铜、镉对褐牙鲆(Paralichthys olivaceus)早期发育阶段的毒理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋污染是全球关注的热点问题之一。每年有大量的重金属通过各种人类活动进入到海洋环境中,严重影响海洋鱼类的繁殖、生长、发育和存活。大量研究表明鱼类的早期生活阶段比成鱼对重金属污染物更敏感,重金属暴露可导致鱼类孵化率下降、孵化时间延长、畸形率和死亡率增加、生长减慢等不利后果。长期污染使鱼类的资源补充失败、资源衰退或枯竭。此外,重金属在鱼类体内的积累,也对人类的食物安全和生命健康造成了巨大的危害。因此深入研究重金属对鱼类的毒理作用和致毒机理,并建立能够对重金属污染物的毒性水平进行早期预警和生态风险评估的生物监测体系对实现渔业资源的可持续发展和保证人类的食物安全具有十分重要的意义。
     本论文选取我国海洋水体中两种常见的重金属—铜(Cu)和镉(Cd),分别研究了Cu和Cd对褐牙鲆(Paralichthys olivaceus)早期生活阶段(胚胎、仔鱼和稚鱼)的毒理作用。主要研究结果如下:
     1.急性毒理效应研究:Cu对褐牙鲆胚胎24 h半致死浓度(LC_(50))和48 h LC_(50)分别为0.21 mg/L和0.11 mg/L;对仔鱼的48 h, 72 h, 96 h LC_(50)分别为0.46 mg/L,0.21 mg/L和0.12 mg/L。Cd对褐牙鲆胚胎24 h LC_(50)和48 h LC_(50)分别为7.98 mg/L和4.65 mg/L;对仔鱼的48 h, 72 h, 96 h LC_(50)分别为13.64 mg/L,7.41 mg/L和4.17 mg/L。结果表明: Cu比Cd对褐牙鲆的致死毒性更强;褐牙鲆胚胎比仔鱼对Cu、Cd暴露更敏感。
     2.胚胎-仔鱼亚急性毒理效应研究:受精后3小时(3 hours post fertilization, hpf)的褐牙鲆胚胎分别暴露于亚致死浓度的Cu(0-0.12 mg/L)和Cd(0-2.4 mg/L)溶液中直至仔鱼开口(130 hpf)。Cu和Cd的暴露对褐牙鲆胚胎-仔鱼的发育、生长和存活都产生了明显的毒理影响。≥0.06 mg/L的Cu以及≥0.8 mg/L的Cd暴露均使褐牙鲆的孵化率下降、孵化时间延迟、死亡率和仔鱼畸形率增加等。Cu和Cd均没有对褐牙鲆胚胎(42 hpf)的心率产生影响,然而高浓度的Cu(≥0.10 mg/L)和Cd(≥1.2 mg/L)显著抑制了130 hpf仔鱼的心率。≥0.10 mg/L的Cu和≥1.2 mg/L的Cd浓度组中仔鱼的全长均比对照组显著减少,而≥0.08 mg/L的Cu和≥0.8 mg/L的Cd显著降低了仔鱼对卵黄囊的吸收速率。各指标对Cu的敏感性为:累积死亡率>累积孵化率>仔鱼畸形率>生长指标;对Cd的敏感性为:仔鱼畸形率>累积死亡率>累积孵化率>生长指标。
     3.慢性毒理效应研究:实验室内模拟重金属对褐牙鲆整个早期生活史的毒理效应。褐牙鲆从胚胎开始分别在Cu(0-32μg/L)和Cd(0-48μg/L)溶液中持续暴露80天,研究三个阶段的褐牙鲆(变态期仔鱼、着底期仔鱼、稚鱼)对重金属的毒理响应。在变态期, Cu造成鱼体内还原型谷胱甘肽(GSH)含量降低,超氧化物岐化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽-S-硫转移酶(GST)活性下降,导致机体脂质过氧化产物丙二醛(MDA)含量显著升高;而Cd造成SOD和CAT酶活性下降, GSH含量增加,以及MDA含量升高。在着底期,Cu没有对仔鱼的抗氧化系统和脂质过氧化水平造成显著影响;而Cd造成CAT和GST酶活性下降,并且使GSH含量显著增加。在稚鱼期,Cu的暴露导致体内MDA含量显著升高,并使GSH含量以及SOD和GST酶活性显著增加;而Cd也造成稚鱼体内MDA含量显著升高,并使GST活性降低以及SOD活性增加。试验结束时32μg/LCu处理组褐牙鲆的体重显著低于对照组;24μg/L和48μg/L Cd处理组褐牙鲆的全长和体重均显著低于对照组。褐牙鲆体内的重金属蓄积量与暴露浓度呈明显的浓度依赖关系。
     4.稚鱼短期亚慢性毒理效应研究:褐牙鲆稚鱼暴露于不同梯度的Cd溶液(0-8 mg/L)28天后,4 mg Cd/L和8 mg Cd/L浓度组中褐牙鲆的生长受到了显著抑制。Cd在褐牙鲆组织中的蓄积呈浓度依赖性和组织特异性,Cd在四种组织中的蓄积量顺序为:肝脏>肾脏>鳃>肌肉。Cd抑制了褐牙鲆鳃组织中SOD,谷胱甘肽过氧化物酶(GPx)和GST的活性,降低了GSH的含量,导致鳃中MDA含量显著增加; Cd的暴露造成肝脏组织中GPx和GST的活性以及GSH含量下降,SOD活性增强,导致MDA含量上升;而肾脏组织中的GST和GPx活性显著提高, SOD活性显著降低,但是MDA含量并没有显著变化。这说明脂质过氧化作用因组织而异,其中过氧化损伤最严重的组织是鳃,其次是肝脏,而肾脏受到的损伤最轻。
     综上所述,本论文通过研究Cu、Cd对褐牙鲆不同生活阶段的生态毒理效应,阐明了重金属对褐牙鲆早期生活阶段生长和发育的毒理影响和致毒机理;探讨了重金属在褐牙鲆体内的积累规律;筛选氧化应激参数(包括抗氧化剂如SOD, CAT, GSH, GST, GPx和脂质过氧化水平)和胚胎-仔鱼发育过程中的敏感指标(如孵化率、畸形率和死亡率)作为生物指示物,初步构建了海洋重金属污染的生物监测体系,在生态风险评价中指示海洋中重金属的污染程度,并为海洋环境污染提供早期预警。
Marine pollution is one of the major issues of global concern. Large quantities of heavy metals enter the aquatic environment via natural source and anthropogenic sources every year. Heavy metals at excessive amount in marine environments may adversely affect the growth, survival, and reproduction of marine fishes. Previous studies show that early life stages of fish are more sensitive to toxicity of heavy metals than adults, which may subsequently affect the recruitment and population wellness of the next cohorts. In addition, the accumulation of heavy metals in fish tissues could also seriously threaten the safety of fish products and thus consumer health. Therefore, the establishment of biological early warning systems for marine pollution is very important for the sustainable utilization of marine fishery resource and human health.
