多效蒸发分离过程的节能优化与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化工行业中,我国单位产值的能源消耗量比发达国家要高很多,其主要原因就在于分离过程的能耗远高于发达国家。蒸发操作即为分离过程,其耗能大,并伴随着二次蒸汽的产出,所以自上世纪70年代的能源危机以来,对蒸发操作中节能优化和有效控制的研究成为重中之重。
     本文基于Aspen Plus软件对蒸发系统进行了数值模拟研究。分别分析进口流量、各效压力和温度等参数的变化对蒸发性能的影响,在其他参数一定的条件下,模拟出操作参数变化对系统性能影响的变化规律。同时,建立了三种不同结构的三效蒸发系统模型,研究比较不同工况下每种工艺的能耗大小,得出带预热的多入口结构蒸发系统比基本蒸发系统节能约9.3%,而带预热的单入口结构蒸发系统比基本蒸发系统节能达到约12%。为了满足出口完成液浓度达到工艺要求,分别在不同体积分数的条件下对系统进行模拟,得出最佳体积分数值,基于此体积分数下对各效温度、压力参数进行优化,最终计算得出系统能耗最小时各参数的设定情况,为实际生产中蒸发系统的设计提供了一定参考。
     基于动力学模拟,本文以海水淡化多效蒸发过程为工业背景,对三效蒸发分离过程操作变量变化影响进行了灵敏度分析,明确了其主要控制参数,通过这些参数控制来实现对产品品质参数浓盐水的浓度和产水量的间接控制。通过控制效果和干扰影响的仿真模拟研究,证明了本文提出的控制结构和控制策略符合工艺控制要求,且具有良好的抗外界干扰能力,通过控制蒸发罐的TBT、压力和液位能精确有效的间接控制蒸发分离过程的浓度等过程生产品质指标。
In the chemical industry, the energy consumption per unit of output in our country is much higher than in developed countries, the main reason is that the energy consumption of the separation process is far higher than the developed countries. The operation of evaporation, which is energy intensive together with the secondary steam production, is the separation process, so since the energy crisis in the1970s, it is the top priority that is the research on the energy optimizing and effective control of the operation of evaporation.
     In this paper, the evaporation system is simulated based on the Aspen Plus software. Results the influence of flow rate, temperature, pressures of the evaporating performance, under the condition of the constant other parameters, the change rules on the influence of the operation parameters changes are simulated. At the same time, it sets up three system models of three effect evaporation with different structure, and contrast the energy consumption of each configuration in the different working conditions, this paper concluded that multiple entry preheated systems can be energy-efficient than the evaporation system in general about9.3%, and the single entry preheated could save12%. In order to meet the technological requirements of the consistence of accomplished liquid, the paper obtain the best value of volume fraction through the simulation model with different concentrations, then each effect temperature and pressure parameter has been optimized, finally each parameter is worked out when the energy consumption is minima, the results provides some references for the evaporation system designed in practical production.
     Based on the dynamics simulation, in the industry background of seawater desalination multi-effect evaporation process, a sensitivity analysis the effects of various operating variables on three effect evaporation separation processes were made in this paper, and the main control parameters are definite, through these parameters, it could realize that the indirect control of product quality parameters of the concentrated brine concentration and the water production are controlled. Through the simulation research of the control effect and the interference, it is proved that the control structure and control strategy meet the requirement of technology control, and it has the good function of anti-interference, the indirect control of the quality index on evaporation of the separation process concentration under the controlled the evaporated pot TBT, pressure and liquid level is accurate and effective.
引文
[1]周少祥,胡三高,宋之平.MSF多级闪蒸海水淡化系统的建模与仿真[J].热能动力工程.2002,17(101):506-509.
    [2]刘勇,黄隆焜.海水淡化在沿海电厂的应用前景[J].广东电力.2009,22(9):25-28.
    [3]李德虎,李培宁,琚定一.五效蒸发模拟与优化研究—模拟研究[J].化学工程.1995,23(6):29-33.
    [4]施有铸,陈宗海,鲍元律.多效蒸发器的仿真建模[J].计算机仿真.1996,13(4):25-29.
    [5]王培进,周作伸.多效蒸发系统的数学描述及优化目标函数分析[J].化学工程.1997,25(2):33-38.
