三峡库区滑坡监测GPS统测构网研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对三峡库区近600km长水系范围内的滑坡监测问题,对三峡库区滑坡监测GPS统测构网和实践、滑坡监测基准稳定性分析和滑坡监测网优化等方法展开深入的研究。通过研究形成了一套适用性方法,对狭长区域滑坡监测具有指导作用。论文的研究内容和成果如下:
     1)介绍了三峡库区滑坡监测网的建立和应用效果,针对三峡库区滑坡监测的现状,提出了论文研究的目的和意义,系统地回顾了GNSS参考框架、高精度GPS数据处理与变形分析、变形监测网优化设计等与论文研究内容有关的理论、方法和成果。
     2)探讨了高精度GPS数据处理使用的ITRF和IGS参考框架的定义、建立和维持方法,以及三峡库区滑坡监测成果使用的北京54、西安80和WGS-84等坐标系,针对三峡库区滑坡监测涉及多种坐标系统转换的问题,研究了不同ITRF框架间的转换,精密星历与地面基准站坐标基准的统一,WGS-84坐标系和我国参心坐标系的转换以及等价坐标转换等方法。
     3)研究了三峡库区滑坡监测GPS统测构网技术。针对库区呈带状分布的特点,研究了多基准站式的布网方法,通过划分子网,系统地研究了GPS数据处理中系统误差的处理方法、分析了粗差观测值对平差结果的影响,比较了整体平差和分区平差结果的差异,在此基础上,确定了GPS统测构网的最佳方法。采用该方法,将三峡库区122个滑坡体的监测点统一到库区滑坡监测内,提高了作业效率以及滑坡监测的精度和可靠性,解决了三峡库区滑坡监测GPS统测构网的技术难题。
     4)研究了三峡库区滑坡监测基准的稳定性分析方法。该方法顾及了已有方法的局限性以及大范围变形分析中块体运动的影响。利用2008-2011年的多期GPS观测资料,对基准点进行稳定性分析。结果表明,三峡水库高水位蓄水的3年时间里,库区存在不稳定的工作基点,不稳定点的水平位移在4cm以上,水平向最大点位变化达79.4cm,不稳定点的垂直位移在4.5cm以上,垂向最大点位变化达53.7cm。不稳定点的水平位移方向与现场地理环境核查的结果具有一致性,垂直位移方向与地震部门的监测结果较为一致。
     5)研究了三峡库区滑坡监测网的优化技术。结合三峡库区122个滑坡体的实际观测环境条件,分析了GPS监测的最佳观测时段、最佳时段长度和最佳截止高度角。推导了GPS滑坡监测网的精度、可靠性、灵敏度和费用等质量指标,建立了监测网优化模型。提出了模拟法和解析法相结合的监测网形优化方法,基于该方法,对三峡库区滑坡体GPS变形网进行优化,得到了较优的监测网形。通过分析大量滑坡体的优化结果,总结出适用性结论,对全库区滑坡监测具有指导作用。
This study introduced the establishment and application of the landslide monitoring network in the Three Gorges Reservoir Area. The purpose of this thesis is to conduct a systematic review of the current theories, methods and results on GNSS reference frame, high-precision GPS data processing and deformation analysis, GPS deformation monitoring network optimization design, etc. Based on the compiled data, an in-depth research and analysis was conducted to:
     1. The reference datum of the Three Gorges Reservoir Area landslide monitoring and its transformation.
     This includes:
     ●Definition, establishment and maintenance of International Terrestrial Reference Frame.
     ●Reference system of the Three Gorges Reservoir Area landslide monitoring network.
     ●Transformation of different periods of ITRF.
     ●Datum unification of precise ephemeris and ground-based reference station in high-precision GPS measurement.
     ●Transformation of WGS-84reference system and national reference system (1954Beijing coordinate system or1980Xian coordinate system in China).
     2. The systematic study of the data processing theory and methods of GPS monitoring network.
     This includes:
     ●Systematic error analysis and processing in the high-precision GPS data processing.
     ●Establishment and solution of relative positioning model.
     ●GPS free network adjustment model.
     ●Outlier analysis in GPS baseline network.
     ●Systematic error analysis and processing in GPS baseline network.
     ●Datum unification of multiple observation period GPS monitoring network.