     Copper (Cu) and cadmium (Cd) are two common heavy metals in the Chinese coastal waters. This study investigated the toxic effects of Cu and Cd on flounder (Paralichthys olivaceus) in different early life stages (ELS: embryos, larvae, and juveniles). The main results are as follows:
     (1) Acute toxicity tests: The 24- and 48-h LC_(50) values of Cu for embryos were 0.21 and 0.11 mg/L, whereas the 48-, 72-, and 96-h LC_(50) values for larvae were 0.46, 0.21, and 0.12 mg/L, respectively. The 24- and 48-h LC_(50) values of Cd for embryos were 7.98 and 4.65 mg/L, whereas the 48-, 72-, and 96-h LC_(50) values for larvae were13.64, 7.41, and 4.17 mg/L, respectively. These results suggest that Cu is much more toxic than Cd to the embryonic and larval survival; and embryos were more sensitive to these heavy metals than larvae.
     (2) Embryonic-larval toxicity tests: embryos were exposed, respectively, to different concentrations of Cu (0-0.12 mg/L) and Cd (0-2.4 mg/L) solutions from 3 to 130 hours post hatching (hpf) when larvae had opened mouth and were ready to initiate feeding. The results demonstrated that Cu and Cd had distinctly toxic effects on their embryonic-larval development and survival. Cu at≥0.06 mg/L and≥0.8 mg/L Cd concentrations caused low hatching success, delay in the time to hatching of embryos, reduction in yolk absorption rate of the larvae and high mortality and morphological malformations in the embryos and larvae; Neither Cu nor Cd significantly affect the heart rate of the embryos, but it significantly decreased the heart rate of the 130 hpf larvae when Cu concentration was≥0.10 mg/L and Cd concentration was≥1.2 mg/L; Total length of the larvae at the end of the tests was significantly reduced at≥0.10 mg/L Cu and≥1.2 mg/L Cd concentrations in comparison with those in the controls. The sensitivity sequence of toxicological endpoints for Cu was accumulative mortality > accumulative hatchability > morphological abnormality > growth, while that for Cd was: morphological abnormality > accumulative mortality > accumulative hatchability > growth.
     (3) Chronic toxicity tests: fish were exposed to waterborne Cu (0-32μg/L) and Cd (0-48μg/L) from embryonic to juvenile stages for 80 days, respectively. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages (metamorphosing larvae, settling larvae, and juvenile). In metamorphosing larvae, Cu exposure caused decrease in GSH level and SOD, CAT, and GST activities, but increase in malondialchehyche (MDA) concentrations. Cd exposure caused decrease in SOD and CAT activities, but increase in the levels of GSH and MDA. Cu exposure did not have significant effects on setting larvae in any concentrations, but CAT and GST activities of settling larvae were inhibited and their GSH level was elevated at the high Cd concentrations. In juveniles, both Cu and Cd caused an increase in MDA concentrations. The level of GSH and the activities of SOD and GST were increased in high Cu treatments. However, SOD activity was increased but GST activity was decreased in high Cd treatments. At the end of the tests, flounder growth was reduced in both Cu and Cd treatments and the whole body metal accumulations were elevated with increasing concentrations.
     (4) Short-term subchronic toxicity tests with juveniles: following subchronic Cd (control, 2, 4, and 8 mg Cd/L) exposure for 28 days, fish growth was significantly reduced at≥4 mg/L Cd concentrations compared to the Cd-free controls. Accumulation of Cd in fish was dose-dependent and tissue-specific, with the greatest accumulation in the liver, followed by the kidney, gill, and muscle. Although the gill and liver mounted active antioxidant responses to cope with oxidative stress at≥4 mg/L Cd including a decrease in GSH level and GST and glutathione peroxidase (GPx) activities, the antioxidant response failed to prevent MDA production in these organs. In the kidney, increased GPx and GST activities and decreased SOD activity were observed in fish exposed to high Cd concentrations, but no significant differences were found in MDA levels for any of the exposure concentrations. The antioxidant defense system in the kidney may have effectively scavenged ROS and thereby succeed in preventing tissue-specific oxidative damages. The gill was most sensitive to oxidative damage, followed by the liver; the kidney was the least affected tissue.
     Overall, this present study investigated the toxic effects of heavy metals (Cu and Cd) on development, survival, growth, accumulation and antioxidative responses in different ELSs of flounder. Some sensitive endpoints such as biological parameters (i.e., hatchability, morphological abnormality, and mortality) and oxidative stress parameters (SOD, CAT, GSH, GST, GPx, and LPO) could be used as bioindicators of marine pollution in ecological risk assessment.
引文
Albergoni, V., Viola, A., 1995. Effect of in vitro cadmium exposure on natural kill (NK) cell of catfish, Ictalurus melas. Fish Shellfish Immun. 6, 167-172.
    Allen, P., 1995. Accumulation profiles of lead and cadmium in the edible tissues of Oreochromis aureus during acute exposure. J. Fish Biol. 47, 559–568.
    Al-Mohanna, M.M., 1994. Residues of some heavy metals in fishes collected from (Red Sea Coast) Jisan, Saudi Arbia. J. Environ. Biol. 15, 149-157.