    [6]谭学富,王红心,秦忠顺.多效蒸发过程模拟的严格Broyden法计算[J].沈阳化工学院学报.1998,12(3):204-209.
    [7]Ahmed M.Helal, Mufeed Odeh. The once-through MSF design. Feasibility for future large capacity desalination plants[J].Desalination.2004,166:25-39.
    [8]S.F.Mussati, P.A.Aguirre, N.J.Scenna. A hybrid methodology for optimization of multi stage flash-mixer desalination system Latin Amer[J].ApplRes.2003,33:141-147.
    [9]S.F.Mussati, P.A.Aguirre, N.J.Scenna. Novel configuration for multi stage flash-mixer desaliangtion system [J].IndustEngChemRes.2003,42:4828-4839.
    [10]S.F.Mussati, P.A.Aguirre, N.J.Scenna. Optimal MSF plant design[J]. Desalination.2001, 138:341-347.
    [11]Sergio F.Mussati, Pio A.Aguirre, Nicolas J. Scenna. Improving the efficiency of the MSF once through(MSF-OT) and MSF-mixer(MSF-M) evaporators[J]. Desalination.2004,166: 141-151.
    [12]Md Sowgath Tanvir, Iqbal Mohammed Muitaba. Optimisation of MSF desalination process for fixed water demand using Gproms[J]. Desalination.2007,24:763-768.
    [13]M.STAanvir, I.M.Mutjtaba. Optimisation of design and operation of MSF desalination process using MINLP technique in Gproms[J]. Desaliantion.2008,222:419-430.
    [14]Nicolas Scenna, Sergio Mussati. MSF design taken into account availability[J]. Desalination. 2008,222:673-681.
    [15]Mohamed Abduljawad, Usama Ezzeghni. Optimization of Tajoura MSF desalination plant[J]. Desalination.2010,254:23-28.
    [16]郭晓洁,包桂莲.糖厂蒸发系统分析型模型建立和计算机程序设计[J].中国甜菜糖业.1998,47(10):30-40.
    [17]吴刚,陈宗海,薛美盛,张志刚,孙德敏.建模与先进控制在多效蒸发器节能中的应用[J].中国科学技术大学学报.199929(1):30-37.
    [18]Hisham T. El-Dessouky, H. M. Ettouney. Multiple-effect evaporation desalination systems thermal analysis[J].Desalination.125(1999):259-276.
    [19]阮奇,黄诗煌,叶长燊,陈文波.多效蒸发系统优化设计目标函数的建立与求解[J].计算机与应用化学.2001,18(1):69-75.
    [20]冯东亮,刘禾,白焰,万良虹.基于现场总线的双效蒸发器液位控制仿真系统设计[J].现代电力,2003,20(5):20-23.
    [21]徐建良,陈晓祥.复杂并流多效蒸发系统的模拟[J].华东理工大学学报.2004,30(1):23-30.
    [22]K.Urbaniec. The evolution of evaporator stations in the beet-sugar industry[J]. Journal of Food Engineering.61(2004):505-508.
    [23]周巍,胡绍川.多效蒸发系统各效能耗分配的分析计算[J].应用能源技术.1995.
    [24]姜莹,许中侠.基于Guass-Seidel迭代法的多效并流蒸发过程的模拟以及优化方法[J].化工技术与开发.2005,34(3):44-47.
    [25]刘晓华,沈胜强,Klaus Genthner,蒋春龙.多效蒸发海水淡化系统模拟计算与优化[J].石油化工高等学校学报.2005,18(4):16-19.
    [26]Durmus Kaya, H. Ibrahim Sarac. Mathematical modeling of multiple-effect evaporators and energy economy[J]. Energy.10(2006):1-7.
    [27]Prost.J.S, Gonzulez.M.T, Urbicain M.J. Determination and correlation of heat transfer coefficients in a falling film evaporator[J]. Journal of Food Engineering.2006,73(4): 320-326.
    [28]仇振岳,陈晓波,王安娜,余强.蒸发器液位智能控制系统[C].中国控制与决策学术年会论文集.1995:517-520.
    [29]吴刚,薛美盛,张志刚,孙德敏,杨彬彦,梁德利,王禹,寇廷佳.四效蒸发器系统的稳定化控制[C].中国控制会议.1997.
