computations, and the OpenGL shading la nguage arediscussed. The stream operations such as map and reduction are reviewed, and a new texturereduction algorithm not requiring the texture size be the order of 2 is presented. The datastructure, matrix-matrix multiplication, and matrix-vector multiplication for dense matrixoperations are studied. The Gauss elimina tion method and conjugate gradient method forsolving linear equations are implemented by the GPU. The sparse matrix-vector multiplicationis also implemented by the GPU.
     In this dissertation, the GPU is used to compute the following structural computations:①Structural dynamic response. The first natural frequency and all natural frequencies areobtained by the power method and the QR method, respectively. The GPU is used toaccelera te the Wilson-θmethod and Newmark method for computing the structural dynamicresponse.②Large scale finite element method computations. The incomplete Cholesk ydecomposition conjugate gradient method on the GPU is used to solve the larger scale sparsefinite element method equations.③Meshless method computations. The GPU is used toaccelera te the element free Galerkin method, which is used to compute the linear elasticproblems, elastic-plastic problems, and geometrica l nonlinear problems.④Linear molecularstructural mecha nics approach computations. This algorithm is used to analyze changes for theYoung’s moduli while the dia meters of the carbon nanotubes increasing. The tension of thecarbon nanotubes whose degree of freedom are over 100,000 are computed, and the runningtimes on the GPU and on the CPU are compared.⑤Nonlinear molecular structuralmecha nics approach computations . The theorem and computationa l procedure for thenonlinear molecular mecha nics structural mecha nics approach are studied. The nonlinear formula of the carbon atom bond force for stretching, bending and torsion are deduced. Theincrement Newton-Raphson method for solving the nonlinear molecular structural mecha nicsapproach is given, and the GPU implementation for nonlinear molecular structural mecha nicsapproach is also given. These algorithms are used to analyze the carbon nanotubes’nonlinearstretching and torsiona l responses, and the running times on the GPU algorithms and on theCPU algorithms are compared. These computationa l results show that the computations on theGPU have good computationa l accuracy, while the degree of freedom increasing, the runningtimes on the GPU are less tha n those on the CPU, proving that the GPU can accelera te thecomputations for med ium and large structures.
     Although GPGPU computations are being applied in ma ny fields, the computations on theGPU have such deficiencies as only single precision real being provided, the GPU programsbeing complex and trivia l, data transfer between the GPU and the CPU being deficient, etc.
     Further research is necessary in the following: The GPU is used to accelera te moleculardynamics computations, and employ this algorithm to analyze carbon nanotubes; The GPU isused to search the nodes within the influence doma in in meshless method; As a storageelement, the GPU is used to store the blocks of the stiffness matrix for large scale finiteelement computations; etc.
引文
[1] Qwens J.D., Luebke D., Govindaraju H., et al. A survey of genera l-purpose computation ongraphics hardware [R]. Eurographics 2005, State of the Art Reports, August 2005: 21-51
    [2] Juba D., Varshney A. Parallel, stochastic measurement of molecular surface area [J].Journal of Molecular Graphics and Modeling (2008), doi: 10.1016/j.jmgm, 2008.03.001
    [3] Cuda programming guide 1.1 [M].