    Asagba, S.O., Eriyamremu, G.E., Igberaese, M.E., 2008. Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol. Biochem. 34, 61-69.
    Atli, G., Alptekin, O., Tukel, S., Canli, M., 2006. Response of catalase activity to Ag2+, Cd2+, Cr2+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp. Biochem. Physiol. C 143, 218–224.
    Ay, O., Kalay, M., Tamer, L., Canli, M., 1999. Copper and lead accumulation in tissues a freshwater fish Tilapia zillii and its effects on the branchial Na+/K+-ATPase activity. Bull. Environ. Contam. Toxicol. 62, 160-168.
    Bagdonas, E., Vosyliene, M.Z., 2006. A study of toxicity and genotoxicity of copper, zinc and their mixture to rainbow trout (Oncorhynchus mykiss). Biologija (Vilnius) 1, 8–13.
    Baldisserotto, B., Kamunde, C., Matsuo, A., Wood, C.M., 2004. A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout. Aquat. Toxicol. 67, 57–73.
    Basha, S.P., Rani, U.A., 2003. Cadmium-induced antioxidant defence mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol. Environ. Saf. 56, 218-221.
    Behra, R., 1993. In vitro effects of cadmium, zinc and lead on calmodulin-dependent actions in Oncorhynchus mykiss, Mytilus sp., and Chlamydomonas reinhardtii. Arch. Environ. Contam. Toxicol. 24, 21–27.
    Bentley, P.J., 1991. Accumulation of cadmium by channel catfish (Ictalurus punctatus): influx from environmental solutions. Comp. Biochem. Physiol. C 99, 527-529.
    Bervoets, L., Blust, R., Verheyen, R., 2001. Accumulation of metals in the tissues ofthree spined stickleback (Gasterosteus aculeatus) from natural fresh waters. Ecotoxicol. Environ. Saf. 48, 117-127.
    Brown, M.W., Thomas, D.G., Shurben, D., Solbe, J.F.L., Kay, J., Cryer, A., 1986. A comparison of freshwater fish: Salmo gairdneri, Rutilus rutilus and Noemacheilus barbatulus. Comp. Biochem. Physiol. C 84, 213-217.
    Bucheli, T.D., Fent, K., 1995. Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems. Crit. Rev. Environ. Sci. Technol. 25, 201-68.
    Caldwell, C., Phillips, K.A., 1998. Hematological effects in rainbow trout subjected to a chronic sublethal concentration of lead. In: Kennedy C, MacKinlay D (eds) Fish response to toxic environments: symposium proceedings international congress on the biology of fish, Towson University, Baltimore, 26–30 July 1998. American Fisheries Society, Bethesda, MD, USA, pp 61–62, ISBN 1-894337-05-0.
    Campbell, P.G.C., Stokes, P.M., 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. Aquat. Sci. 42, 2034-2049.
    Cao, L., Huang, W., Shan, X.J., Xiao, Z.Z., Wang, Q.Y., Dou, S.Z., 2009.
    Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major. Ecotoxicol. Environ. Saf. 72: 1966-1974.
    Cavas, T., Gavanko, N.N., Arkhipchuk, V.V., 2005. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate. Food Chem. Toxicol. 43, 569–574.
    Chandra, P., Khuda-Bukhsh, A.R., 2004. Genotoxic effects of cadmium chloride and azadirachtin treated singly and in combination in fish. Ecotoxicol. Environ. Saf. 58, 194-201.
    Cheng, S.H., Wai, A.W.K., So, C.H., Wu, R.S.S., 2000. Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ. Toxicol. Chem. 19, 3024–3031.
    Cleveland, L., Little, E.E., Hamilton, S.J. 1986. Interactive toxicity of aluminium and acidity to early life stages of brook trout. Trans. Am. Fish. Soc. 115, 610–620.
    Couture, P., Kumar, P.R., 2003. Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca ?avescens). Aquat. Toxicol. 64, 107–120.
    Dallinger, R., Egg, M., Kock, G., Hofer, R., 1997. The role of metallothionein in cadmium accumulation of Arctic char (Salvelinus alpinus) from high Alpine lakes.Aquat. Toxicol. 38, 47-66.
    Dave, G., Xiu, R., 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 21, 126–134.
    De Smet, H., Blust, R., 2001. Stress responses and changes in protein metabolism in carp Cyprinus carpio during cadmium exposure. Ecotoxicol. Environ. Saf. 38, 137-143.
    De Wet, L.M., Schoonbee, H.J., De Wet, L.P.D., Wiid, A.J.B., 1994. Bioaccumulation of metals by the southern mouthbrooder, Pseudocrenilabrus philander (Weber, 1897) from a mine polluted impoundment. Water SA 20, 119-126.
    Di Giulio, R.T., Benson, W.H., Sanders, B.M., van Veld, P.A., 1995. Biochemical mechanisms: metabolism, adaptation, and toxicity. In: Rand, G.M. (Ed.), Fundamentals of Aquatic Toxicology: Effects, Environmental fate, and Risk Assessment, second ed. Taylor and Francis, London, UK, pp. 523-562.
    Di Toro, D.M., Allen, H.E., Bergman, H.L., Meyer, J.S., Paquin, P.R., Santore, R.C., 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 20, 2383-2396.
    Dobicki, W., 1991. Heavy metals in the surface water ecosystems of Wroclaw city water-bearing area. [in polish], Ph. D. Thesis AR, Wroclaw, 110 pp.
    Dural, M., G?ksu, M.Z.L., ?zak, A.A., Derici, B., 2006. Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the Camlik lagoon of the eastern cost of Mediterranean (Turkey). Environ. Monit. Assess. 118, 65-74.
    Ellenberger, S.A., Baumann, P.C., May, T.W., 1994. Evaluation of effects caused by high copper concentrations in Torch Lake, Michigan, on reproduction of yellow perch. J. Great Lakes Res. 20, 531–536.
    Farag, A.M., Boese, C.J., Woodward, D.F., Bergman, H.L., 1994. Physiological changes and tissue metal accumulation in rainbow trout exposed to foodborne and waterborne metal. Environ. Toxicol. Chem. 13, 2021-2029.