     3. The study of the landslide monitoring network Reconstruction within Unified Datum in the Three Gorges Reservoir Area.
     For the special geographical location and complex terrain conditions in the Three Gorges Reservoir Area, the following areas of interest were evaluated:
     ●GPS observation plan.
     ●High-precision GPS data processing programs.
     ●For the different GPS observations, an analysis on the influence on the adjustment results by the systematic error of time evolution datum, and propose iterative adjustment method to eliminate the impact of the systematic error.
     ●The method of GPS baseline network adjustment and datum unification with the Three Gorges Reservoir Area landslide monitoring network established in2005.
     ●Obtain the new monitoring points of122landslides into the landslide monitoring network, with the unified datum, establish the deformation judgment standard for all the points, solve the technical problem in the work of the Three Gorges Reservoir Area landslide monitoring.
     4. The landslide monitoring datum stability analysis in the Three Gorges Reservoir Area. This includes:
     ●To address the issue of landslide monitoring along the600km long Three Gorges Reservoir Area, a study of landslide monitoring datum stability analysis method, which takes into account the impact of plate movement in the large-scale deformation analysis was performed.
     ●This analysis was done with historical GPS observations data (2008-2011a) of landslide monitoring network, the stability of all reference points was tested:The results indicate there was existence of the moved reference points in this three years of high water environment. The displacement direction of unstable reference points was inspected with the geographical environment at sites, showing they were consistent.
     5. The landslide monitoring network optimization design in the Three Gorges Reservoir Area. This includes:
     ●Determination of the quality indicators of accuracy, reliability, sensitivity and cost in the GPS landslide monitoring network. Establishing of the GPS landslide monitoring network optimization model and the interactive approach and analytical method used in the GPS landslide monitoring network optimization.
     ●Under the complex GPS observation conditions of the Three Gorges Reservoir Area, obtain the best GPS observation and solution plan, the better graph structure of GPS landslide deformation monitoring network.
     ●For the work of landslide monitoring in the Three Gorges Reservoir Area, summed applicability conclusion.
引文
[1]Altamimi Z., Collilieux X. IGS contribution to the ITRF [J]. Journal of Geodesy,2009,83(3-4): 375-383.
    [2]Altamimi Z., Collilieux X., Legrand J., et al. ITRF2005:A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation parameters [J]. Geodesy and Geophysical Research,2007,112(B9):B09401(1-19).
    [3]Altamimi Z., Collilieux X., Metivier L. Analysis and results of ITRF2008. IERS Technical Note No. 37,2012
    [4]Altamimi Z., Sillard P., Boucher C. ITRF2000:A new release of the International Terrestrial Reference Frame for earth science application [J]. Journal of Geophysical Research,2002,107(B10): ETG2-1-ETG2-19.
    [5]Antonelies K., Johnson D.J., Miller M.M., et al. GPS determination of current Pacific-North American plate motion [J]. Geology,1999,27(4):299-302.
    [6]Argus D.F., Gordon R.G. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1 [J]. Geophysical Research Letters,1991,18(11):2039-2042.
    [7]Baarda W. A testing procedure for use in geodetic networks [M]. Delft:W.D. MEINEMA B.V.,1968
    [8]Baarda W. S-transformations and criterion matrices [M]. Delft:W.D. MEINEMAB.V.,1981
    [9]Bar-Sever Y.E. Anew model for GPS yaw attitude [J]. Journal of Geodesy,1996,70(11):714-723.
    [10]Baselga S. Second order design of geodetic networks by the simulated annealing method [J]. Journal of Surveying Engineering,2011, posted ahead
    [11]Berne J.L., Baselga S. First-order design of geodetic networks using the simulated annealing method [J]. Journal of Geodesy,2004,78:47-54.
    [12]Beutler G, Brockmann E., Hugentobler U., et al. Combining consecutive short arcs in long arcs for precise and efficient GPS orbit determination [J]. Journal of Geodesy,1996,70:287-299.
    [13]Blewitt G Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km [J]. Journal of Geophysical Research,1989,94 (B8):10187-10203.
    [14]Bock Y, Prawirodirdjo L., Melbourne T.I. Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network [J]. Geophysical Research Letters,2004,31(6):L06604(1-4).
    [15]Boehm J., Niell A., Tregoning P., et al. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data [J]. Geophysical Research Letters,2006,33(7): L07304(l-4).