    [4] Kodem G., Ishihara Y. Brute force at attack on UNIX passwords with SIMD computer [C].In proceedings of the 8th USENIX Security Symposium (Aug., 1999): 93-98
    [5] Lengyel J., Reichert M., Dona ld B.R., et at. real-time robot motion pla nning usingrasterizing computer graphics hardware [J]. Computer Graphics (Proceedings of ACMSIGGRAPH 90), 1990, 24: 327-335
    [6] Hoff III K., Culver T., Keyser J., et al. Fast computation of genera lized Voronoi dia gramsusing graphics hardware [C]. Proceedings of SIGGRAPH 99, 1999, Computer GraphicsProceedings, Annual Conference Series: 277-286
    [7] Bohn C.A. Kohonen feature mapping through graphics hardware [C]. In Proceedings of theJoint Conference on Information Sciences, 1998, 2: 64-67
    [8] Hopf M., Ertl T. Accelerating 3D convolution using graphics hardware [C]. IEEEvisualiza tion’99, 1999, 471-474
    [9] Hopf M., Ertl T. Hardware based wavelet transformations [C]. Proceedings of Vision,Modeling, and Visua liza tion, 1999, 317-328
    [10] Scheidegger C.E., Comba J.L., and Camda R.D. Practical CFD simulation onprogrammable graphics hardware using SMAC [J]. Computer Graphics Forum, 2005,24(4): 715-728
    [11] Wu E.H., Liu Y.Q., and Liu X.H. An improved study of real-time fluid simulation on GPU[J]. Computer Animation an Virtual Worlds, 2004, 15: 139-146
    [12] Liu S.G., Wang Z.Y., Gong Z., et al. Physica lly based anima tion of sandstorm [J].Computer Animation and Visua l Worlds, 2007, 18: 259-269
    [13] Liu S.G., Wang Z.Y., Gong Z., et al. Simula tion of atmospheric binary mixtures based ontwo-fluid model [J]. Graphical Models (2008) doi: 10.1016/j.gmod.2008.04.002
    [14] Hagen T.R., Hjelmervik J.M., Lie K.-A., et al. Visua l simulation of shallow-water waves[J]. Simula tion Modeling Practice and Theory, 2005, 13: 716-726
    [15] Zhao Y. Lattice Boltzma nn based PDE solver on the GPU [J]. Visua l Comput., 2008, 24:323-333
    [16] Harris M.J., Coombe G., Scheuermann T., et al. Physica lly-based visua l simulation ongraphics hardware [J]. Graphics Hardware, 2002, 109-118
    [17] Li W., Wei X., Kaufman A. Implementing lattice Boltzma nn computation on graphicshardware [J]. The Visua l Computer, 2003, 19: 444-456
    [18] Li W., Fan Z., Wei X., et al. GPU-based flow simulation with complex boundaries. GPUGems 2 [M]. Addison Wesly, 2005, 747-764
    [19] Wu W., Heng P.A. An improved scheme of an interactive finite model for 3D soft-tissuecutting and deformation [J]. Visua l Comput., 2005, 21: 707-716
    [20] Goddeke D., Strzoka R., Mohdyusof J., et al. Exploring weak scalability for FEMcalculations on a GPU-enha nced cluster [J]. Parallel Computing, 2007, 33: 685-699
    [21] Anderson J.A., Lorenz O.D., Travesst A. General purpose molecular dynamics simulationsfully implemented on graphics processing units [J]. Journal of Computationa l Physics,2008, 227: 5342-5359
    [22] Stone J.E., Philips J.C., Fraddolino P.L., et al. Accelerating molecular modelingapplica tions with graphics processors [J].Journal of Computationa l Chemistry, doi:10.1002/jcc, published online September 25, 2007
    [23] Yang J.L., Wang Y.J., Chen Y.F. GPU accelera ted molecular dynamics simulation ofthermal conductivities [J]. Journal of Computationa l Physics, 2007, 211: 799-804
    [24] Anderson A.G., Goddard W.A., Schroder P. Quantum Monte Carlo on graphics processingunits [J]. Computer Physics Communica tions, 2007, 177: 298-306
    [25] Simon F., Zwart D., Bellema n R.G., et al. High-performa nce direct gravitationa l N-bodysimulations on graphics processing units [J]. New Astronomy, 2007, 12: 641-650