    Filho, D.W., 1996. Fish antioxidant defences—a comparative approach. Braz. J. Med. Biol. Res. 29, 1735–1742.
    Fraysse, B., Mons, R., Garric, J., 2006. Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol. Environ. Saf. 63, 253–267.
    Gargiulo, G., de Girolamo, P., Ferrara, L., Soppelsa, O., Andreozzi, G., Antonucci, R., Battaglini, P., 1996. Action of cadmium on the gills of Carassius auratus L. In the presence of catabolic NH3. Arch. Environ. Contam. Toxicol. 30, 235–240.
    Ghosh, M.C., Ghosh, R., Ray, A.K., 2001. Impact of Copper on Biomonitoring Enzyme Ethoxyresorufin-o-deethylase in Cultured Catfish Hepatocytes. Environ. Res. 86, 167-176.
    Giari, L., Manera, M., Simoni, E., Dezfuli, B.S., 2007. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere 67, 1171-1181.
    Giles, M.A., Klaverkamp, J.F., 1982. The acute toxicity of vanadium and copper to eyed eggs of rainbow trout (Salmo gairdneri). Water Res. 16, 885–889.
    Goeptar, A.R., Scheerens, H., Vermeulen, N.P.E., 1995. Oxygen reductase and substrate reductase activity of cytochrome P450. Crit. Rev. Toxicol. 25, 25-65.
    Goksoyr, A., Forlin, L., 1992. The cytochrome P-450 system in fish, aquatic toxicology and environmental monitoring. Aquat. Toxicol. 22, 287-312.
    Gonzalez, J.F., Del Valle, P.L., Thohan, S., Kane, A.S., 2000. Effects of waterborne nitrite on phase I-II biotransformation in channel catfish (Ictalurus punctatus). Mar. Environ. Res. 50, 29-32.
    Gravato, C., Teles, M., Oliveira, M., Santos, M.A., 2006. Oxidative stress, liver biotransformation and genotoxic effects induced by copper in Anguilla anguilla L. – the influence of pre-exposure toβ-naphtho?avone. Chemosphere 65, 1821-1830.
    Grosell, M., McDonald, M., Wood, C.M., Walsh, P.J., 2004. Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products. Aquat. Toxicol. 68, 249–262.
    Hallare, A.V., Schirling, M., Luckenbacha, T., K?hler, H.R., Triebskorn, R., 2005. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J. Therm. Biol. 30, 7-17.
    Hanza-Chaffai, A., Romeo, M., El Abed, A., 1996. Heavy metals in different fishes from the middle eastern coast of Tunisia. Bull. Environ. Contam. Toxicol. 56, 766-773.
    Hartl, M.G.J., Kilemade, M., Sheehan, D., Mothersill, C., O’Halloran, J., O’Brien, N.M., 2007. Hepatic biomarkers of sediment-associated pollution in juvenile turbot, Scophthalmus maximus L. Mar. Environ. Res. 64, 191-208.
    Haux, C., Bjornsson, B.T., Forlin, L., Larsson, A., Deftos, L.J., 1988. Influence of cadmium exposure on plasma calcium, vitellogenin and calcitonin in vitelogenic rainbow trout. Mar. Environ. Res. 24, 199-210.
    Hawkins, W.E., Tate, L.G., Sarphie, T.G., 1980. Acute effects of cadmium on the spot Leiostomus xanthurus (Teleostei): tissue distribution of renal ultrastructure. J. Toxicol. Environ. Health 6, 283–295.
    Herrmann, K., 1993. Effects of the anticonvulsant drug valproic acid and related substances on the early development of the zebrafish (Brachydanio rerio). Toxicol. In Vitro. 7, 41–54.
    Hilmy, A.M., Shabana, M.B., Daabees, A.Y., 1985. Bioaccumulation of cadmium: toxicity in Mugil cephalus. Comp. Biochem. Physiol. C 81, 139–143.
    Hodson, P.V., Blunt, B.R., Spry, D.J., 1978. Chronic toxicity of water-borne and dietary lead to rainbow trout (Salmo gairdneri) in Lake Ontario water. Water Res. 12, 869–878.
    Hollis, L., Muench, L., Playle, R.C., 1997. Influence of dissolved organic matter on copper binding, and calcium on cadmium binding, by gills of rainbow trout, J. Fish Biol. 50, 703–720.
    Hontela, A., Daniel, C., Ricard, A.C., 1996. Effects of acute and subacute exposures to cadmium on the interrenal and thyroid in rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 35, 171–182.
    Jezierska, B., Witeska, M., 2001. Metal toxicity to fish. University of Podlasie, Siedlce, Poland. p 72-73.
    Jezierska, B., ?ugowska, K., Witeska, M., 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35, 625-640.
    Jones, I., Kille, P., Sweeney, G., 2005. Cadmium delays growth hormone expression during rainbow trout development. J. Fish Biol. 59, 1015–1022.
    Jezierska, B., S?ominska, I., 1997. The effect of copper on common carp (Cyprinus carpio L.) during embryonic and postembryonic development. Pol. Arch. Hydrobiol. 44, 261–272
    Kapur, K., Yadav, N.A., 1982. The effects of certain heavy metal salts on the development of eggs in common carp, Cyprinus carpio var. communis. Acta. Hydrochim. Hydrobiol. 10, 517–522.
    Kargin, F., 1996. Seasonal changes on levels of heavy metals in tissues of Mullusbarbatus and Sparus aurata collected from Iskenderun gulf (Turkey). Water, Air Soil Pollut. 90, 557-562.
    Kazlauskiene, N., Stasiunaite, P., 1999. The lethal and sublethal effect of heavy metal mixture on rainbow trout (Oncorhynchus mykiss) in its early stages of development. Acta. Zool. Lituanica. Hydrobiol. 1, 47–54
    Khan, A.T., Weis, J.S., 1987. Effects of methylmercury on sperm and egg viability of two populations of killifish (Fundulus hetroclitus). Arch. Environ. Contam. Toxicol. 16, 499–505.
