间歇精馏冷启动过程的流程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间歇精馏生产过程中,冷启动操作是极其重要的环节。不仅因为有大量的设备需要开始投入使用,而且在工业现场的每个生产批次中,料液组成,加热方式,塔顶回流的操作方式都有可能发生变化。然而在没有动态模拟的情况下,启动过程主要根据经验进行操作,不可能、也不允许直接在装置上做任何试验。
     应用动态模拟技术,探讨、分析间歇精馏启动过程的特性,其主要作用有:
     1) 缩短启动时间,使设备尽快达到稳定操作状态;
     2) 降低物耗、能耗,减少启动损耗;
     3) 避免可能产生的误操作或事故;
     4) 减少不合格产品;
     5) 保证启动过程顺利进行,取得最佳经济效益;
     动态模拟的核心是系统模型。以往间歇精馏塔的动态模型大部分建立在平衡模型的基础上,由于它采用了大规模的微分代数方程组,所以使系统的初始化成为一个难题。
     本文从过程特性分析、建模、求解和实验验证四个方面,对间歇精馏冷启动过程的动态模型进行了描述,具体包括以下几个部分:
     1.分析间歇精馏塔从冷、空状态启动时的过程特性。针对塔板的动态特性以及塔板间的变化关系,将启动过程描述为三种状态之间的切换,即:冷空状态(EM)、液体积累状态(LA)、汽液平衡状态(VLE)。塔板温度和塔板积液作为沿空间轴(底层塔板到上层塔板)和时间轴不断发生变化的动态变量,它们共同决定了塔板上汽液平衡状态的建立。通过实验观察和现象分析,得到两个重要结论:
     a.汽液平衡状态的建立是从下到上逐板发生的,这集中体现在塔板温度的变化曲线上。
     b.塔板积液的主要增长是由回流决定的。
     2.采用具有时间一致性的动态模型描述间歇精馏塔的启动过程。以分离过程的重要设备—塔板为例,每层塔板都是从非平衡状态,即只有能量和物质交换,
    
     11 浙江人学博上学位论文
    转化到平衡状态,即到达汽-液平衡。而转换点是山工作压力下的泡点温度决定
    的。通过塔板的结构特性,利用不同的溢流堰高度描述了塔板积液的变化情况。
    在传统MESH方程的基础上,结合启动过程特性和塔板动力学方程,能够很好
    地描述塔板在EM—LA—VLE切换过程中的变化情况。采用模块化方法进行系
    统建模,使模型结构清晰,易于拓展。
     3.分析模型中的混杂性问题。文章对求解过程中呈现的非连续特性进行了
    分类,即:与启动过程状态转换有关的模型结构的不连续性,与物理过程有关的
    塔扳动力学方程的切换,给出了针对不同类型非线性特征的解决方案。对于动态
    模型所涉及的变量初始值问题,以及状态切换过程中变量取值的变化,文章先对
    变量进行了分类,然后给出了不同类型变量的初值选取方法。为了更多地关注于
    过程,而不是模型的复杂性和求解的难度,选用gPROMS作为计算平台用于求
    解该过程。
     4.通过仿真实例验证了动态模型仿真结果的有效性和正确性。第一个仿真
    实例是一个非常著名的三组分间歇分离过程,针对如何确定优化起始点这个问
    题,通过比较实验数据和简化方法求解结果,说明了模型的有效性和可操作性。
    第二个仿真实例是一个具体的实验装置,针对间歇精馏塔启动过程中的动态特
    性,通过实验过程数据和仿真结果的比较,验证了模型的正确性。仿真结果同时
    表明:间歇精馏塔从冷。空状态启动时过程动态的复杂性,和动态模型中的高度
    非连续性特征。
     最后对论文结果的工业应用前景给出了作者个人的看法,总结了论文工作的
    创新之处,以及讨论了本课题需进一步研究的问题。
Due to its high flexibility the batch distillation is widely used in chemical industry. A property of batch distillation is that the batch column will be frequently started up from a cold empty state. The initial charge in the reboiler, heating style and reflux operation may be variable from batch to batch. The performance of startup from these initial conditions will impact the whole batch operation. Therefore, the study of startup behaviors of batch distillation is important to industrial practice. Modeling of batch distillation has been mostly based on equilibrium model in previous studies. It leads to a large-scale differential algebraic equations (DAEs) system. Due to its dynamic nature, initialization of the system has been a problem. A model to express startup behaviors of batch columns starting from an empty cold state is proposed to handle these issues.