    [30]陈金水,王慧,孙优贤.黑液蒸发出口溶液浓度的控制实践—基于前馈+反馈的预测控制算法[J]China Pulp&Paper,1998。
    [31]S. Lissane Elhaq, F. Giri, H. Unbehauen. Modelling, identification and control of sugar evaporation-theoretical design and experimental evaluation[J].Control Engineering Practice, 7(1999):931-942.
    [32]M. Benne, B. Grondin. Perez, J. P. Chabriat, P. Herve. Artificial neural networks for modeling and predictive control of an Industrial evaporation process [J]. Journal of Food Engineering.46(2000):227-234
    [33]袁向阳,施颂椒.一种多模型自校正控制算法及其在醋酸蒸发器液位控制中的应用[J].信息与控制,2000,29(2):187-192.
    [34]陆中全,凌炯江.变频器代替气动阀的PID参数整定[J].有色冶炼,2002 31(6):172-173.
    [35]李艳,李明辉.基于PLC的碱同收蒸发工段控制系统的设计及应用[J].工业控制计算机,2004,17(8):12-13.
    [36]章志兵,黄挚雄,罗安.中药生产浓缩工段的模糊—智能PID控制研究[J].计算机测量与控制,2005,13(9):935-937.
    [37]何伟,罗安,龙丽姮,徐先勇.多模型预测控制在中药浓缩工段中的应用[J].计算机测量与控制,2007,15(11):1484-1486.
    [38]王永刚,柴天佑.蒸发过程的非线性模型预测控制[J].东北大学学报,2008,29(10):1369-1372.
    [39]李春玲,何小阳.多效蒸发的无模型自适应控制研究[J].湖南工业大学学报,2008,22(5):74-76.
    [40]李凤宇,张大发,王少明,崔长领,刘颖.基于遗传算法的蒸发器水位PID控制研究[J].原子能科学技术,2008,42(z1):137-141.
    [41]何维凯.蒸发冷却器温度控制[C].连铸自动化技术研讨会暨转炉干式除尘技术研讨会,2009:124-126.
    [42]李茜,李彬,朱雪丹.模糊自整定PID控制器的设计与仿真[J].化工自动化及仪表,201037(3):25-28.
    [43]宋继田,李丁,叶京生,刘振义.多效蒸发中最佳效数的确定[J].化工装备技术,2002,23(4):25-27.
    [44]化学工程师手册编辑委员.化学工程师手册[M].机械工业出版社,2000:4501,100-109,757-814.
    [45]柴诚敬.化工原理(上册)[M].高等教育出版社,2002,344-374.
    [46]毕庆华.氧化铝生产四效逆流降膜式蒸发过程出口浓度预测模型研究[D].中南大学,2008.
    [47]马晓迅,夏素兰,曾庆荣.化工原理[M].北京:化学工业出版社,2010.
    [48]徐文熙,穆文俊.化工原理(上)[M].北京:中国石化出版社,1992:254-256.
    [49]谢玉健.间隔式热泵流程在多效蒸发中的应用研究[J].盐业与化工.2008,5.
    [50]梁海葵.糖厂蒸发工段的建模和控制[D].广西大学,2008.
    [51]崔书君.基于(火用)分析的氧化铝四效逆流降膜式蒸发系统优化[D].中南大学,2010.
    [52]李东山.多效蒸发节能的研究[J].包装与食品机械,2002,6.
    [53]张茂斌.攀钢氯碱厂淡碱液蒸发过程节能研究[D].四川大学,2004.
    [54]蔡恩照.混流多效蒸发系统的过程模拟[J].华东理工大学学报:自然科学版,1995,2.
    [55]聂晓凯.氧化铝生产蒸发过程的动态建模与仿真研究[D].中南大学,2010.
    [56]刘银川.丙烯水合制异丙醇工艺的全流程模拟[D].北京化工大学,2011.
    [57]张程.基于ASPEN PLUS的常减压装置过程模拟与换热网络优化[D].中国石油大学(华东),2011.
    [58]郝冬青.低温多效海水淡化系统的Aspen Plus模拟[J].天津科技大学学报,2011,26(1).
    [59]Hala Faisal Al-Fulaij. Dynamic Modeling of Multi Stage Flash (MSF) Desalination Plant[D]. University College London,2011,7.
    [60]Mohammad Abutayeh. Theoretical and Experimental Simulation of Passive Vacuum Solar Flash Desalination[D]. University of South Florida,2010,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700