    Kim, K.K., Kim, R., Kim, S.H., 1998. Crystal structure of a small heat-shock protein. Nature, 394, 595-599.
    Kock, G., Triendl, M., Hofer, R., 1996. Seasonal patterns of metal accumulation in Arctic char (Salvelinus alpinus) from an oligotrophic Alpine lakes related to temperature. Can. J. Fish. Aquat. Sci. 53, 780-786.
    Kuroshima. R., Kimura, S., Date, K., Yamamoto, Y., 1993. Kinetic analysis of cadmium toxicity to red sea bream, Pagrus major. Ecotoxicol. Environ. Saf. 25, 300-314.
    Lauren, D.J., McDonald, D.G., 1985. Effects of copper on branchial ionoregulation in the rainbowtrout, Salmo gairdneri Richardson. J. Comp. Physiol. 155, 635–644.
    Lauren, D.J., McDonald, D.G., 1986. Influence of water hardness, pH, and alkalinity on the mechanisms of copper toxicity in juvenile rainbow trout, Salmo gairdneri. Can. J. Fish. Aquat. Sci. 43, 1488–1496.
    Lauren, D.J., McDonald, D.G., 1987. Acclimation to copper by rainbow trout, Salmo gairdneri: physiology. Can. J. Fish. Aquat. Sci. 44, 99–104.
    Le Guevel, R., Petit, F.G., Le Goff, P., Metivier, R., Valotaire, Y., Pakdel, F., 2000. Inhibition of rainbow trout (Oncorhynchus mykiss) estrogen receptor activity by cadmium. Biol. Reprod. 63, 259–266.
    Linde, A.R., Arribas, P., Sanchez-Gzlan, S., Garcia-Vazquez, E., 1996. Eel (Anguilla anguilla) and brown trout (Salmo trutta) target species to assess the biological impact of trace metal pollution in freshwater ecosystems. Arch. Environ. Contam. Toxicol. 31, 297-302.
    Lugowska, K., 2005. Effect of copper and cadmium on carp (Cyprinus carpio L.) embryogenesis and larval quality. PhD thesis. University of Podlasie, Prusa, Siedlce, Poland.
    Lugowska, K., Witeska, M., 2004. The effect of copper exposure during embryonicdevelopment on deformations of newly hatched common carp larvae, and further consequences. Electron. J. Pol. Agric. Univ. Ser. Fish 7, (2).
    Marijic, V.F., Raspor, B., 2007. Metallothionein in intestine of red mullet, Mullus barbatus as a biomarker of copper exposure in the coastal marine areas. Mar. Pollut. Bull. 54, 935-940.
    Marr, J.C.A., Lipton, J., Cacela, D., Hansen, J.A., Bergman, H.L., Meyer, J.S., Hogstrand, C., 1996. Relationship between copper exposure duration, tissue copper concentration in walleye (Stizostedion vitreum) and pike (Esox lucius) in Lake Simcoe. Can. J. Zool. 63, 2006-2012.
    Matsuo, A.Y.O., Wood, C.M., Val, A.L., 2005. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water. Aquat. Toxicol. 74, 351-364.
    McMurtry, M.J., Wales, D.L., Scheider, W.A., Beggs, G.L., Diomond, P.E., 1989. Relationship of mercury concentrations in lake trout (Salvelinus namaycush) and smallmouth bass (Micropterus dolomieui) to the physical and chemical characteristics of Ontario lakes. Can. J. Fish. Aquat. Sci. 46, 426-434.
    Miller, P.A., Munkittrick, K.R., Dixon, D.G., 1992. Relationship between concentrations of copper and zinc in water, sediment, benthic invertebrates, and tissues of white sucker (Catostomus commersoni) at metal-contaminated sites. Can. J. Fish. Aquat. Sci. 49, 978-984.
    Moiseenko, T.I., Kudryavtseva, L.P., Rodyushkin, I.V., Darvalter, V.A., Lukin, A.A., Kashulin, N.A., 1995. Airborne concentration by heavy metals and aluminum in the freshwater ecosystems of Kola subarctic region (Russia). Sci. Total. Environ. 160/161, 715-727.
    Munn, M.D., Short, T.M., 1997. Spatial heterogeneity of mercury bioaccumulation by walleye in Franklin D. Roosvelt Lake and the upper Columbia River, Washington. Trans. Am. Fish. Soc. 126, 477-487.
    Munkittrick, K.R., Dixon, D.G., 1989. Effects of natural exposure to copper and zinc on egg size and larval copper tolerance in white sucker (Catostomus commersoni). Ecotoxicol. Environ. Saf. 18, 15–26.
    Nakagawa, H., Sato, T., Kubo, H., 1995. Evaluation of chronic toxicity of water lead for carp Cyprinus carpio using its blood 5-aminolevulinic acid dehydratase. Fish Sci. 61, 956–959.
    Niyogi, S., Wood, C.M., 2004. Biotic ligand model, a flexible tool for developingsite-specific water quality guidelines for metals. Environ. Sci. Technol. 38, 6177-6192.
    Norey, Ch,G., Cryer, A., Kay, J., 1990. A comparison of cadmium-induced metallothionein gene expression and Me2+ distribution in the tissues if cadmium-sensitive (rainbow trout; Salmo gairdneri) and tolerant (stone loach; Noemacheilus barbatulus) species of freshwater fish. Comp. Biochem. Physiol. C 97, 221-225.
    Ozoh, P.T.E., 1979. Malformations and inhibitory tendencies induced to Brachydanio rerio (Hamilton-Buchanan) eggs and larvae due to exposures in low concentrations of lead copper ions. Bull. Environ. Toxicol. 21, 66.
    Hamza-Chaffai, A., Romeo, M., El Albed, A., 1996. Heavy metals in different fishes from the middle eastern coast of Tunisia. Bull. Environ. Contam. Toxicol. 56, 766-773.
    Pandey, S., Parvez, S., Ansari, R.A., Ali, M., Kaur, M., Hayat, F., Ahmad, F., Raisuddin, S., 2008. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem-Biol. Interact. 174, 183-192.