    For each tray, we can get its dynamic feature through observation and analysis of the phenomena on the tray. At the very beginning we define the trays in the column are at the state of empty (EM). Then the tray is transited from EM to the state of liquid accumulation (LA), due to the condensation of the rising vapor on the tray. At the same time the condensed liquid on this tray is heated by the rising vapor from the reboiler. When the temperature increases at its bubble point, the state of the tray switches to vapor-liquid equilibrium (VLB). The sequence of the transitions of a tray is from EM to LA and VLB. When the vapor arrives in the total condenser, the holdup of the trays will be increased significantly after the reflux valve opened. The startup is ended when the liquid flow reaches the lowest tray of the column, which means that all trays are in VLE and have an enough liquid holdup. The startup features are common to general batch tray columns. The fact that the temperature rises tray by tray from bo
    ttom to top and the column is filled with the liquid flow essentially from top to bottom during startup is well-known in industry practice.
    A unified equation system can describe the switching from a non-equilibrium phase in which only mass and energy transfer are taking place to an equilibrium phase in
    
    
    which the vapor-liquid equilibrium is held. The switching point between these two phases is decided by the relationship of bubble point temperature at the operating pressure. The liquid holdup of each tray is related to the geometry of the trays, different weir height is used to describe the holdup change during startup period. The model for startup operation appears discontinuous between nonequilibrium and equilibrium phase. The structure discontinuous mode of the model related with the working state of the column during startup operation. But to a unified equation system, the structure of differential equations must be set to the same in all different phases. So trivial equations are introduced to realize this aim. In the numeric method, three types of variables are divided, company with three different ways to set variables' initial value. The software package gPROMS is used for solving the equations system. It is unique amongst commercial simulators in its facilities for describing hybrid processes with
    discontinuities.
    Two cases are used to validate the correctness of the model. The first process considered is a well-known batch distillation given by Nad and Spiegel (1987). The second is a pilot batch column in lab. It can be seen that the model can describe the startup process with a high accuracy by the comparison of the simulation results and experiment data. The dissertation is concluded with a summary and prospect of future researches.
引文
1. Peter Terwiesch (1994), Dynamic Optimization of batch process operations with imperfect modeling, PhD Thesis, Swiss Federal Institute of Technology Zurich.
    2. 蒋慰孙(2000),2000年化工自动化展望,化工自动化仪表,21(1),1-9.
    3. 王保国,王春艳,许锡恩(1997),间歇化工过程与计算机应用,精细化工,14(5),26-30.
    4. 袁希钢,姚兆玲(2002),考虑环境影响的间歇化工过程最优化研究进展,化学工程,30(1),67-71.
    5. 王保国,王春艳,许锡恩(1997),间歇过程控制标准化,化工进展,24(4),23-27.
    6. 甄宏伟,吴晓辉(2001),闪蒸釜间歇控制的方案设计与PLC的应用,黑龙江石油化工,12(1),45-46.
    7. Robert H. Perry, Don W. Green and James O. Maloney (1997), Perry's chemical engineers' handbook.---7th ed. McGraw-Hill.
    8. U.M. Diwekar (1991), An efficient design method for binary, azeotropic, batch distillation columns, AIChE Journal, 37(10), 1571-1578.
    9. A. Mehlhorn, A. Espuna, A. Bonsfills, A. Gorak, L. Puicjaner (1996), Modeling and experimental validation of both mass transfer and tray hydraulics in batch distillation, Computers. Chem. Engng., 20(suppl), S575-S580.
    10.马瑞国(1989),多元物系间歇精馏过程的计算机模拟,化工电子计算,(2),16-25.
    11. Young Han Kim. (1999), Optimal design and operation of a multi-product batch distillation column using dynamic model, Chemical Engineering and Processing, 38, 61-72.
