碳材料捕获燃烧后二氧化碳过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2是导致全球气候变化的主要温室气体之一,其减排已经成为国际社会重大的政治和经济议题。捕集回收燃煤电厂、钢铁厂等固定源排放的CO2不仅是缓解C02排放危机最直接有效的手段,还能通过副产CO2降低减排成本。CO2的捕集技术主要有吸收、吸附和深冷分离等方法,其中真空变压吸附法(VPSA)以其设备简单、能耗低、易于实现自动化操作和腐蚀问题容易处理等优点受到越来越多的关注。然而,目前吸附法的捕集成本仍然偏高,限制了其大规模地工业应用;而降低成本的主要手段在于新型吸附材料的开发和吸附工艺的系统优化。本文采用新型碳材料(沥青基活性炭小球)为吸附剂,系统研究了与之匹配的低能耗真空变压吸附工艺,以满足工业化的需求。
     首先,采用磁悬浮天平分别测定了0-100 kPa和0-4000 kPa下CO2和N2在沥青基活性炭小球上不同温度下(303、333、363、393和423 K)的吸附等温线,并采用Virial和Multi-site Langmuir等温线模型对吸附平衡进行拟合比较。结果表明,活性炭小球对C02具有良好的吸附量(100 kPa,303 K时吸附量为2.2mmol/g),具有适宜的C02/N2选择性。无论是在低压还是高压下,Virial等温线模型均可以很好地对实验结果进行拟合;Multi-site Langmuir等温线模型能够很好地描述低压下的吸附平衡,但在高压下其拟合结果较差。根据纯组分气体的Virial模型参数可以进一步预测C02/N2双组分的吸附平衡,从而为变温/变压吸附过程的系统优化提供基础数据。
     其次,采用稀释穿透曲线法测定了303、333、363、393和423K下CO2和N2在沥青基活性炭小球上的扩散系数,建立了双分散二级孔结构扩散模型。结果表明,该模型能够很好地对实验结果进行拟合,N2在活性炭小球上的扩散远比CO2快的多;无论是对于C02还是N2,微孔扩散均为扩散控制步骤。CO2和N2在活性炭小球上的扩散模型的建立以及相关扩散参数的确定,为变温/变压吸附过程的设计和模拟提供另一重要的基础数据。
     进一步,建立了VPSA过程的数学模型和能耗计算模型,采用单塔实验对模型进行验证,并通过实验和理论模拟,研究了不同进料流速、不同CO2进料浓度、不同操作压力、不同操作温度和不同真空压力对VPSA过程分离性能(包括:产品气纯度、回收率、生产能力和单位能耗)的影响。在此基础上,模拟研究了三塔均压、产品气吹扫等步骤以及不同P/F值、产品气回流比对VPSA分离性能的影响。结果表明:数值模拟结果与VPSA实验过程中的压力、温度和CO2出口流率变化曲线均拟合地较好;在不同操作条件下,采用简单的四步法Skarstrom循环,以沥青基活性炭小球为吸附剂的单级VPSA过程可以将烟道气中的CO2(15%左右)提纯至40%-60%、回收率为40%-96%。
     最后,模拟设计了两级VPSA流程以得到高纯度的C02,其中:第1级VPSA采用四步法Skarstrom循环,在保证高回收率的情况下,将烟道气中的CO2在近常压下从15%提纯至40%-60%;第2级VPSA采用包含均衡压力的五步循环操作,将第1级VPSA的产品气加压至(2-5)bar后,进一步分离提纯至浓度大于95%(满足CO2储存要求)。结果表明,采用活性炭小球为吸附剂,经过两级VPSA分离后产品气的纯度可达95.29%、回收率为74.36%、吸附剂的生产能力为0.85 mol-CO2/kg/h、总能耗为723.56 kJ/kg-CO2,显示了碳基材料在CO2捕集中良好的工业应用前景。
It is widely acknowledge that CO2 is one of the most important greenhouse gases and its mitigation is urgently needed. Capture of CO2 from major industries such as power plants and steel mills has been considered as the most effective solution. Moreover, the capture cost may be reduced by the industrial use of CO2. Among the various capture approaches, absorption, membranes, cryogenic, and adsorption, CO2 capture by vacuum pressure swing adsorption (VPSA) process is a promising option for separating CO2 from flue gas, since it has a number of advantages, such as possible low energy requirement, low capital investment cost and easy to achieve automated operation. The major problem of VPSA process is the cost is relative high for CO2 capture, which restricts its industrial applications. The crucial point to reduce the CO2 capture cost is the use of new adsorbents and the optimization of adsorption process. Thus, this paper was focused on the design and optimization of VPSA process with the use of novel CO2 adsorbent material (pitch-based activated carbon beads), which was aimed to reduce the capture cost.