    Pascoe, D., Mattey, D.L., 1977. Studies on the toxicity of cadmium to the three-spined stichleback Gasterosteus aculeatus L. J. Fish Biol. 11, 207-215.
    Payne, J.F., Fancey, L.L., Rahimtula, A.D., Porter, E.L., 1987. Review and perspective on the use of mixed-function oxygenase enzymes in biological moitoring. Comp. Biochem. Physiol. C 86, 233-245.
    Peakall, D.W., Walker, C.H., 1994. The role of biomarkers in environmental assessment (3). Ecotoxicology 3, 173-179.
    Pelgrom, S.M.G.J., Lamers, L.P.M., Lock, R.A.C., 1995. Interactions between copper and cadmium modify metal organ distribution in mature tilapia, Oreochromis mossambicus. Environ. Pollut. 90, 415–423.
    Perkins, E.J., Gryffin, B., Hobbs, M., Gollon, J., Wolford, L., Schlenk, D., 1997. Sexual differences in mortality and sublethal stress in channel catfish following a 10 week exposure to copper sulfate. Aquat. Toxicol. 37, 327-339.
    Perry, D.M., Weis, J., Weis, P., 1988. Cytogenetic effects of methylmercury in embryos of killifish, Fundulus heteroclitus. Arch. Environ. Contam. Toxicol. 17, 569–574.
    Playle, R.C., Gensemer, R.W., Dixon, D.G., 1992. Copper accumulation on gills offathead minnows: influence of water hardness, complexation and pH of gill microenvironment. Environ. Toxicol. Chem. 11, 381-391.
    Playle, R.C., Dixon, D., Burnison, K., 1993a. Copper and cadmium binding to fish gills: modification by dissolved organic carbon and synthetic ligands. Can. J. Fish. Aquat. Sci. 50, 2667–2677.
    Playle, R.C., Dixon, D., Burnison, K., 1993b. Copper and cadmium binding to fish gills: estimates of metal-gill stability constants and modeling of metal accumulation. Can. J. Fish. Aquat. Sci. 50, 2678–2687.
    Ramamoorthy, S., Blumhagen, K., 1984. Uptake of Zn Cd and Hg by fish in presence of competing compartments. Can. J. Fish. Aquat. Sci. 41, 750-756.
    Ranaldi, M.M., Gagnon, M.M., 2009. Accumulation of cadmium in the otoliths and tissues of juvenile pink snapper (Pagrus auratus Forster) following dietary and waterborne exposure. Comp. Biochem. Physiol. C 150, 421-427.
    Reddy, R.S., Jinna, R.R., Uzodinma, J.E., Desaiah, D., 1988. In vitro effect of mercury and cadmium on brain Ca2+-ATPase of the catfish Ictalurus punctatus. Bull. Environ. Contam. Toxicol. 41, 324–328.
    Regoli, F., Winston, G.W., 1999. Quantification of total oxidant scavenging capacity (TOSC) of antioxidants for peroxynitrite, peroxyl radicals and hydroxyl radicals. Toxicol. Appl. Pharmacol. 156, 96-105.
    Regoli, F., Nigro, M., Bompadre, S., Winston, G.W., 2000. Total oxidant scavenging capacity (TOSC) of microsomal and cytosolic fractions from Antarctic, Arctic and Mediterranean scallops: differentiation between three potent oxidants. Aquat. Toxicol. 49, 13-25.
    Reid, S.D.D.G., 1991. Metal binding activity of the gills of rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 48, 1061-1068.
    Reméo, D., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard, J.P., 2000. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat. Toxicol. 48, 185-194.
    Ricard, A.C., Daniel, C., Anderson, P., Hontela, A., 1998. Effects of subchronic exposure to cadmium chloride on endocrine and metabolic functions in rainbow trout Oncorhynchus mykiss. Arch. Environ. Contam. Toxicol. 34, 377-381.
    Roesijadi, G., Robinson, W.E., 1994. Metal regulation in aquatic animals: mechanisms of uptake, accumulation and release. In: Malins, D.C., Ostrander, G.K. (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular Perspectives. LewisPublishers, CRC press, pp. 387-420.
    Rombough, P.J., Garside, E.T., 1980. Cadmium toxicity and accumulation in eggs and alevins of Atlantic salmon Salmo salar. Can. J. Zool. 60, 2006–2014.
    Rose, W., Nisbet, R.M., Green, P., Norris, S., Fan, T., Smith, E.H., Cherr, G.N., Anderson, S.L., 2006. Using an integrated approach to link biomarker responses and physiological stress to growth impairment of cadmium-exposed larval topsmelt. Aquat. Toxicol. 80, 298-308.
    Sanchez, W., Palluel, O., Meunier, L., Coquery, M., Porcher, J.M., Ait-Aissa, S., 2005. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ. Toxicol. Phar. 19, 177-183.
    Sarnowska, K., Sarnowski, P., S?ominska, I., 1997. The effects of lead and copper on embryonic development of grass carp (Ctenopharyngodon idella). XVII Zjazd Hydrobiologow Polskich, Poznan, p 173 (In Polish)
    Sarnowski, P., 1998. The effect of copper on grass carp larvae. 2nd international conference Trace Elements: Effects of organisms and environment, Katowice, pp 181–185
    Sarnowski, P., Jezierska, B., 1999. The effect of lead exposure on grass carp spermatozoa and developing embryos. In: Lovejoy D.A. (Ed.) Heavy metals in the environment: an integrated approach, Vilnius, Lithuania, pp 304–308
    Sauer, G.R., Watabe, N., 1988. The effects of heavy metals and metabolic inhibitors on calcium uptake by gills and scales of Fundulus heteroclitus in vitro. Comp. Biochem. Physiol. C 91, 473–478.
    Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., Raisuddin, S., 2003. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol. Environ. Saf. 56, 295-301.
    Shariff, M., Jayawardena, P.A.H.L., Yusoff, F.M., Subasinghe, R., 2001. Immunological parameters of Javanese carp Puntius gonionotus (Bleeker) exposed to copper and challenged with Aeromonas hydrophila. Fish Shellfish Immun. 11, 281-291.