    [26] Bellema n R.G., Bedorf J., Simon F., et al. High-performa nce direct gravitationa l N-bodysimulations on graphics processing units II: An implementation in CUDA [J]. NewAstronomy, 2008, 13: 103-112
    [27] Thompson C.J., Hahn S., Oskin M. using modern graphics architectures for genera lpurpose computing: A framework and analysis [C]. Proceedings of the 35th AnnualACM/IEEE internationa l Symposium on Micro architecture, 2002, 306-317
    [28] Kim T., Lin M.C. Visua l simulation of ice crysta l growth [C]. 2003 ACMSIGGAPH/Eurographics Symposium on Computer Animation, 2003, 86-97
    [29]邓劲.图形处理器上的快速傅里叶变换[J].现代电子技术, 2007, 249(10): 151-154
    [30]李大禹,胡立发,穆全全,等. GPU计算液晶自适应光学波前重构的并行性能研究[J].液晶与显示, 2007, 22(5): 572-574
    [31]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报, 2003, 20(16):730-742
    [32]张雄,刘岩无.网格法[M].第1版.北京:清华大学出版社, 2004: 1-6; 208-241
    [33] Lucy L.B. A numerical approach to the testing of the fission hypothesis [J]. The Astron. J.,1977, 8(12): 1013-1024
    [34] Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics: theory and applica tion tonon-spherica l
    [35] Monaghan J.J., Gingold G.A. Shock simulation by the particle method SPH [J]. J. Comput.Phys., 1983, 52: 374-389
    [36] Monaghan J.J. Particle method for hydrodynamics [J]. Comput. Phys. Rep., 1985, 3: 71-124
    [37] Swegle J.W., Attaway S.W. On the feasibility of using smoothed particle hydrodynamicsfor underwater explosion calculation [J]. Comput. Mech., 1995, 17: 151-168
    [38] Johnson G.R., Stryk R.A., Beissel S.R. SPH for high velocity impact computations [J].Comput. Appl. Mech. Engrg., 1996, 139: 347-373
    [39] Libersk y L.D., Petschek A.G., et al. High strain Lagrangia n hydrodynamic: A threedimensional SPH code for dynamic materia l response [J]. J. Comput. Phys., 1993, 109:67-75
    [40] Lancaster P., Salka uskas K. Surfaces generated by moving least squares methods [J]. MathComput., 1981, 37(155): 141-158
    [41] Nayroles B., Touzot G., Villon P. Generalizing the finite element method: diffuseapproxima tion and diffuse elements [J]. Comput. Mech., 1992, 10: 307-318
    [42] Belytschko T., Lu Y.Y., Gu L. Element free Galerkin methods [J]. Int. J. Numer. MethodsEngrg., 1994, 37: 229-256
    [43] Lu Y.Y., Belytschko T., tabbara M. Element-free Galerkin methods for wave propagationand dynamic fracture [J]. Comput. Methods Appl. Mech. Engrg., 1995, 126: 131-153
    [44] Ponthot J.P., Belytschko T. Arbitrary Lagrangia n Eulerian formulation for element-freeGalerkin method [J]. Comput. Methods Appl. Mech. Engrg., 1998, 152: 19-46
    [45] Liu G.R., Gu Y.T. Coupling of element free Galerkin and hybrid boundary elementmethods using modified variationa l formulation [J]. Comput. Mech., 2000, 26: 166-173
    [46] Belytschko T., Organ D., Krongauz Y. A coupled finite element– element free Galerkinmethod [J]. Comput. Mech., 1995,17: 186-195
    [47] Onate E., Idelsohn S., Zienkiewicz O.C., et al. A finite point method in computationa lmecha nics: Applications to convective transport and fluid flow [J]. Int. J. Numer. MethodsEngrg., 1996, 39: 3839-3866
    [48] Liu W.K., Jun S., Zha ng Y.E. reproducing kernel particle methods [J]. Int. J. Numer. Mech.Fluids, 1995, 20: 1081-1106
    [49] Liu W.K., Hao S., et al. Multiple scale meshfree methods for dama ge fracture andloca lization [J]. Comput. Mater. Sci., 1999, 16: 197-205
    [50] Lee S.H., Kim H.J., Jun S. two scale meshfree method for the adaptivity of 3-Dconcentration problems [J]. Comput. Mech., 2000, 26: 376-387
    [51] Chen J.S., Pan C., Wu C.T., et al. Reproducing kernel particle methods for largedeformation analysis of non-linear structure [J]. Comput. Methods Appl. Mech. Engrg.,1996, 139: 195-227