     Firstly, adsorption isotherms of CO2 and N2 on AC beads were gravimetrically measured at 303,333,363,393 and 423 K in the range of 0-100 kPa and isotherms at 303 and 333 K were also measured up to 4000 kPa in a magnetic suspension microbalance. A good CO2 capacity (at 100 kPa and 303K,qCO2=2.2 mmol/g) and good selectivity of CO2/N2 can be observed on AC beads. Virial equation can fit the isotherms quite well both at low and high pressure ranges, while Multi-site Langmuir model only showed good fitting at low pressures. The fitting parameters were reported and can be employed in the prediction of multi-component adsorption equilibrium, which provided basic data to optimize a VPSA unit
     Secondly, adsorption kinetics of CO2/N2 on AC beads was measured by diluted breakthrough curves at 303,333,363,393 and 423 K, respectively. An isothermal mathematical model was established for components diffusion in bi-disperse adsorbent. It was showed that the model can fit the breakthrough curves very well, and micropore diffusions were obtained by the numerical fitting. At the above mentioned temperatures, the diffusion of N2 on AC beads was much faster than CO2, and micropore resistances controlled the diffusion mechanism for both CO2 and N2. With the parameters of the mathematical model for diffusion, diffusivity at various temperature can be calculated which provided another important basic data for the design of VPSA process.
     Thirdly, a mathematical model taking into account mass balance, energy balance, and Ergun relation for pressure drop, was derived to describe the VPSA process. Single-column experiments were performed to verify the model and to evaluate the effect of different operating parameters on the VPSA performance (purity, recovery, productivity and specific energy consumption). Moreover, effects of operating parameters and process configurations on the multi-bed VPSA performance were investigated theoretically. It was showed that the mathematical model described the pressure histories, temperature change and CO2 flowrate very well. Using the AC beads, CO2 purity of (40-60)% with recovery of (40-96)% was obtained using a four-step Skarstrom cycle VPSA.
     Finally, a multi-bed two-stage VPSA process was designed for CO2 capture. At the lst-stage, CO2 was concentrated to about (40-60)% when the flue gas feeding at almost atmospheric pressure and employing four-step Skarstrom cycle. Then the product gas of the first stage was compressed to (2-5) bar and feed to the second stage VPSA process, where CO2 was further concentrated to above 95%. The 2nd-stage VPSA unit operated with a cycle with feed pressurization, adsorption, pressure equalization, blowdown and pressure equalization. With the designed two-stage VPSA process, a CO2 purity of 95.29% was obtained with 74.36% recovery. The total specific power consumption of the two-stage VPSA process is 723.56 kJ/kg-CO2, while the unit productivity is 0.85 mol-CO2/kg/h.