    [16]Boucher C., Altamimi Z., Duhem L. ITRF 92 and its associated velocity field. IERS Technical Note 15,1993
    [17]Boucher C., Altamimi Z., Duhem L. Results and Analysis of the ITRF93. IERS Technical Note 18, 1994
    [18]Boucher C., Altamimi Z., Feissel M. Results and Analysis of the ITRF94. IERS Technical Note 20, 1996
    [19]Boucher C., Altamimi Z., Sillard P. Results and Analysis of the ITRF96. IERS Technical Note 24, 1998
    [20]Boucher C., Altamimi Z., Sillard P. The International Terrestrial Reference Frame (ITRF97). IERS Technical Note 27,1999
    [21]Boucher C., Altamimi Z., Sillard P., et al. The ITRF2000. IERS Technical Note No.31,2004
    [22]Chen Z., Burchfiel B.C., Liu Y., et al. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformationfJ]. Journal of Geophysical Research,105(B7):16215-16227.
    [23]Dach R., Hugentobler U., Fridez P., et al. User manual of the Bernese GPS software Version 5.0. Astronomical Institute, University of Bern,2007
    [24]Dare P., Saleh H. GPS network design:logistic solution using optimal and near-optimal methods [J]. Journal of Geodesy,2000,74(6):467-478.
    [25]DeMets C, Gordon R.G, Argus D.F., et al. Current plate motions [J]. Geophysical Journal Internatonal,1990,101(2):425-478.
    [26]Dick W.R., Richter B. IERS Annual Report 2005,2007
    [27]Dick W.R., Richter B. IERS Annual Report 2007,2009
    [28]Dickey J.O., Feissel M. Results from the SEARCH'92 Campaign. IERS Technical Note 16,1994
    [29]Dixon T.H., Farina F., DeMets C. Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations [J]. Journal of Geophysical Research,1998,103(B7):15157-15182.
    [30]Dixon T.H., Mao A. A GPS estimate of relative motion between North and South America [J]. Geophysical Research Letters,1997,24(5):535-538.
    [31]Even-Tzur G GPS vector configuration design for monitoring deformation networks [J]. Journal of Geodesy,2002,76(8):455-461.
    [32]Even-Tzur G, Papo HB. Optimization of GPS Networks by Linear Programming [J]. Survey Review, 1996,33(262):537-545.
    [33]Fernandes R,M.S., Ambrosius B.A.C., Noomen R., et al. The relative between Africa and Eurasia as derived ITRF2000 and GPS data [J]. Geophysical Research Letters,2003,30(16):1-5.
    [34]Fliegel H.F., Gallini T.E., Swift E.R. Global positioning system radiation force model for geodetic applications [J]. Journal of Geophysical Research,1992,97(B1):559-568.
    [35]Frei E., Beutler G Rapid static positioning based on the Fast Ambiguity Function Algorithm [J]. Journal of Geodesy,1990,15(4):325-356.
    [36]Gamal EF., Ashraf M., Mostafa R., et al. Present-day crustal deformation derived from continuous GPS array:A study case of Japan [J]. AEJ-Alexandria Engineering Journal,2002,41(1):105-119.
    [37]Gan W.J., Prescott W.H. Crustal deformation rates in Central and Eastern U.S. inferred from GPS [J]. Geophysical Research Letters,2001,28(19):3733-3736.
    [38]Gendt G. IGS switch to absolute antenna model and ITRF2005 [C]. IGS Central Bureau, Pasadena, 2006
    [39]Gerasimeko M.D., Shestakov N.V, Kato T. On optimal geodetic network design for fault-mechanics studies [J]. Earth Planets Space 2000,52:985-987.
    [40]Gerasimenko M.D. First order design of geodetic networks [J]. Geodesy and Cartography,1991,5: 4-7.
    [41]Gili J.A., Gorominas J., Rius J. Using global positioning system techniques in landslide monitoring [J]. Engineering Geology,2000,55(3):167-191.
    [42]Grafarend E.W., Sanso F. Optimization and Design of Geodetic Networks [M]. Berlin:Springer Berlin Heidelberg,1985
    [43]Han S.W., Rizos C. GPS network design and error mitigation for real-time continuous array monitoring systems [A] in:Proc. ION GPS-96,9th Int. Tech. Meeting of The Satellite Division of The U.S. Institute of Navigation,1996
    [44]Hatch R. Instantaneous Ambiguity Resolution [A] in:Schwara K.P., Lachapelle G Kinematic Systems in Geodesy, Surveying, and Remote Sensing International Association of Geodesy Symposia [C]. Banff:Springer,1991,107:299-308.