    [52] Chen F.S., Pan C., et al. A Lagrangia n reproducing kernel particle method for meta lforming analysis [J]. Comput. Mech., 1998, 22: 289-307
    [53] Liu W.K., Chen Y. Wavelet and multipile scale reproducing kernel method [J]. Int. J.Numer. Mech. Fluids, 1995, 21: 901-931
    [54] Duarte C.A., Oden J.T. Hp clouds: a h-p meshless method [J]. Numerica l Methods forPartial Differentia l Equations, 1996, 12: 673-705
    [55] Babuska I., Melenk J.M. The partition of unity methods [J]. Int. J. Numer. Methods Engrg.,1997, 40: 727-758
    [56] Strouboulis T., Babuska I., Copps K. The design and analysis of the genera lized finiteelement method [J]. Comput. Methods Appl.Mech. Engrg., 2000, 181: 43-69
    [57] Zhu T., Zha ng J., Atluri S.N. A loca l boundary integral equation (LBIE) method incomputationa l mecha nics, and a meshless discretiza tion approach [J]. Comput. Mech.,1998, 21: 223-235
    [58] Atluri S.N., Zhu T. A new meshless loca l Petrov-Galerkin (MLPG) approach incomputationa l mecha nics [J]. Comput. Mech., 1998, 22: 117-127
    [59] Liu G.R., Gu Y.T. Meshless loca l Petrov-Galerkin (MLPG) method in combination withfinite element and boundary element approaches [J]. Comput. Mech., 2000, 26: 536-546
    [60] Combe U.H., Korn C. An adaptive approach with the Element-Free-Galerkin ,ethod [J].Computer Methods in Applied Mecha nics and Engineering, 1998, 162: 203-222
    [61] Luo Y.H., and Combe U.H. A gradient-based adaption procedure and its implementationin the element-free Galerkin method [J]. Internationa l journal for Numerica l Methods inEngineering, 2003, 56: 1335-1354
    [62] Gavete L., Gavete M.L., Alonso B., et al. A posteriori error approxima tion in EFG method[J]. Internationa l Journal for Numerica l Methods in Engineering, 2003, 58: 2239-2263
    [63] Lee G.-H., Chung H.J., and Choi C.-K. Adaptive crack propagation analysis with elementfree Galerkin method [J]. Internationa l Journal for Numerica l Methods in Engineering,2003, 56: 331-350
    [64] Rabczuk T. and Belytschko T. Adaptivity for structured meshfree particle method in 2Dand 3D [J]. Internationa l Journal for Numerica l Methods in Engineering, 2005, 63: 1559-1582
    [65] Rossi R., Alves M.K. An h-adaptive modified element-free Galerkin method [J]. EuropeanJournal of Mecha nics A/Solids, 2005, 24: 782-799
    [66] Li S., Hao W., Liu W.K. Numerica l simulations of large deformation of thin shellstructures using meshfree methods [J]. Comput. Mech., 2000, 25: 102-116
    [67] Belytschko T., Fleming M. Smoothing enrichment and contact in element-free Galerkinmethod [J]. Comput. Struct., 1999, 71: 173-195
    [68] Li S.F., Liu W.K., Qian D., et al. Dynamic shear band propagation and micro-structure ofadiabatic shear band [J]. Comput. Methods Appl. Mech. Engrg., 2001, 191: 73-92
    [69] Duflot M. A meshless method with enriched weight functions for three-dimensiona l crackpropagation [J]. Internationa l Journal for Numerica l Methods in Engineering, 2006, 65:1970-2006
    [70] Johnson G.R., Beissel S.R., Stryk R.A. A genera lized particle algorithm for high velocityimpact computations [J]. Comput. Mech., 2000, 25: 245-256
    [71] Divo E., Kassab A.J. A meshless method for conjugate heat transfer problems [J].Engineering Analysis with Boundary Elements, 2005, 29: 136-149
    [72] Singh A., Singh I.V., Prakash R. Meshless analysis of unstead y-state heat transfer in semiinfinitesolid with temperature-dependent thermal conductivity [J]. Internationa lCommunica tions in Heat and Mass Transfer, 2006, 33: 231-239