    Shazili, N.A.M., Pascoe, D., 1986. Variable sensitivity of rainbow trout (Salmo gairdneri) eggs and alevins to heavy metals. Bull. Environ. Contam. Toxicol. 36, 468–474.
    Shi, H.H., Sui, Y.X., Wang, X.R., Luo, Y., Ji, L.L., 2005. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassiusauratus. Comp. Biochem. Physiol. C 140, 115-121.
    Shugart, L.R., 1996.Molecoular markers to toxic agents. In: Newman, M.C., Jagoe, C.H. (Eds.), Ecotoxicology: a Hierarchial Treatment. CRC Press, Boca Raton, USA, pp. 133-161.
    Sloman, K.A ., 2003. Copper, cortisol and the common carp. J. Exp. Biol. 206, 3309. S?ominska, I., 1998. Sensitivity of early developmental stages of common carp (Cyprinus carpio L.) to lead and copper toxicity. Ph.D Thesis, Institute of inland fisheries, Olsztyn, p 104 (In Polish).
    Skurdal, J., Skogheim, O.K., Qvenild, T., 1986. Indicative values of mercury concentration in adipose fin of brown trout, Salmo trutta L. J. Fish Biol. 29, 515-517.
    Solé, M., Potrykus, J., Fernandez-Diaz, C., Blasco, J., 2004. Variations on stress defences and metallothionein levels in the Senegal sole, Solea senegalensis, during early larval stages. Fish Physiol. Biochem. 30, 57-66.
    Somasundaram, B., King, P.E., Shackley, S., 1984. The effects of zinc on postfertilization development in eggs of Clupea harengus L. Aquat. Toxicol. 5, 167–178.
    Stagg, R.M., Shuttleworth, T.J., 1982. The effects of copper on iono regulation by the gills of the seawater-adapted flounder (Platichthys flesus L). J. Comp. Physiol. B 149, 83-90.
    Stasiunaite, P., 1999. Long-term heavy metal mixture toxicity to embryos and alevins of rainbow trout (Oncorhynchus mykiss). Acta. Zool. Lituanica. Hydrobiol. 2, 40–45
    Stegeman, J.J., Brouwer, M., Richard, T.D.G., Forlin, L., Fowler, B.A., Sanders, B.M., van Veld, P.A., 1992. Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Huggett, R.J., Kimerly, R.A., Mehrle, P.M., Jr, Bergman, H.L. (Eds.), Biomarkers: Biochemical, Physiological and Histological markers of Anthropogenic Stress. Lewis Publishers, Chelsea, MI, USA, pp. 235-335.
    Stouthart, A.J.H.X., Haans, J.L.M., Lock, A.C., 1996. Effects of water pH on copper toxicity to early life stages of the common carp (Cyprinus carpio). Environ. Toxicol. Chem. 15, 376–383.
    Szarek-Gwiazda, E., 1999. Heavy metal contents in stone loach Noemacheilus barbatulus (L.) (Cobitidae) living in the river above and below dam reservoir(Dobczyce reservoir, southern Poland). Pol. J. Ecol. 47, 145–152.
    Szulkowska-Wojaczek, E., Marek, J., Dobicki, W., Polechoriski, R., 1992. Heavy metals in the pond environment. [in Polish], Zesz. Nauk. AR. Wroclaw. Zoot. 37, 7-25.
    van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57-149.
    Verbost, P.M., Flik, G., Lock, R.A.C.,Wendelaar Bonga, S.E., 1987. Cadmium inhibition of Ca2+ uptake in rainbow trout gills. Am. J. Physiol. 253, R216–R221.
    Verbost, PM., Van Rooij, J., Flik, G., Lock, R.A.C., Wendelaar Bonga, S.E.W., 1989. The movement of cadmium through fresh water trout branchial epithelium and its interference with calcium transport. J. Exp. Biol. 145, 185–197.
    Von Westernhagen, H., Rosenthal, J., Sperling, K.R., 1974. Combined effects of cadmium and salinity on development and survial of herring eggs. Helgolander wiss. Meeresunters 26, 416-433.
    Weeks, B.A., Anderson, D.P., DuFour, A.P., Fairbrother, A., Goven, A.J., Lahvis, G.P., Peters, G., 1992. Immunologiocal biomarkers to assess environmental stress. In: Huggett, R.J., Kimerly, R.A., Mehrle, P.M., Jr, Bergman, H.L. (Eds.), Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress. Lewis Publishers, Chelsea, MI, USA, pp. 211-234.
    Wester, P.W., Vethaak, D., van Muiswinkel, W.B., 1994. Fish as biomarkers in immunotoxicology. Toxicology 86, 213-232.
    Williams, N.D., Holdway, D.A., 2000. The Effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environ. Toxicol. 15, 165-173.
    Winner, R.W., 1984. The toxicity and bioaccumulation of cadmium and copper as affected by humic acid. Aquat. Toxicol. 5, 267-274.
    Winston, G.W., Di Giulio, R.T., 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19, 137-161.
    Winzer, K., Winston, G.W., Becker,W., van Noorden, C.J.F., Kohler, A., 2001. Sex-related response to oxidative stress in primary cultured hepatocytes of the European flounder (Platychthys flesus L.). Aquat. Toxicol., 52, 143-155.
    Witeska, M., Jezierska, B., Chaber, J., 1995. The influence of cadmium on commoncarp embryos and larvae. Aquaculture 129, 129-132.
    Wofford, H.W., Thomas, P., 1988. Effects of xenobiotics on peroxidation of hepatic microsomal lipids from striped mullet and Atlantic croaker. Mar. Environ. Res. 24, 285–289.
    Wong, C.K.C., Wong, M.H., 2000. Morphological and biochemical changes in the gills of tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aquat. Toxicol. 8, 517–527.
    Wood, C.M., 2001. Toxic responses of the gill. In: Benson, W.H., Schlenk,D.W. (Eds.),Target Organ Toxicity in Marine and Freshwater Teleosts. Taylor & Francis, Washington, DC, pp. 1–87.