引文
[1]IPCC Climate Change 2007, the AR4 Synthesis Report:1-6
    [2]DOE. Carbon Sequestration Research and Development,1999
    [3]黄黎明,陈赓良.二氧化碳的回收利用与捕集储存[J].石油与天然气化工.2006,35(5):354-358
    [4]费维扬,艾宁,陈健.温室气体CO2的捕集和分离--分离技术面临的挑战与机遇[J].化工进展.2005,24(1):1-4
    [5]Earth Policy Institute. Carbon Emissions Indicator Data:Carbon dioxide emissions from fossil fuels burning in top ten countries.2006 (available at:http://www.earth-policy.org/Indicators/CO2/2006)
    [6]Ho M.T., Allinson G.W., Wiley D.E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption [J]. Industrial & Engineering Chemistry Research.2008, 47:4883-4890
    [7]Zhang J., Webley P.A., Xiao P. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas [J]. Energy Conversion Management.2008,49:346-356
    [8]Aaron D., Tsouris C. Separation of CO2 from flue gas:a review [J]. Separation Science and Technology.2005,40:321-348
    [9]Chaffee A.L., Knowles G.P., Liang Z., Zhany J., Xiao P., Webley P.A. CO2 capture by adsorption:materials and process development [J]. International Journal of Greenhouse Gas Control.2007,1:11-18
    [10]Ciferno J.P., Fout T.E., Jones A.P., Murphy J.T. Capturing carbon from existing coal-fired power plants [J]. Chemical Engeering Progress.2009,105:33-41
    [11]Diagne D., Goto M., Hirose T. Parametric studies on CO2 separation and recovery by a dual reflux PSA process consisting of both rectifying and stripping sections [J]. Industrial & Engineering Chemistry Research.1995,34:3083-3089
    [12]Kikkinides E.S., Yang R.T., Cho S.H. Concentration and recovery of CO2 from flue-gas by pressure swing adsorption [J]. Industrial & Engineering Chemistry Research.1993, 32:2714-2720
    [13]高洁,郭斌.温室气体二氧化碳的回收与资源化[J].污染防治技术.2007,20(1):56-59
    [14]Song C. S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing [J]. Catalysis Today.2006,115:2-32
    [15]Climate Change 2007. The Physical Science Basis. http://www.ipcc.ch
    [16]Stewart C., Hessami M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach [J]. Energy Conversion and Management.2005,46:403-420
    [17]Working Group III of the Intergovernmental Panel on Climate Chage. IPCC special report on carbon dioxide capture and storage. Cambridge University Press,2005
    [18]陈中明,李传华,凌海,李穗凡.二氧化碳的生产及综合利用[J].精细化工中间体.2001,31(5):9-11
    [19]叶恩东,李贵华,王丽娟.浅析工业尾气中二氧化碳的吸收及综合利用[J].攀枝花科技与信息.2001,26(2):30-34
    [20]Reynolds S. P., Ebner A. D., Ritter J. A. New pressure swing adsorption cycles for carbon dioxide sequestration[J]. Adsorption.2005,11:531-536
    [21]Mohamed K., Rene G. B., Philippe J., Jose V. M., Amann J. M., Chakib B. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture [J]. Applied Thermal Engineering.2010,30(1):53-62
    [22]Figueroa J. D., Fout T., Plasynski S., et al. Advances in CO2 capture technology-the U.S. department of energy's carbon sequestration program [J]. International Journal of greenhouse gas control.2008,2:9-20
    [23]Chalmers H., Gibbins J. Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance [J]. Fuel.2007,86:2109-2123
    [24]Zhou Q., Chan W. C., Tontiwachiwuthikul P., Idem R., Gelowitz D. A statistical analysis of the carbon dioxide capture process [J]. International Journal of Greenhouse Gas Control.2009,3:535-544
    [25]黄斌,刘练波,许世森.二氧化碳的捕获及封存技术进展[J].中国电力.2007,40(3):14-17
    [26]黄斌,刘练波,许世森.燃煤电站CO2捕集与处理技术的现状与发展[J].电力设备.2008,9(5):3-6
    [27]张军,李桂菊.二氧化碳封存技术及研究现状[J].能源与环境.2007,(2):33-35
    [28]李洛丹,刘妮,刘道平.二氧化碳海洋封存的研究进展[J].能源与环境.2008,6:11-12
    [29]张炜,李义连.二氧化碳储存技术的研究现状和展望[J].环境污染与防治.2006,28(12):950-953
    [30]UNFCC. Kyoto Protocol to the united nations framework convention on climate change. 1998 (available at:http://www.unfccc.int)