    [73] Doblare M., Cueto E., Calvo B., et al. On the employ of meshless methods inbiomecha nics [J]. Computer Methods in Applied Mecha nics and Engineering, 2005, 194:801-821
    [74] Qian D., Liu W.K., and Ruoff R.S. Mecha nics of C60 in nanotubes [J]. J. Phys. Chem.,2001, 105: 10753-10758
    [75] Qian D., Wagner G.J., Liu W.K. A multisca le projection method for analysis of carbonnanotubes [J]. Computer Methods in Applied Mecha nics and Engineering, 2004, 193:1603-1632
    [76] Jun S. Meshfree implementation for the real space electronic-structure calculation ofcrysta lline solids [J]. Internationa l Journal for Numerica l Methods in Engineering, 2004,59: 1909-1923
    [77] Ijima S. Helica l microtubes of graphitic carbon [J]. Nature, 1991, 354: 56-58
    [78]杨卫,马新玲,王宏涛,等.纳米力学[J].力学进展, 2002, 32: 161-174
    [79] Bachtold A., Hadley P., Nakanishi T., et al. Logic circuits with carbon nanotube transistors[J]. Science, 2001, 294 (5545): 1317-1320
    [80] Treacy M.M.J., Ebbesen T.W., and Gibson J.M. Exceptiona lly high Young’s modulusobserved for individ ual carbon nanotubes [J]. Nature, 1996, 381 (6584): 678-680
    [81] Krishnan A., Dujardin E., Ebbessen T.W., et al. Young’s modulus of single-wa llednanotubes [J]. Phys. Rev. B, 1998, 58 (20): 14013-14019
    [82] Poncharal P., Wang Z.L., Ugante D., et al. Electrostatic deflections and electromecha nica lresona nces of carbon nanotubes [J]. Science, 1999, 283 (5407): 1513-1516
    [83] Falvo M.R., Clary G.J., Taylor R.M., et al. Bend ing and buckling of carbon nanotubesunder large strain [J]. Nature, 1997, 389 (6651): 582-584
    [84] Wong E.W., Sheedan P.E., and Lieber C.M. Nanobeam mecha nics: Elasticity, strength, andtoughness of nanorods and nanotubes [J]. Science, 1997, 277 (5334): 1971-1975
    [85] Walters D.A., Erison L.M., Casavant M.J., et al. Elastic strain of freely suspended singlewalledcarbon nanotube ropes [J]. Appl. Phys. Lett., 1999, 74 (25): 3803-3805
    [86] Yu M.F., Lourie O., Dyer M.J., et al. Strength and breaking mecha nism of multiwalledcarbon nanotubes under tensile load [J]. Science, 2000, 287 (5453): 637-640
    [87] Yu M.F., Files B.S., Arepalli S., et al. Tensile load ing of ropes of single wall carbonnanotubes and their mecha nical properties [J]. Phys. Rev. Lett., 2000, 84 (24): 5552-5555
    [88] Yu M.F., Yokobson B.I., and Ruoff R.S. Controlled slid ing and pullout of nested shells inindivid ual nultiwalled carbon nanotubes [J]. J. Phys. Chem. B, 2000, 104 (37): 8764-8767
    [89] Cuming J. and Zettl A. Low-friction nanosca le linear bearing realized from multiwallcarbon nanotubes [J]. Science, 2000, 289 (5479): 602-604
    [90] Chang T.H., Gao H.J. Size-dependent elastic properties of a single-wa lled carbonnanotubes via a molecular mecha nics model [J]. Journal of Mecha nics and Physics ofSolids, 2003, 51: 1059-1074
    [91] Yakobson B.I., Brabec C.J. and Bemholc J. Nanomecha nics of carbon tubes: Instabilitybeyond linear response [J]. Phys. Rev. Lett., 1996, 76: 2511-2514
    [92] Yakobson B.I., Campbell M.P., Brabec C.J., et al. High strain rate fracture and C-chainunraveling in carbon nanotubes [J]. Computationa l Materia ls Science, 1997, 8 (4): 341-348
    [93] Cornwell C.F. and Wille L.T. Elastic properties of single-wa lled carbon nanotubes incompression [J]. Solid State Communica tions, 1997, 101 (8): 555-558
    [94] Portal D.S., Artacho E. and Soler J.M. Ab. initio. structural, elastic, and vibrationa lproperties of carbon nanotubes [J]. Physica l Review B, 1999, 59 (19): 12678-12688
    [95] Zha ng C.-L., Shen H.S. Buck ling and postbuck ling analysis od single-wa lled carbonnanotubes in thermal environments via molecular dynamics simulation [J]. Carbon, 2006,44: 2608-2616