    [45]Herring T.A. Modeling atmospheric delays in the analysis of space geodetic data [A] in:Munck J.C. DE., Spoelstra T.A.TH. Refraction of transatmospheric signals in geodesy [M]. Hague:W.D. MEINEMAB.B.,1992:157-164.
    [46]Herring T.A., King R.W., McClusky S.C. Global Kalman filter VLBI and GPS analysis program. GLOBK Reference Manual (Release 10.3). Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology,2009
    [47]Herring T.A., King R.W., McClusky S.C. GPS Analysis at MIT. GAMIT Reference Manual (Release 10.3). Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology,2009
    [48]Herring T.A., King R.W., McClusky S.C. Introduction to GAMIT/GLOBK Release 10.35. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, 2009
    [49]Koch K.R. First Order Design:Optimization of the configuration of a network by introducing small position changes [A] in:Grafarend E.W., Sanso F. Optimization and design of geodetic networks [M]. Berlin:Springer Berlin Heidelberg,1985:56-73.
    [50]Kreemer C., Lavallee D.A., Blewitt G., et al. On the stability of a geodetic no-net-rotation frame and its implication for the International Terrestrial Reference Frame [J]. Geophysical Research Letters, 2006,33(17):L17306(1-5).
    [51]Kuang S.L. Second-Order Design:Shooting for Maximum Reliability [J]. Journal of Surveying Engineering,1993,119(3):102-110.
    [52]Mader G.L. GPS Antenna Calibration at the National Geodetic Survey [J]. GPS Solution,1999,3(1): 50-58.
    [53]McCarthy D.D. IERS Conventions (1996). IERS Technical Note 21,1996
    [54]McCarthy D.D. IERS Standards (1992). IERS Technical Note 13,1992
    [55]McCarthy D.D., Boucher C., Eanes R. IERS Standards (1989). IERS Technical Note 3,1989
    [56]McCarthy D.D., Petit G IERS Conventions (2003). IERS Technical Note No.32,2004
    [57]McClusky S., Balassanian S., Barka A., et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus [J]. Journal of Geophysical Research,2000,105(B3):5695-5717.
    [58]Nakano T.s Hirahara K. GPS observations of postseismic deformation for the 1995 Hyogo-ken Nanbu earthquake, Japan [J]. Geophysical Research Letters,1997,24(5):503-506.
    [59]Niell A.E. Global mapping functions for the atmosphere delay at radio wavelengths [J]. Journal of Geophysical Research,1996,101(B2):3227-3246.
    [60]Ordonez C., Rodriguez-Perez J.R., Moreira J.J., et al. Machine Learning techniques applied to the assessment of GPS accuracy under the forest canopy [J]. Journal of Surveying Engineering,2010, posted ahead
    [61]Petit G., Luzum B. IERS Conventions (2010). IERS Technical Note No.36,2010
    [62]Peyret M., Djamour Y., Rizza M., et al. Monitoring of the large slow kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry [J]. Engineering Geology,2008,100(3-4): 131-141.
    [63]Ray J., Dong D., Altamimi Z. IGS reference frames:status and future improvements [J]. GPS Solutions,2004,8(4):251-266.
    [64]Remondi B.W. Using the global positioning system (GPS) phase observable for relative geodesy: modeling, processing, and results [D]. Texas:The University of Texas,1984
    [65]Saleh H.A. An artificial intelligent design for GPS surveying networks [J]. GPS Solutions,2003, 7(2):101-108.
    [66]Saleh H.A., Berghen F.V. Human genome behaviour:a powerful mechanism for optimizing the use of space technology in surveying networks design [J]. GPS Solution,2005,9(3):202-211.
    [67]Saleh H.A., Dare P. Effective heuristics for the GPS survey network of Malta:simulated annealing and tabu search techniques [J]. Journal of Heuristics,2001,7(6):533-549.
    [68]Schmitt G. Optimization of geodetic networks [J]. Reviews of Geophysics,1982,20(4):877-884.
    [69]Schmitt G. Second order design of a free distance network, considering different types of criterion matrices [J]. Bulletin Geodesique,1980,54(4):531-543.