    [31]Earth Policy Institute. Carbon Emissions Indicator Data:Carbon dioxide emissions from fossil fuels burning in top ten countries.2006 (available at:http://www.earth-policy.org/Indicators/CO2/2006)
    [32]龚刚立,王祥云.CO2在仿生物型吸收剂和其他吸收剂中的溶解度[J].化工学报.2001,52(4):349-353
    [33]毛松柏,朱道平,叶宁NCMA法脱碳新技术及应用[J].气体净化.2004,4(4):25-28
    [34]王晓刚,李立清,唐琳等.温室气体CO2的减排技术研究[J].能源环境保护.2006, 20(2):1-6
    [35]Bates E. D., Mayton R. D., et al. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society.2002,124(6):926-927
    [36]李天成,冯霞,李鑫钢.二氧化碳处理技术现状及其发展趋势[J].化学工业与工程.2002,19(2):191-197
    [37]Monenco Inc., IEA. Carbon dioxide capture:an examination of potential gas-solid adsorption technologies for the capture of CO2 and other greenhouse gases arising from power generation using fossil fuel. IEA/92/OE5,1992. (IEA,1992)
    [38]Hendriks C.F. Carbon dioxide removal from coal-fired power plants [M]. Kluwer Academic Publishers,1994
    [39]Ho M. T., Leamon G., Allinson G., Wiley D. E. Economics of CO2 and mixed gas geosequestration of flue gas using gas separation membranes. Industrial & Engineering Chemistry Research.2006,45:2546
    [40]Kim J. N., Park J. H., Beum H. T., Han, S. S., Cho S. H. PSA processes for recovery of carbon dioxide [J]. Greenhouse Gas Control Technologies, Vols Ⅰ and Ⅱ, Proceedings. 1563-1566
    [41]Chue K.T., Kim J.N., Yoo Y.J., Cho S.H., Yang R.T. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue-gas by pressure swing adsorption [J]. Industrial & Engineering Chemistry Research.1995,34:591-598
    [42]Chou C. T., Chen C. Y. Carbon dioxide recovery by vacuum swing adsorption [J]. Separation and Purification Technology.2004,39(1-2):51-65
    [43]Yong Z, Mata V., Rodrigues A. E. Adsorption of carbon dioxide at high temperature--a review [J]. Separation and Purification Technology.2002,26:195-205
    [44]Song H. K., Lee K. H. Adsorption of carbon dioxide on chemically modified carbon adsorbents [J]. Separation Science and Technology.1998,33(13):2039-2057
    [45]Yong Z, Mata V., Rodrigues A. E. Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature [J]. Adsorption.2001,7: 41-50
    [46]Burchell T.D., Judkins R.R., Rogers M.R., Williams A.M. A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures [J]. Carbon. 1997,35(9):1279-1294
    [47]Guo B., Chang L. P., Xie K. C. Adsorption of carbon dioxide on activated carbon [J]. Journal of Natural Gas Chemistry.2006,15:223-229
    [48]Plaza M.G., Pevida C., Arenillas A., Rubiera F., Pis J. J. CO2 capture by adsorption with nitrogen enriched carbons [J]. Fuel.2007,86:2204-2212
    [49]Siriwardane V. R., Shen M. S., Fisher E. P. Adsorption of CO2 on zeolites at moderate temperatures [J]. Energy & Fuels.2005,19:1153-1159
    [50]Cavenati S., Grande C. A., Rodrigues A. E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures [J]. Journal of Chemical and Engineering Data.2004,49:1095-1101
    [51]Jadhav P.D., Chatti R.V., Biniwale R.B., Labhsetwar N. K., Devotta S. Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures [J]. Energy & Fuels.2007,21:3555-3559
    [52]周元敬,杨明莉,武凯,鲜学福.金属-有机骨架(MOFs)多孔材料的孔结构调节途径[J].材料科学与工程学报.2007,25(2):307-312
    [53]Stuart L. J. Metal-organic frameworks [J]. Chemical Society Review.2003,32:276-288
    [54]Millward A. R., Yaghi O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. Journal of the American Chemical Society.2005,127:17998-17999
    [55]Arstad B., Fjellvag H., KO K. S., Swang O., Blom R. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide [J]. Adsorption Journal of the International Adsorption Society.2008,14(6):755-762
    [56]Xu X. C., Song C. S., Miller B. G,. et al. Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanopomus molecular basket adsorbent [J]. Fuel Processing Technology.2005,86(14-15):1457-1472