    [96] Zou J., Ji B.H., Feng X.-Q., et al. Molecular-dynamic studies of carbon-water-carboncomposites nanotubes [J]. Small, 2006, 2 (11): 1348-1355
    [97] Harik V.M. Mecha nics of carbon nanotubes: Applicability of the continuum-beam models[J]. Computationa l Materia ls Sciences, 2002, 24: 328-342
    [98] Ru C.Q. Effective bending stiffness of carbon nanoyubes [J]. Physica l Review B, 2000, 62(15): 9973-9976
    [99] Ru C.Q. Elastic buckling of single-wa lled carbon nanotube ropes under high pressure [J].Physica l Review B, 2000, 62 (15): 10405-10408
    [100] Yang H.K., Wang X. Torsiona l buckling of multi-wa ll carbon nanotubes embedded in anelastic med ium [J]. Composites Structures, 2005, 77: 182-192
    [101] Wang X.Y., Wang X., Xia X.H. Eccentric compression stability of multi-wa lled carbonnanotubes embedded in an elastic matrix [J]. Composites Science and Technology, 2006,doi: 10.1016/j.compscitech.2006.09.006
    [102] He X.Q., Kitiperncha i S., Wang C.M., et al. Modeling of van de Waals force forinfinitesima l deformation of multi-wa lled carbon nanotubes treated as cylindrica l shells[J]. Internationa l Journal of Solids and Structures, 2005, 42: 6032-6047
    [103] Han Q., Lu G.X. Torsiona l buckling of a double-wa lled carbon nanotubes embedded inan elastic med ium [J]. European Journal of Mecha nics A/Solids, 2003, 22: 875-883
    [104] Han Q., Lu G.X., Dai L.M. Bend ing instability of an embedded double-wa lled carbonnanotube based on Winkler and van der Waals models [J]. Composites Science andTechnology, 2005, 65: 1337-1346
    [105] Yao X.H., Han Q. The fermal effect on axia lly compressed buckling of a double-wa lledcarbon nanotubes [J]. European Journal of Mecha nics A/Solids, 2007, 26 (2): 298-312
    [106] Yao X.H., Han Q. Investigation of axia lly compressed buckling of a multi-wa lled carbonnanotube under temperature field [J]. Composite Science and Technology, 2007, 67 (2):125-134
    [107] Yao X.H., Han Q. Torsiona l buckling analysis of multi-wa lled carbon nanotubessubjected to thermal load [J]. Journal of Engineering Materia ls and Technology, 2006, 128(3): 419-427
    [108] Arroyo M., Belytschko T. An atomistic-based finite deformation membrane for singlela yer crysta lline films [J]. Journal of the Mecha nics and Physics of Solids, 2005, 50:1941-1977
    [109] Arroyo M., Belytschko T. A finite deformation membrane based on inter-atomicpotentia ls for the transverse mecha nics of nanotubes [J]. Mecha nics of Materia ls, 2003,35: 193-215
    [110] Arroyo M. and Belytschko T. Finite element methods for the non-linear mecha nics ofcrysta lline sheets and nanotubes [J]. Internationa l Journal for Numerica l Methods inEngineering, 2004, 59: 419-456
    [111] Arroy M. and Belytschko T. Continuum mecha nics modeling and simulation of carbonnanotubes [J]. Meccanica, 2005, 40: 455-469
    [112] Sunyk R., Steinma nn P. On higher gradients in continuum-atomic modeling [J].Internationa l Journal of Solids and Structures, 2003, 40: 6877-6896
    [113]郭旭,王晋宝,张洪武.基于高阶Cauchy-Born准则的单壁碳纳米管本构模型[J].计算力学学报, 2005, 22(2): 135-139
    [114] Wang J.B., Guo X., Zha ng H.W., et al. Energy and mecha nical properties of single-wa lledcarbon nanotubes predicted using the higher order Cauchy-Born rule [J]. Physica lReview B, 2006, 73, 115428
    [115] Abraham F.F., Broughton J.Q., Bernstein N., et al. Spanning the continuum to quantumlength scales in a dynamic simulation of brittle fracture [J]. Europhys. Lett., 1998, 44(6): 783-787
    [116] Broughton J.Q., Abraham F.F., Bernstein N., et al. Concurrent coupling of length scales:Methodology and applica tion [J]. Phys. Rev. B, 1999, 60 (4): 2391-2403