    [70]Shen Z.K., Jackson D.D., et al. GPS positioning system reoccupation of early triangulation sites: Tectonic deformation of the Southern Coast ranges [J]. Journal of Geophysical Research,1993, 98(B6):9931-9946.
    [71]Shen Z.K., Wang M, Li Y.X., et al. Crustal deformation along the Altyn Tagh fault system, western China, from GPS [J]. Journal of Geophysical Research,2001,106(B12):30607-30621.
    [72]Sillard P., Altamimi Z., Boucher C. The ITRF96 realization and its associated velocity field [J]. Geophysical Research Letters,1998,25(17):3223-3226.
    [73]Squarzoni C, Delacourt C, Alemand P. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps) [J]. Engineering Geology,2005,79(3-4):215-229.
    [74]Squarzoni C, Delacourt C, Allemand P. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps) [J]. Engineering Geology,2005,79(3-4):215-228.
    [75]Tao B.Z., Zhao S.R. Optimal design of monitoring networks with prior deformation information [J]. Survey Review,1995,33(258):231-246.
    [76]Teke K., Yalcmkaya M., Konak H. Optimization of GPS networks for landslide areas [J]. Fresenius Environmental Bulletin,2008,17(6):264-276.
    [77]Teunissen P. Zero Order Design:Generalized inverses, Adjustment, the Datum problem and S-transformation [A] in:Grafarend E.W., Sanso F. Optimization and design of geodetic networks [M]. Berlin:Springer Berlin Heidelberg,1985:11-55.
    [78]Teunissen P.J.G. The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation [J]. Journal of Geodesy,1995,70(1-2):65-82.
    [79]Twilley R.J., Digney P.W. The Australian Regional GPS Network [J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy,2001,26(6-8):629-635.
    [80]Wang H., Hsu H.T., Zhu Y.Z. Prediction of surface horizontal displacements, and gravity and tilt changes caused by filling the Three Gorges reservoir [J]. Journal of Geodesy,2002,76(2):105-114.
    [81]Wang H.S. Surface vertical displacements and level plane changes in the front reservoir area caused by filling the Three Gorges reservoir [J]. Journal of Geophysical Research,2000,105(B6): 13211-13220.
    [82]Wang Q., Zhang P.Z., Freymueller J.T., et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements [J]. Science,294(5542):574-577.
    [83]Weber J.C., Dixon T.H., DeMets C., et al. GPS estimate of relative motion between the Caribbean and South American plates, and geologic implications for Trinidad and Venezuela [J]. Geology,2001, 29(1):75-78.
    [84]Xu P.L. Multi-objective optimal second order design of networks [J]. Bulletin Geodesique,1989, 63(3):297-308.
    [85]Xu P.L., Grafarend E. A multi-objective second-order optimal design for deforming networks [J]. Geophysical Journal International,1995,120(3):577-589.
    [86]Yalcinkaya M., Teke K. Optimization of GPS networks with respect to accuracy and reliability criteria [A] in:XXIII FIG Congress [C]. Munich, Germany,2006
    [87]Zhang Q., Zhu W.Y., Xiong Y.Q. Global plate motion models incorporating the velocity field of ITRF96 [J]. Geophysical Research Letters,1999,26(18):2813-2816.
    [88]Zumberge J.F., Heflin M.B., Jefferson D.C. Precise point positioning for the efficient and robust analysis of GPS data from large networks [J]. Journal of Geophysical Research,1997,102(B3): 5005-5017.
    [89]薄万举,胡新康,董运洪等.用GPS位移场进行中小区域变形分析方法探讨[J].大地测量与地球动力学,2010,30(3):31-34.
    [90]陈俊勇,杨元喜,王敏等.2000国家大地控制网的构建和它的技术进步[J].测绘学报,2007,36(1):1-7.
    [91]陈俊勇.关于中国采用地心3维坐标系统的探讨[J].测绘学报,2003,32(4):283-288.
    [92]陈俊勇.世界大地坐标系统1984的最新精化[J].测绘通报,2003,2:1-3.
    [93]陈俊勇.中国现代大地基准—中国大地坐标系统2000(CGCS2000)及其框架[J].测绘学报,2008,37(3):269-271.
    [94]陈鑫连.动态大地测量[M].北京:中国铁道出版社,1994
    [95]陈永奇,Chrzanowski A变形模型可区分度[J].测绘学报,1993,22(1):19-24.