    12. Massimiliano Barolo, Paolo Dal Cengio. (2001), closed-loop optimal operation of batch distillation columns, Computers. Chem. Engng., 25,561-569.
    13. U.M. Diwekar, K. P. Madhavan (1991), Multicomponent batch distillation column design, Ind. Eng. Chem. Res., 30, 713-721.
    
    
    14. U.M. Diwekar (1994), How simple can it be? -A look at the model for batch distillation, Computers. Chem. Engng., 18(suppl.), s451-s457.
    15. M. Mujtaba, S. Macchietto (1993), Optimal operation of multicomponent batch distillation-multiperiod formulation and solution, Computers. Chem. Engng., 17, 1191-1207.
    16. H.I. Furlonge and C. C. Pantelides, E. Sorensen (1999), Optimal Operation of Multivessel Batch Distillation Columns, AIChE Journal, 45, 781-801.
    17. I.M. Mujtaba and S. Macchietto (1991) An optimal recycle policy for multicomponent distillation, Computers. chem. Engng, 16(suppl.), s273-s280.
    18. Massimiliano Barolo and Fabrizio Berto (1998), Composition Control in Batch distillation: Binary and Multicomponent Mixtures, Ind. Eng. Chem. Res., 37, 4689-4698.
    19. Byoungmu Chang, Seunghoon Lee, Hyeoktae kwon and Il Moon (1998), Rigorous industrial dynamic simulation of a crude distillation unit considered valve tray rating parameters, Computers. Chem. Engng., 22(suppl.), S863-S866.
    20. Karl Dieter und Bernhard Wahl, Karlsruhe. (1967), Das dynamische Verhalten vor Rektifiyierkolonnen mit groβer Bodenzahl beim Anfahren der Anlage, Forsch. Ing.-Wes. 33 Nr. 2 37-68.
    21. V.S. Vassiliadis, C. C. Pantelides and R. W. H. Sargent (1994), Optimization of discrete charge batch reactors, Computers. Chem. Engng., 18(suppl.), S415-S419.
    22. L.U. Kreul, A. Gorak, P. I. Barton (1999), Dynamic Rate-Based Model for Multicomponent Batch Distillation, AIChE Journal, 45, 1953-1962.
    23. R. Krishnamurthy, R. Taylor (1985), A Nonequilibrium Stage Model of Multicomponent Separation Processes, AIChE Journal, 31,449-465.
    24. D.J. Vickery, Ross Taylor (1986), Path-following approaches to the solution of multicomponent, multistage separation process problems, AIChE Journal, 32, 547-556.
    25. 彭秉璞(1998),化工系统分析与模拟,化学工业出版社.
    
    
    26. Ronald G. Ketchum (1978), A combined relaxation-newton method as a new global approach to the computation of thermal separation processes, Computation of thermal separation process, 387-395.
    27. Arthur Rose, Robert F. Sweeny, Verle N. Schrodt (1958), Continuous distillation calculations by relaxation method, Industrial and Engineering Chemistry, 50, 737-740.
    28. Hideki Mori, Ikuho Yamada, Toshihiko Tsuiki, Setsuro Hiraoka (1987), Multicomponent distillation calculation by a successive relaxation method using a finite difference approximation, Journal of Chemical Engineering of Japan, 20, 460-467.
    29. Hideki Mori, Ikuho Yamada, Setsuro Hiraoka, Toshihiko Tsuiki. (1987), Distillation calculation by a successive relaxation method with simultaneous correction of liquid composition and temperature, Journal of Chemical Engineering of Japan, 20, 220-226.
    30. I.T. Cameron, C. A. Ruiz, and R. Gani (1986), A Generalized Dynamic Model for Distillation Columns---Ⅱ. Numerical and computation aspects, Computers. Chem. Engng., 10, 199-211.
    31. C.C. Pantelides and P.I. Barton (1993), Equation-oriented dynamic simulation current status and future perspectives, Computers. Chem. Engng., 17(suppl.), s263-s285
    32. L.T. Biegler (2000), Differential-Algebraic Equations(DAEs), in Internet.
    33. Russell Williams, Ian Cameron, Kevin Burrage (2000), A new index 2 Runge-kutta method for the simulation of batch and discontinuous processes, Computers. Chem. Engng., 24 625-630.