    [117] Nakano A., Bachlechner M.E., Kalia R.K., et al. Multi-scale simulation of nanosystems[J]. Comput. Sci. Eng., 2001, 3 (4): 56-66
    [118] Rafii T.H., Hua L., and Gross M. Multisca le numerical modeling of crack propagation intwo-dimensiona l meta l plate [J]. Mater. Sci. Technol., 1998, 14 (6): 544-548
    [119] Rafii T.H., Hua L., and Gross M. A multi-sca le atomistic-continuum modeling of crackpropagation in a two-dimensiona l macroscopic plate [J]. J. Phys.: Codens. Mater., 1998,10 (11): 2375-2378
    [120] Zha ng S.L., Steven L., Khare M.R., et al. Mecha nics of defects in carbon nanotubes:Atomistic and multisca le simulation [J]. Physica l Review B, 2005, 71, 115403
    [121] Li C.Y., Chou T.-W. Multisca le modeling of compressive behavior of carbonnanotube/polymer composite [J]. Composites science and Technology, 2006, 66: 2409-2414
    [122] Qian D., Dickey E.C., Andrews R., et al. load transfer and deformation mecha nisms incarbon nanotube-polystyrene composites [J]. Appl. Phys. Lett., 2000, 76 (20): 2868-2870
    [123] Sears A. and Batra R.C. Buck ling of multiwalled carbon nanotubes under axia lcompression [J]. Physica l Review B, 2006, 73, 085410
    [124] Tserpes K.I., Papanikos P., Tsirkas S.A. A progressive fracture model for carbonnanotubes [J]. Composites: Part B, 2006, 37: 662-669
    [125] Li C.Y. and Chou T.-W. Elastic properties of single-wa lled carbon nanotubes intransverse directions [J]. Physica l Review B, 2004, 69, 073401
    [126] Li C.Y. and Chou T.-W. Single-wa lled carbon nanotubes as ultra-high frequencynanomecha nical resonators [J]. Physica l Review B, 2003, 68: 073405
    [127] Meo M., Rossi M. tensile failure prediction of single wall carbon nanotube [J].Engineering Fracture Mecha nics, 2006, 73: 2589-2599
    [128] Li C.Y. and Chou T.-W. Quantized molecular structural mecha nics modeling for studyingthe specific heat of single-wa lled carbon nanotubes [J]. Physica l Review B, 2005, 71,0754091
    [129] Wang M., Zha ng X. and Lu M.W. Nonlinear membrane-spring model for carbonnanotubes [J]. Physica l Review B, 2005, 72, 205403
    [130] Eringen A.C. On differential equations of nonlocal elasticity and solutions of screwdisloca tion and surface waves [J]. J. Appl. Phys., 1983, 54, 4703
    [131] Sudak L.J. Column buckling of multiwalled carbon nanotubes using nonlocal continuummecha nics [J]. Journal of Applied Physics, 2003, 94: 7281-7287
    [132] Wang L.F. and Hu H.Y. Flexural wave propagation in single-wa lled carbon nanotube [J].Physica l Review B, 2005, 71, 195412
    [133] Wang Q. Wave propagation in carbon nanotubes via nonloca l continuum mecha nics [J].Journal of Applied Physics, 2005, 98, 124301
    [134] Wang Q., Zhou G.Y., Lin K.C. Scale effect on wave propagation of double-wa lled carbonnanotubes [J]. Internationa l Journal of Solids and Structures, 2006, 43: 6071-6084
    [135] Zha ng Y.Q., Liu G.R., and Wang J.S. Small-sca le effects on buckling of multiwalledcarbon nanotubes under axia l compression [J]. Physica l Review B, 2004, 70, 205430
    [136] Zha ng J.M., Tanaka M. Systema tic study of thermal properties of CNT composites bythe fast multiple hybrid boundary node method [J]. Engineering Analysis with BoundaryElements, 2007, doi: 10.1016./j.enganabound.2006.07.011
    [137] Singh I.V., Tanaka M., Endo M. Effect of interface on the thermal conductivity of carbonnanotube composites [J]. Internationa l Journal of Therma l Science, 2006, doi:10.1016/j.ijthermalsci.2006.11.003
    [138] [美]Rost R.J(.天宏工作室译). OpenGL着色语言[M].北京:人民邮电出版社, 2006:23-42