    [96]程传录,郭春喜,王小瑞.关于国家高精度GPSB级网成果的使用问题[J].测绘科学,2005,30(10):31-35.
    [97]程鹏飞,成英燕,秘金钟等.CGCS2000板块模型构建[J].测绘学报,2013,4(2):159-167.
    [98]崔希璋,於宗俦,陶本藻等.广义测量平差(新版)[M].武汉:武汉测绘科技大学出版社,2001
    [99]党亚民,陈俊勇,刘经南等.利用GPS A级网资料对中国大陆现今水平形变场的初步分析[J].测绘学报,1998,27(3):267-273.
    [100]党亚民,李毓麟.川滇GPS地壳形变监测网的观测与数据处理[J].地壳形变与地震,1996,16(4):31-35.
    [101]杜榕桓,刘新民,袁建模等.长江三峡工程库区滑坡与泥石流研究[M].成都:四川科学技术出版社,1991
    [102]杜瑞林,乔学军,王琪等.长江三峡水库蓄水荷载地壳形变—GPS观测研究[J].自然科学进展,2004,14(9):1006-1011.
    [103]杜瑞林,邢灿飞,伍中华等.长江三峡库区地震地形变监测研究[J].大地测量与地球动力学,2004,24(2):23-29.
    [104]杜瑞林,游新兆,乔学军.长江三峡工程诱发地震监测系统中的GPS监测网及其观测结果[J].地壳形变与地震,2001,21(1):46-52.
    [105]符养,朱文耀,王小亚等.利用中国地壳运动观测网络研究中国大陆相对于ITRF97板块模型形变.地球物理学报,2002,45(3):330-337.
    [106]高伟,徐绍铨,刘爱超等.GPS测量在城市地面沉陷监测中的应用研究[J].山东农业大学学报(自然科学版),2004,35(3):395-400.
    [107]高兴国,刘焱雄,冯义楷等.GNSS对流层延时映射函数影响分析比较分析[J].武汉大学学报·信息科学版,2010,35(12):1401-1404.
    [108]高扬.同时顾及精度和可靠性准则的控制网优化设计[J].测绘学报,1987,16(3):232-239.
    [109]葛茂荣,刘经南,陶本藻.太阳光压模型中的偏导数[J].武汉测绘科技大学学报,1994,19(3):250-253.
    [110]顾国华.基准站GPS连续观测得到的垂直位移时间序列[J].地震地质,2005,27(2):332-339.
    [111]顾国华.中国大陆1998-1999年地壳运动观测结果[J].地震学报,2000,22(6):561-567.
    [112]郭际明,周命端,文鸿雁等.一种新的方差检验模型在GPS网基准点兼容性分析中的应用[J].武汉大学学报·信息科学版,2012,37(10):1168-1171.
    [113]胡建国.利用高精度GPS定位技术建立我国陆海垂直运动监测网[J].测绘学报,1999,28(4):285-288.
    [114]胡上序,陈德钊.观测数据的分析与处理[M].杭州:浙江大学出版社,1996
    [115]胡腾,杜瑞林,张振华等.三峡库区蓄水后地壳垂直变形场的模拟与分析[J].武汉大学学报’信息科学版,2010,35(1):33-36.
    [116]黄丁发.GPS相位观测值周跳检验的小波分析法[J].测绘学报,1997,24(4):199-203.
    [117]黄立人,马青.参考框架的一致性及其对形变分析的影响[J].地壳形变与地震,2001,21(2):32-36.
    [118]黄立人.GPS观测结果变形分析的参考框架及其合理性[J].测绘学报,2001,30(1):16-20.
    [119]黄立人.地壳运动的参考框架[J].大地测量与地球动力学,2002,22(3):102-108.
    [120]黄立人.确定三维网中相对稳定点组的一种方法[J].地壳形变与地震,1998,19(3):12-17.
    [121]黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2007
    [122]黄声享.监测网的稳定性分析[J].测绘信息与工程,2001,3:16-9.
    [123]黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1992
    [124]姜卫平,刘经南,叶世榕.GPS形变监测网基线处理中系统误差的分析[J].武汉大学学报·信息科学版,2001,26(3):196-199.
    [125]姜卫平,赵倩,刘鸿飞等.子网划分在大规模GNSS基准站网数据处理中的应用[J].武汉大学学报·信息科学版,2011,36(4):389-391.