    [57]Hiyoshi N., Yogo K., Yashima T. Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor [J]. Chemistry Letters.2004,33(5):510-511
    [58]赵会玲,胡军等.介孔材料氨基表面修饰及其对C02的吸附性能[J].物理化学学报.2007,23(6):801-806
    [59]Feng B., An H., Tan E. Screening of CO2 adsorbing materials for zero emission power generation systems [J]. Energy &Fuels.2007,21:426-434
    [60]Lu H., Reddy E. P., Smirniotis P. G. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures [J]. Industrial & Engineering Chemistry Research.2006, 45:3944-3949
    [61]黄煜煜,李振山,蔡宁生.高温C02吸附/吸收剂的研究进展[J].热能动力工程.2005,20(6):557-562
    [62]Reddy M. K., Xu Z. P., Lu G. Q., Diniz da Costa J. C. Layered double hydroxides for CO2 capture:structure evolution and regeneration [J]. Industrial & Engineering Chemistry Research.2006,45:7504-7509
    [63]Yong Z., Mata V., Rodriguez A. E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures [J]. Industrial & Engineering Chemistry Research.2001,40(1):204-209
    [64]Ebner A. D., Reynolds S. P., Ritter J. A. Understanding the adsorption and desorption behavior of CO2 on a K-promoted hydrotalcite-like compound (HTlc) through non-equilibrium dynamic isotherms [J]. Industrial & Engineering Chemistry Research. 2006,45(18):6387-6392
    [65]李莉,袁文辉,韦朝海.二氧化碳的高温吸附剂及其吸附过程[J].化工进展,2006,25(8):918-922
    [66]王银杰,其鲁,王祥云.高温下锆酸锂吸收二氧化碳的研究[J].无机化学学报.2003, 19(5):531-534
    [67]王银杰,其鲁,杜柯等.K元素的掺杂对锆酸锂材料吸收CO2性能的影响[J].北京大学学报.2005,41(4):501-505
    [68]Ida J., Xiong R. T., Lin Y. S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate [J]. Separation and Purification Technology.2004,36:41-51
    [69]Vincent G. G., Kevin W. K. Y. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases [J]. Separation and Purification Technology.2002,28: 161-171
    [70]魏玺群,陈健.变压吸附气体分离技术的应用和发展[J].低温与特气.2002,20(3):1-11
    [71]李俊成,肖隆斌.变压吸附提纯二氧化碳技术应用[J].大氮肥.2007,3(1):19-21
    [72]Merel J., Clausse M., Meunier F. Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite [J]. Environmental Progress.2006,25(4):327-333
    [73]Petkovska M., Antov-Bozalo D., Markovic A., Sullivan P. Multiphysics modeling of electric-swing adsorption system with in-vessel condensation [J]. Adsorption.2007, (13): 357-372
    [74]Snyder J. D., Leesch J. G. Methyl Bromide Recovery on Activated Carbon with Repeated Adsorption and Electrothermal Regeneration [J]. Industrial & Engineering Chemistry Research.2001,40:2925-2933
    [75]Yu F. D., Luo L. A., Grevillot G. Electrothermal swing adsorption of toluene on an activated carbon monolith Experiments and parametric theoretical study [J]. Chemical Engineering and Processing.2007,46:70-81
    [76]Subrenat A. S., Le Cloirec P. A. Volatile organic compound (VOC) removal by adsorption onto activated carbon fiber cloth and electrothermal desorption:an industrial application [J]. Chemical Engineering Communications.2006,193:478-486
    [77]Grande C. A., Ribeiro R. P. L., Oliveira E. L. G., Rodrigues A. E. Electric swing adsorption as emerging CO2 capture technique [J]. Greenhouse Gas Control Technologies 9,2009,1(1):1219-1225
    [78]Grande C. A., Ribeiro R. P. L., Rodrigues A. E. CO2 capture from NGCC power stations using electric swing adsorption (ESA) [J]. Energy & Fuels.2009,23:2797-2803
    [79]Grande C. A., Ribeiro R. P. L., Rodrigues A. E. Challenges of electric swing adsorption for CO2 capture [J]. Chemsuschem.2010,3(8):892-898
    [80]Grande C. A., Rodrigues A. E. Electric swing adsorption for CO2 removal from flue gases [J]. International Journal of Greenhouse Gas Control.2008,2:194-202
    [81]Sullivan P. D., Rood M. J., Grevillot G., Wander J. D., Hay K. J. Activated carbon fiber cloth electrothermal swing adsorption system [J]. Environmental Science & Technology. 2004,38:4865-4877