    [139] Galoppo N., Govindaraju N.K., Henson M., et al. LU-GPU: Efficient algorithms forsolving dense linear systems on graphics hardware [C]. Proceedings of the 2005ACM/IEEE conference on supercomputing, Washington, D.C., U.S.A., IEEE ComputerSociety, 2005
    [140] Kuger J., and Westerma nn R. Linear algebra operators for GPU implementation ofnumerical algorithms [C]. ACM Transaction on Graphics, 2003
    [141]周树荃,梁维泰,邓绍忠.有限元结构分析并行计算[M].北京:科学出版社, 1997年第一版: 131-182
    [142] Lu Y.Y., Belytschko T., Tabbara M. Element-free Galerkin methods for wavepropagation and dynamic fracture [J]. Comput. Methods Appl. Mech. Engrg., 1995, 126:131-153
    [143]吴永礼.计算固体力学方法[M].第一版.北京:科学出版社, 2003: 258-297
    [144]王勖成.有限单元法[M].第一版.北京:清华大学出版社, 2003: 277-281
    [145] Mintmire J.W., Dunlap B.I., White C.T. Are fullerene tubules meta llic? [J]. Phys. Rev.Lett., 1992, 68: 631-634
    [146] Hamada H., Sawada S., Oshiyama A. New one-dimensiona l conductors: Graphiticmicrotubules [J]. Phys. Rev. Lett., 1992, 68: 1579
    [147] Li C.Y., Chou T.-W. A structure mecha nics approach for the analysis of carbonnanotubes [J]. Internationa l Journal of Solids and Structures, 2003, 40: 2487-2499
    [148] Li C.Y., Chou T.-W. Elastic moduli of multi-wa lled carbon nanotubes and the effect ofvan der Waals forces [J]. Composites Science and Technology, 2003, 63: 1517-1524
    [149] Li C.Y., Chou T.-W. Modeling of elastic buckling of carbon nanotubes by molecularstructural mecha nics approach [J]. Mecha nics of Materia ls, 2004, 36: 1047-1053
    [150] Tserpes K.I., Papanikes P. Finite element modeling of single-wa lled carbon nanotubes[J].Composites, part B, 2005, 36: 468-477
    [151] Wagner H.D. Nanotube-polymer adhesion: a mecha nics approach [J]. Chemica l PhysicsLetters, 2002, 361: 57-61
    [152] Andrews R., Jacques D., Qian D., et al. Purification and structural annealing ofmultiwalled carbon nanotubes at graphitization temperature [J]. Carbon, 2001, 39, 1681
    [153] Mawhinney D.B., Nanmenko V., Kuznetsova A., et al. Surface defect site density onsingle walled carbon nanotubes by titration [J]. Chemica l Physics Letters, 2000, 324, 213
    [154] Pierard N., Fonseca A., Konya Z., et al. Production of short carbon nanotubes with opentips by ball milling [J]. Chemica l Physics Letters, 2001, 355, 1
    [155] Ni B. and Sinnott. Chemica l functiona llization of carbon nanotubes through energeticradica l collisions [J]. Physica l Review B, 2000, 61, R16343
    [156] Nardelli M.B., Yakobson B.I., Bernhole J. Brittle and ductile behavior in carbonnanotubes [J]. Physica l Review Letters, 1998, 81: 45-656-4659
    [157] Tekleab D., Carroll D.L., Samsonidze G., et al. Strain-induced electronic propertyheterogeneity of a carbon nanotube [J]. Physica l Review B, 2001, 64, 035419: 1-5
    [158] Tersoff J. New empirica l approach for structure and energy of covalent systems [J].Physica l Review B, 1998, 37: 6991-7000
    [159] Brenner D.W. Empirica l potential fir hydrocarbons for use in simulating the chemica lvapor deposition of dia mond films [J]. Physica l Review B, 1990, 42: 9458-9471
    [160] Belytschko T., Xiao S.P., Schatz G.C., et al. Atomistic simulations of nanotubefracture[J]. Physica l Review B, 2002, 65, 235430-1
    [161] Walther J.H., Jaffe R., Halicioglu T., et al. Carbon nanotubes in water: structuralcharacteristics and energetics [J]. The Journal of Physica l Chemistry B, 2001, 105(41):9980-9987
    [162] Zha ng Q., Liu J.Z., Jia ng Q. Excess van der Waals interaction energy of a multiwalledcarbon nanotube with an extruded core and induced core oscillation [J]. Physica l ReviewB, 2002, 65, Art. no. 245409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700