    [126]蒋志浩,张鹏,秘金钟等.基于CGCS2000的中国地壳水平运动速度场模型研究[J].测绘学报,2009,38(4):471-476.
    [127]焦文海.卫星导航系统坐标基准建立问题的研究[R].上海:中国科学院上海天文台,2003
    [128]孔祥元,梅是义.控制测量下册(第二版)[M].武汉:武汉大学出版社,2003
    [129]李德仁.顾及精度和可靠性的测量控制网优化设计的设想[J].测绘学报,1989,18(4):241-248.
    [130]李德仁.误差处理和可靠性理论[M].北京:测绘出版社,1988
    [131]李延兴,胡新康,赵成坤.GPS监测网数据处理方案研究[J].测绘学报,1999,28(1):62-66.
    [132]李延兴,黄碱,胡新康等.板内块体的刚性弹塑性运动模型与中国大陆主要块体的应变状态[J].地震学报,2001,23(6):565-572.
    [133]李延兴,沈建华,王敏.华北地区GPS形变监测网的建立与精度分析[J].测绘学报,1994,23(2):142-149.
    [134]李毓麟,刘经南,葛茂荣等.中国国家A级GPS网的数据处理和精度评估[J].测绘学报,1996,25(2):81-86.
    [135]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2010
    [136]李征航,张小红.卫星导航定位新技术及高精度数据处理方法[M].武汉:武汉大学出版社,2009
    [137]廖明生,唐婧,王腾等.高分辨率SAR数据在三峡库区滑坡监测中的应用[J].中国科学:地球科学,2012,42(2):217-229.
    [138]刘大杰,施一民,过静珺.全球定位系统(GPS)的原理与数据处理[M].上海:同济大学出版 社,2003
    [139]刘根友.高精度GPS定位及地壳形变分析若干问题的研究[D].武汉:中国科学院测量与地球物理研究所,2004
    [140]刘经南,葛茂荣.92中国GPS会战(A级网)数据处理分析[J].武汉测绘科技大学学报,1995,20(1):40-45.
    [141]刘经南,佘彬彬.不同类三维空间定位网联合处理的坐标转换模型[J].武汉测绘科技大学,1990,16(2):48-56.
    [142]刘经南,施闯,陈俊勇.’92、’96国家高精度GPSA级网整体平差结果分析与我国块体运动模型研究[J].武汉测绘科技大学学报,1998,23(4):314-319.
    [143]刘经南,姚宜斌,施闯.中国地壳运动整体速度场模型的建立方法研究[J].武汉大学学报·信息科学版,2002,27(4):331-335.
    [144]刘经南,叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报·信息科学版,2002,27(3):234-239.
    [145]卢冈.变形模型的可发现性和可区分性研究[J].测绘学报,1987,16(4):271-270.
    [146]马宗晋,陈鑫连,叶叔华等.中国大陆区现今地壳运动的GPS研究[J].科学通报,2001,46(13):1118-1120.
    [147]秘金钟,蒋志浩,张鹏等.IGS跟踪站与国内跟踪站联合处理的框架点选择研究[J].武汉大学学报·信息科学版,2007,32(8):704-706.
    [148]欧吉坤.粗差的拟准检定法(QUAD法)[J].测绘学报,1999,28(1):15-20.
    [149]邵占英,刘经南,姜卫平.GPS精密定位中用分段线性法估算对流层折射偏差的影响[J].地壳形变与地震,1998,18(3):14-18.
    [150]施闯,刘经南.国家高精度GPS网整体平差中的粗差分析[J].武汉测绘科技大学学报,1998,24(2):107-111.
    [151]施闯.大规模、高精度GPS网平差处理与分析理论及其应用[D].武汉:武汉测绘科技大学,1999
    [152]施一民.现代大地控制测量[M].北京:测绘出版社,2003
    [153]隋立芬.高精度GPS网的统一与数据处理若干问题研究[D].郑州:解放军信息工程大学,2001
    [154]陶本藻,施闯,姚宜斌.顾及系统误差的平差模型研究[J].测绘学院学报,2002,19(2):79-81.
    [155]陶本藻.测量数据统计分析[M].北京:测绘出版社,1992
    [156]陶本藻.附加系统参数的平差模型和假设检验[J].测绘学报,1986,15(4):241-248.
    [157]陶本藻.关于高精度GPS网平差基本观测量的选取问题[J].测绘通报,1999,9:6-8.