    [82]Ishibashi M., Ota H., Akutsu N., Umeda S., Tajika M., Izumi J., Yasutake A., Kabata T., Kageyama Y. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy Conversion and Management.1996,37 (6-8): 929-933
    [83]Nastaj J.F., Ambrozek B., Rudnicka J. Simulation studies of a vacuum and temperature swing adsorption process for the removal of VOC from waste air streams [J]. International Communications in Heat and Mass Transfer.2006,33:80-86
    [84]Radosz M., Hu X.D., Krutkramelis K., Shen Y.Q. Flue-gas carbon capture on carbonaceous sorbents:toward a low-cost multifunctional carbon filter for "green" energy producers [J]. Industrial & Engineering Chemistry Research.2008,47 (10): 3783-3794
    [85]Konduru N., Lindner P., Assaf-Anad N.M. Curbing the greenhouse effect by carbon dioxide adsorption with zeolite 13X [J]. AlChE Journal.2007,53 (12):3137-3143
    [86]Liu X.W., Zhou L., Fu X., Sun Y., Su W., Zhou Y.P., Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4 [J]. Chemical Engineering Science.2007,62 (4):1101-1110
    [87]Liu C. J., Liang X. Y., Liu X. J., Wang Q., Zhan L., Zhang R., Qiao W. M., Ling L. C. Surface modification of pitch-based spherical activated carbon by CVD of NH3 to improve its adsorption to uric acid [J]. Applied Surface Science.2008,254(21): 6701-6705
    [88]Liu C. J., Liang X. Y., Teng N., Liu X. J., Long D. H., Zhan L. A., Zhang R., Yang J. H., Ling L. C. The surface chemistry of pitch-based spherical activated carbon (PSAC) and the effect of gas-oxidation treatment on its adsorption performance [J]. New Carbon Materials.2010,25(6):460-464
    [89]Wang Q., Liang X. Y., Qiao W. M., et al. Modification of polystyrene-based activated carbon spheres to improve adsorption of dibenzothiophene [J]. Applied Surface science. 2009,255(6):3499-3506
    [90]Liu C. J., Liang X. Y., Liu X. J., et al. Wettability modification of pitch-based spherical activated carbon by air oxidation and its effects on phenol adsorption [J]. Applied Surface Science.2008,254(9):2659-2665
    [91]Blucher H.V., Blucher H.V.. Process of making microspherules of ativated carbon [P]. US Patent:4857243.1989
    [92]宋燕,乔文明,凌立成,等.球状活性炭及其应用进展[J].炭素.1999,1:3-6
    [93]Liu Z. C., Ling L. C., Qiao W. M., Liu L. Preparation of pitch-based spherical activated carbon with developed mesopore by the aid of ferrocene [J]. Carbon.1999,37 (4): 663-667
    [94]刘小军.沥青基球形活性炭的制备及结构控制的研究.博士论文,华东理工大学,2009
    [95]张勇刚,王成扬.悬浮法制备沥青球的研究[J].炭素.2002,3:7-10
    [96]Shen, C., Grande, C.A., P. Li, J. G. Yu, Rodrigues, A.E.:Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads [J]. Chemical Engineering Journal, 2010,160:398-407
    [97]Yang, R.T. Gas separation by adsorption processes [M]. Boston:Butterworths,1987
    [98]Yang R.T.(著),马丽萍(译),宁平(译),田森林(译).吸附剂原理与应用[M].北京:高等教育出版社.2010
    [99]Nitta T., Shigetomi T., Kurooka M., Katayama T. An adsorption isotherm of multi-site occupancy model for homogeneous surface [J]. Journal of Chemical Engineering of Japan.1984,17(1):39-45
    [100]Grande C. A., Rodrigues A. E. Adsorption of binary mixtures of propane-propylene in carbon molecular sieve 4A [J]. Industrial & Engineering Chemistry Research.2004, 43(25):8057-8065
    [101]Grande C. A., Silva V. M. T. M., Gigola C., Rodrigues A. E. Adsorption of propane and propylene onto carbon molecular sieve [J]. Carbon.2003,41 (13):2533-2545
    [102]Barrer R.M. Sorption in porous crystals:equilibria and their interpretation [J]. Journal of Chemical Technology & Biotechnology.1981,31 (2):71-85
    [103]Kiselev A.V. Vapor adsorption on zeolites considered as crystalline specific adsorbents [J]. Advances in Chemistry Series.1971,102:37-68