    34. 林成森(1999),数值计算方法(下册),科学出版社.
    35. 袁渭康(1999),非定态操作—化学工程面临的挑战与机会,化工生产与技术,21(1),1-3.
    36. Jean-paul Moulin, Philippe Lucas, Arsene Isambert (1993), How physical insight can help in conditioning transient problems. Computers. Chem. Engng., 17(suppl.), s361-s366.
    
    
    37. P. Rabeau, R. Gani, C. Leibovici (1997), An efficient initialization procedure for simulation and optimization of large distillation problems, Ind. Eng. Chem. Res., 36, 4291-4298.
    38. H. Sadotomo, K. Miyahara (1983), Calculation procedure for multi-component batch distillation, Inter. Chem. Engng., 23, 56-64.
    39. B. Wu and R. E. Write (2001), An initialization subroutine for DAEs solvers: DAEIS, Computers. Chem. Engng., 25,301-311.
    40. P. Li, H. Arellano-Garcia, G. Wozny (1998), Optimization of a semibatch Distillation Process with Model Validation on the Industrial Site, Ind. Eng. Chem. Res., 37, 1341-1350.
    41. P. Li, G. Wozny (1999), Tracking the predefined optimal policies for multiple-fraction batch distillation by using adaptive control, Computers. Chem. Engng., 23(suppl.), s281-s284.
    42. E. Sφrensen, S. Skogestad (1996), Optimal startup procedure for batch distillation, Computers. Chem. Engng., 20(suppl.), s1257-s1262.
    43. M. Nad, L. Spiegel (1987), Simulation of Batch Distillation by Computer and Comparison with Experiment, Proc. CET'87, Italy, 737-742.
    44. Ch. Kruse; G. Fieg; G. Wonzy (1995), Entwicklung und experimentelle absicherung eines simulationsprogramms fuer anfahrvorgaenge an rektifikationskolonnen, Heat and Mass Transfer, 31, 25-31.
    45. Ch, Kruse; G. Fieg and G. Wonzy (1996), Anew time-optimal strategy for column startup and product changeover, J.. Proc. Cont. 6, 187-193.
    46. G. Fieg and G. Wonzy, Ch. Kruse (1993), Experimental and theoretical studies of the dynamics of startup and product switchover operations of distillation columns, Chemical Engineering and Processing, 32, 283-290.
    47. P.I. Barton, C. C. Pantelides (1994), Modeling of combined discrete/continuous process, AIChE Journal, 40, 966-979.
    48. P. I. Barton, J. R. Banga, S. Galan (2000), Optimization of hybrid discrete/continuous dynamic systems, Computers. Chem. Engng., 10, 199-211.
    
    
    49. P.I. Barton (2000), Modeling, simulation and sensitivity analysis of Hybrid systems, Proceedings of the 2000 IEEE International Symposium on Computer-Aided Control System Design.
    50. J. E. Severa (1973), Startup of a crude/vacuum distillation unit, Chemical Engineering Process, 69(8), 85-100.
    51. J.E. Baker and R. D. Burt (1967), Startup and operating problems in chlorine plants, Chemical Engineering Process,. 63(12), 47-56.
    52. K. Finlayson and M. Gans (1967), Planning the successful startup, Chemical Engineering Process, 63(12), 33-46.
    53. Henry Z. Kister (1981), How to prepare and test columns before startup, Chemical Engineering Research, 97-100.
    54. Oscar A. Iribarren, Omar J. Chiootti (1991), Simplified analytical prediction of distillation column startup time at total reflux, The Canadian Journal of Chemical Engineering, 69, 377-382.
    55. Budi H. Bisovarno, Moses O. Tade (2000), Dynamic simulation of startup in ethyl tert-Butyl ether reactive distillation with input multiplicity, Ind. Eng. Chem. Res. 39, 1950-1954.
    56. G.A. Robertson, I. T. Cameron, and R. Gani (1988), Dynamic Modeling characteristics for startup simulation of a forced circulation evaporator, Processing Pacific Resources (18th), Australasian, 12, 1-14.