    [158]陶本藻.现代平差模型及其应用[J].南京信息工程大学,2009,1(1):27-31.
    [159]王金岭,陈永奇.论观测值的可靠性度量[J].测绘学报,1994,23(4):252-258.
    [160]王敏,张祖胜,许明元.2000国家GPS大地控制网的数据处理和精度评估[J].地球物理学报,2005,48(4):817-823.
    [161]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1998
    [162]魏子卿,刘光明,吴富梅.2000中国大地坐标系:中国大陆速度场[J].测绘学报,2011,40(4):403-408.
    [163]魏子卿.2000中国大地坐标系及其与WGS84的比较[J].大地测量与地球动力学,2006,28(5):1-5.
    [164]魏子卿.我国大地坐标系的换代问题[J].武汉大学学报·信息科学版,2003,28(2):138-147.
    [165]吴北平,李征航,徐绍铨.GPS定位技术在三峡库区崩滑地质灾害监测中的实验分析[J].中国地质大学学报,2001,26(6):648-652.
    [166]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社, 2009
    [167]熊福文,朱文耀.长江三角洲地区地形变特征的GPS监测和分析[J].地球物理学报,2007,50(6):1719-1730.
    [168]熊永良,黄丁发,徐韶光等.长距离动态GPS数据处理方法与汶川地震引起的动态地壳形变特征分析[J].武汉大学学报·信息科学版,2010,35(3):265-269.
    [169]徐绍铨,李英兵.GPS用于滑坡监测的试验与研究[J].全球定位系统,2003,1:2-8.
    [170]许才军,刘经南,晁定波等.利用GPS复测资料研究华北地块旋转运动[J].武汉测绘科技大学学报,2000,25(1):74-78.
    [171]杨元喜,张丽萍.坐标基准维持与动态监测网数据处理[J].武汉大学学报·信息科学版,2007,32(11):967-970.
    [172]杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报,2010,39(1):1-6.
    [173]杨元喜.多历元大地网联合平差的地壳形变改正问题[J].解放军测绘研究所学报,2003,23(1):4-7.
    [174]杨元喜.抗差估计理论及其应用[M].北京:八一出版社,1993
    [175]曾旭平.GPS滑坡高程监测的数据处理问题[J].武汉大学学报·信息科学版,2004,29(3):201-204.
    [176]张强,朱文耀.中国地壳各构造块体运动模型的初建[J].科学通报,2000,45(9):967-974.
    [177]张勤,黄观文,丁晓光等.顾及板块运动、稳定性和系统偏差的高精度GPS监测基准研究与实现[J].地球物理学报,2009,52(12):3158-3165.
    [178]张西光.地球参考框架的理论与方法[D].郑州:解放军信息工程大学,2009
    [179]张正禄.观测值的灵敏度影响系数及其在监测网优化设计中的应用[J].测绘学报,1989,18(4):249-257.
    [180]张正禄.一种基于可靠性的工程控制网优化设计新方法[J].武汉大学学报·信息科学版,2001,26(4):354-360.
    [181]赵长胜.矿区控制网改造的优化方案[J].测绘学报,1987,16(2):142-148.
    [182]中华人民共和国地质矿产部.中国地质灾害与防治[M].北京:地质出版社,1991
    [183]中华人民共和国国土资源部.2007年度中国地质环境公报[J].甘肃政报,2008,9:封2-封3.
    [184]周江文.经典误差理论与抗差估计[J].测绘学报,1989,18(2):115-119.
    [185]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,2004
    [186]朱德通.最优化模型与实验[M].上海:同济大学出版社,2003
    [187]朱华统,杨元喜,吕志平.GPS坐标系统的转换[M].北京:测绘出版社,1993
    [188]朱文耀,符养,李彦等.ITRF2000的无整体旋转约束及最新全球板块运动模型NNR-ITRF2000VEL[J].中国科学(D辑),2003,33(增刊):1-12.
    [189]朱智勤,李征航,刘万科.相位中心改正模式的转变对GPS数据处理的影响[J].武汉大学学报·信息科学版,2009,34(11):1301-1304.
    [190]邹蓉,刘晖,魏娜等COMPASS地球参考框架的建立和维持[J].武汉大学学报·信息科学版,2011,36(4):431-436.
    [191]邹蓉.地球参考框架建立和维持的关键技术研究[D].武汉:武汉大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700