    [104]Grande C. A., Lopes F. V. S., Ribeiro A. M., Loureiro J. M., Rodrigues A. E. Adsorption of off-gases from steam methane reforming (H2, CO2, CH4, CO and N2) on activated carbon [J]. Separation Science & Technology,2008,43 (6):1338-1364
    [105]Dubinin M. M. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surfaces [J]. Chemical Review,1960,60 (2):235-241
    [106]Kapoor A., Ritter J. A., Yang R. T. On the Dubinin-Radushkevich equation for adsorption in microporous solids in the henry's law region [J]. Langmuir.1989,5: 1118-1121
    [107]Doong S. J., Yang R. T. A simple potential-theory model for predicting mixed-gas adsorption. Industrial & Engineering Chemistry Research.1988,27:630
    [108]Rege S. U., Yang R. T. A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption [J]. Separation Science and Technology.2001,36(15): 3355-3365
    [109]Takahashi A., Yang R. T., Munson C. L., Chinn D. Influence of Ag content and H2S exposure on 1,3-butadiene/1-butene adsorption by Ag ion-exchanged Y-zeolites (Ag-Y) [J]. Industrial & Engineering Chemistry Research.2001,40(18):3979-3988
    [110]Wood G. O. Review and comparisons of D/R models of equilibrium adsorption of binary mixtures of organic vapors on activated carbons [J]. Carbon.2002,40(3): 231-239
    [111]Siriwardane R. V., Shen M. S., Fisher E. P., Poston J. A. Adsorption of CO2 on molecular sieves and activated carbon [J]. Energy Fuels.2001,15 (2):279-284
    [112]Wu Q., Zhou L., Wu J.Q., Zhou Y.P., Adsorption equilibrium of the mixture CH4+N2+H2 on activated carbon [J]. Journal of Chemical Engineering Data.2005,50 (2):635-642
    [113]Himeno S., Komatsu T., Fujita S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons [J]. Journal of Chemical Engineering Data. 2005,50 (2):369-376
    [114]Dreisbach F., Staudt R., Keller J. U. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon [J]. Adsorption, 1999,5 (3):215-227
    [115]Hines A.L., Kuo S.L., Dural N.H. A new analytical isotherm equation for adsorption on heterogeneous adsorbents [J]. Separation Science and Technology.1990,25 (7-8): 869-888
    [116]Goetz V., Pupier O., Guillot A. Carbon dioxide-methane mixture adsorption on activated carbon [J]. Adsorption,2006,12 (1):55-63
    [117]Eic M., Ruthven D. M. A new experimental technique for measurement of intracrystalline diffusivity [J]. Zeolites.1988,8:40-45
    [118]Grande C.A., Rodrigues A.E. Adsorption kinetics of propane and propylene in zeolite 4A [J]. Chemical Engineering Research and Design.2004,82(A12):1604-1612
    [119]Brandani F., Ruthven D., Coe C. G. Measurement of adsorption equilibrium by the zero length column (ZLC) technique part 1:single-component systems [J]. Industrial & Engineering Chemistry Research.2003,42:1451-1461
    [120]Brandani F., Ruthven D. Measurement of adsorption equilibrium by the zero length column (ZLC) technique part 2:binary systems [J]. Industrial & Engineering Chemistry Research.2003,42:1462-1469
    [121]Brandani F., Rouse A., Brandani S., Ruthven D. M.. Adsorption kinetics and dynamic behavior of a carbon monolith [J]. Adsorption.2004,10:99-109
    [122]Loos J. W. P., Verheijen P. J.T., Moulijin J. A.. Improved estimation of zeolite diffusion coefficients from zero-length column experiments [J]. Chemical engineering science.2000,55:51-65
    [123]Ruthven D.M. Principles of adsorption and adsorption processes [M]. New York:John Wiley & Sons,1984
    [124]Wakao, N., Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds-Correlation of Sherwood numbers [J]. Chemical Engineering Science.1978,33 (10):1375-1384
    [125]Park L., Do D., Rodrigues A. E. Measurement of the effective diffusivity in porous media by the diffusion cell method [J]. Catalysis Reviews, Science and Engineering. 1996,38(2):189-247
    [126]Bird R. B., Stewart W. E., Lightfoot E. N. Transport phenomena (2nd ed.) [M]. Singapore:Wiley International,2002