    57. C.A. Ruiz, I. T. Cameron, and R. Gani (1988), A Generalized Dynamic Model for Distillation Columns---Ⅲ. Study of Startup Operations, Computers. Chem. Engng., 12, 1-14.
    58. R. Gani, C. A. Ruiz (1987), Simulation of startup and shutdown behavior of distillation operations, I. Chem. E. Symposium Series, NO. 104 B38-B51.
    59. R. Gani, C A. Ruiz, I. T. Cameron (1987), Studies in the dynamic of startup and shutdown, The Use of Computer in Chemical engineering EFCE, Giardini Naxos, Italy, ⅩⅧ Congress, 541-546.
    
    
    60. R. Gani, C. A. Ruiz, I. T. Cameron (1986), A Generalized Dynamic Model for Distillation Columns---Ⅰ. Model description and applications, Comput. Chem. Engng., 10, 181-198.
    61. Hangos K M, Hallager L, Csaki Z S, Jorgensen S B (1991), A qualitative model for simulation of the startup of a distillation column with Energy Feedback, In: Puigjaner L, Espuna A, eds. in Computer-Oriented Process Engineering, Elsevier, Amsterdam, 87-92.
    62. K. Lwe (2001), Theoretische und experimentelle Untersuchungen ueber das Anfahren und die Prozessfuehrung energetisch und stofflich gekoppelter Destillationskolonnen, PhD Thesis, Technische Universitt Berlin.
    63. H. Yasuoka, E. Nakanishi, E. Kunigita (1987), Design of an on-line startup system for a distillation column based on a simple algorithm, International Chemical Engineering, 27, 466-472.
    64. Juan R. Gonzalez-Velaso, Miguel A. Gutierrez-Ortiz, et.al. (1987), Improvements in Batch Distillation Startup, Ind. Eng. Chem. Res., 26, 745-750.
    65. M. Barolo, G. B. Guarise, S. A. Rienzi and A. Trotta (1993), On-line startup of a distillation column using Generic Model Control, Computers. Chem. Engng., 17(suppl.), s349-s354.
    66. M. Barolo, G. B. Guarise, S. A. Rienzi and A. Trotta (1994), Nonlinear model-based startup and operation control of a distillation column: an experimental study, Ind. Eng. Chem. Res., 33, 3160-3167.
    67. Chimmiri Venkateswarlu, Kota Gangiah (1997), Comparison of nonlinear controllers for distillation startup and operation, Ind. Eng. Chem. Res. 36, 5531-5536.
    68. S. Ganguly, D. N. Saraf (1993), Startup of a Distillation Column Using Nonlinear Analytical Model Predictive Control, Ind. Eng. Chem. Res., 32,1667-1675.
    
    
    69. Eckart von Westerholt, John N. Beard, and Stephen S. Melsheimer (1991), Time-optimal startup control algorithm for batch processes. Ind. Eng. Chem. Res. 30, 1205-1212.
    70. M. Sharif, N. Shah and C.C. Pantelides (1998), On the Design of Multicomponent Batch Distillation columns, Computers. Chem. Engng., 22(suppl.), s69-s76.
    71. Urs G. Naf (1994), Stochastic simulation using gPROMS, Computers. Chem. Engng., 18(suppl.), s743-s747.
    72. M. OH and C.C. Pantelides. (1996), A modeling and simulation language for combined lumped and distributed parameter systems, Computers. chem. Engng., 20, 611-633.
    73. M.L. Winkel, L.C. Zullo, P.J.T. Verheijen, C.C. Pantelides (1995), Modelling and simulation of the operation of an industrial batch plant using gPROMS, Computers. Chem. Engng., 19(suppl.), S571-S576.
    74. Louis P. Russo and B. Wayne Bequette (1997), Process design for operability: a styrene polymerization application, Computers. Chem. Engng., 21(suppl.), s571-s576.
    75. Jimenez L, Basualdo M, Toselli L, Rosa M. Dynamic modeling of batch distillation: comparison between commercial software, In: Pierucci S, eds. Proceedings of ESCAPE-10, Italy. 2000. 1153-1158
    76. 王骥程(1994),过程动态模型,浙江大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700