    [127]Reid R. C., Prausnitz J. M., Poling B. E. The properties of gases and liquids (fourth edition) [M]. New York:McGraw-Hill,1987
    [128]Grande C. A. Propane/propylene separation by adsorption processes. Ph.D. dissertation, University of Porto, Portugal,2004
    [129]卜令兵,郜豫川,张剑锋,杨云,李小荣.变压吸附数值模拟的研究[J].煤化工2009,4(143):30-32
    [130]Lu Z. P., Loureiro J. M., LeVan M., Rodrigues A. E.. Simulation of a three-step one-column pressure swing adsorption process [J]. AIChE Journal.1993b,39(9): 1483-1496
    [131]Turnock P. H., Kadlec R. H. Separation of nitrogen and methane via periodic adsorption [J]. AIChE Journal.1971,17:335-342
    [132]Kowler D. E., Kadlec R. H. The optimal control of a periodic adsorber [J]. AIChE Journal.1972,18:1207-1219
    [133]Yang R. T., Doong S. J. Gas separation by pressure swing adsorption:a pore diffusion model for bulk separation [J]. AIChE Journal,1985,31(11):1829-1842
    [134]Cen P. L., Yang R. T. Zeolite PSA cycles for producing a high-purity hidrogen from a hydrogen-lean mixture [J]. Chemical Engineering Communications.1989,78:139-151
    [135]Ritter J. A., Liu Y. Tapered pressure swing adsorption columns for simultaneous air purification and solvent vapor recovery [J]. Industrial & Engineering Chemistry Research.1998,37:2783-2791
    [136]Ritter J. A., Liu Y., Subramanian D. New vacuum swing adsorption cycles for air purification with the feasibility of complete cleanup [J]. Industrial & Engineering Chemistry Research,1998,37:1970-1976
    [137]Sircar, S. Air fractionation by adsorption [J]. Separation Science and Technology. 1988a,23(14&15):2379
    [138]陈敏恒,丛德滋,方图南,齐鸣斋.化工原理上册(第二版)[M].北京:化学工业出版社.2000
    [139]gPROMS, gProms user's guide, process systems enterprise Ltd., release v3.2.0,2009
    [140]Sircar S. Excess Properties and Thermodynamics of Multicomponent Gas Adsorption [J]. Journal of Chemical Society, Faraday Transactions.1985,81(1):1527-1545
    [141]Incropera F. P., Witt D. P. D. Fundamentals of heat and mass transfer (5th edition) [M]. New York:John Wiley & Sons.2002
    [142]Wasch A. P. D., Froment G. F.. Heat transfer in packed beds [J]. Chemical Engineering Science.1972,27:567-576
    [143]Shen C., Yu J. G., Li P., Grande C.A., Rodrigues A.E.:Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads [J]. Adsorption.2011, 17:179-188
    [144]Park J. H., Beum H. T., Kim J. N., Cho S. H. Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas [J]. Industrial & Engineering Chemistry Research.2002,41 (16):4122-4131
    [145]Cho S. H., Park J. H., Beum H. T., Han S. S., Kim J. N. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in Surface Science and Catalysis.2004,153:405-410
    [146]Grande C. A., Poplow F., Rodrigues A. E. Vacuum pressure swing adsorption to produce polymer-grade propylene [J]. Separation Science and Technology.2010,45(9): 1252-1259
    [147]Choe J. S., Kellogg L. J., Weimer R. F. Two stage pressure swing adsorption process for producing the less strongly adsorbed component of a feed gas mixture [P]. US Patent: 5382280.1995
    [148]Yoshida M., Kodama A., Goto M., Hirose T., J. Ritter A. Two stage PSA for enrichment of trace xenon from atmospheric air [J]. Adsorption science and technology (Proceedings of the second pacific basin conference).2000,254-258
    [149]Ko D., Siriwardane R., Biegler L. T. Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture [J]. Industrial & Engineering Chemistry Research.2005,44 (21):8084-8094
    [150]Merel J., Clausse M., Meunier F. Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites [J]. Industrial & Engineering Chemistry Research.2008,47 (1):209-215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700