    Woodworth, J., Pascoe, D., 1982. Cadmium toxicity to rainbow trout, Salmo gairdneri Richardson: a study of eggs and alevins. J. Fish. Biol. 21, 47–57.
    Yamazaki, M., Koyama, J., Ikeda, Y., Ozaki, H., 1986. Cadmium absorption by the intestine of acrp. Bull. Jap. Soc. Ssi. Fish. 52, 209-213.
    Yamazaki, M., Tanizaki, Y., Shimokawa, T., 1996. Silver and other trace elements in a freshwater fish, Carasius auratus langsdorfii, from the Ssakawa River in Tokyo, Japan. Environ. Poll. 94, 83-90.
    Yang, H.N., Chen, H.C., 1996. Uptake and Elimination of cadmium by Japanese eel, Anguilla japonica, at various temperatures. Bull. Environ. Contam. Toxicol. 56, 670-676.
    Yudkovski, Y., Rogowska-Wrzesinska, A., Yankelevich, I., Shefer, E., Herut,B., Tom, M., 2008. Quantitative immunochemical evaluation of fish metallothionein upon exposure to cadmium. Mar. Environ. Res. 65, 427-436.
    Zhou, T., Weis, P., Weis, J.S., 1998. Mercury burden in two populations of Fundulus heteroclitus after sublethal methylmercury exposure. Aquat. Toxicol. 42, 37-47.
    周启星,孔繁翔,朱琳. 2004.生态毒理学.第一版.北京:科学出版社. 162.
    周新文,朱国念,Jilisa Mwalilino,孙锦荷. 2001. Cu、Zn、Pb、Cd及其混合重金
    属对鲫鱼(Carassius auratus)DNA甲基化水平的影响.中国环境科学. 21,549-552.
    Adhikari, S., 2003. Effect of calcium and magnesium hardness on acute copper toxicity to Indian major carp, Labeo rohita (Hamilton) and catfish, Channa punctatus (Bloch). Aquac. Res. 34, 975-980.
    Arnold, W.R., 2005. Effects of dissolved organic carbon on copper toxicity: implications for saltwater copper criteria. Integr. Environ. Assess. Manag. 1, 34–39.
    Anderson, B.S., Hunt, J.W., Piekarski, W.J., Phillips, B.W., Englund, M.A., Tjeerdema, R.S., Goetzl, J.D., 1995. Influence of salinity on copper and azide toxicity to larval topsmelt Atherinops affinis (Ayres). Arch. Environ. Contam. Toxicol. 29, 366-372.
    Birceanu, O., Chowdhury, M.J., Gillis, P.L., McGeer, J.C., Wood, C.M., Wilkie, M.P., 2008. Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd in soft water. Aquat. Toxicol. 89, 222-231.
    Blechinger, S.R., Warren Jr, J.T., Kuwada, J.Y., Krone, P.H., 2002. Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ. Health Perspect. 110, 1041-1046.
    Carreau, N.D., Pyle, G.G.., 2005. Effect of copper exposure during embryonic development on chemosensory function of juvenile fathead minnows (Pimephales promelas). Ecotoxicol. Environ. Saf. 61, 1–6.
    Cao, L., Huang, W., Shan, X.J., Xiao, Z.Z., Wang, Q.Y., Dou, S.Z., 2009. Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major. Ecotoxicol. Environ. Saf. 72, 1966-1974.
    Carvalho CS, Fernandes MN. 2006. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251, 109– 117.
    Chan, K.M., Ku, L.L, Chan, P.C.Y., Cheuk, W.K., 2006. Metallothionein gene expression in zebrafish embryo-larvae and ZFL cell-line exposed to heavy metal ions. Mar. Environ. Res. 62, 83-87.
    Chang, M.H., Lin, H.C., Hwang, P.P., 1997. Effects of cadmium on the kinetics of calcium uptake in developing tilapia larvae, Oreochromis mossambicus. Fish Physiol. Biochem. 16, 459–470.
    Cheng, S.H., Wai, A.W.K., So, C.H., Wu, R.S.S., 2000. Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ. Toxicol. Chem. 19, 3024–3031.
    Cherkashin, S.A., Pryazhevskaya, T.S., Kovekovdova, L.T., Simokon, M.V., 2008. Effect of copper on the survival of prelarvae of the Japanese anchovy Engraulis japonicus. Russ. J. Mar. Biol. 34, 336-339.
    Cusimano, R.F., Brakke, D.F., Champman, G.A., 1986. Effects of pH on the toxicities of cadmium, copper and zinc to steelhead trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 43, 1497-1503.
    Das BK, Das N. 2005. Impacts of quicklime (CaO) on the toxicity of copper (CuSO4?5H2O) to fish and fish food organisms. Chemosphere 61, 186-191.
    Dutta, T.K., Kaviraj, A., 2001. Acute toxicity of cadmium to fish Labeo rohita and copepod Diaptomus forbesi pre-exposed to CaO and KMnO4. Chemosphere 42, 955-958.
    Fent, K., Meier, W., 1994. Effects of triphenyltin on fish early life stages. Arch. Environ. Contam. Toxicol. 27, 224-231.
    Gaikowski, M.P., Hamilton, S.J., Buhl, K.J., McDonald, S.F., Summers,C.H., 1996. Acute toxicity of firefighting chemical formulations to four life stages of fathead minnow. Ecotox. Environ. Saf. 34, 252-263.
    Grosell, M., Blanchard, J., Brix, K.V., Gerdes, R., 2007. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat. Toxicol.84, 162–172.
    Gioda CR, Lissner LA, Pretto A, da Rocha JBT, Schetinger MRC, Neto JR, Morsch VM, Loro VL. 2007. Exposure to sublethal concentrations of Zn(II) and Cu(II) changes biochemical parameters in Leporinus obtusidens. Chemosphere 69, 170-175.
    Hall, L.W. Jr., Anderson, R.D., Lewis, B.L., Arnold, W.R., 2008. The influence of salinity and dissolved organic carbon on the toxicity of copper to the estuarine copepod, Eurytemora affinis. Arch. Environ. Contam. Toxicol. 54, 44-56.
    Hallare, A.V., Schirling, M., Luckenbacha, T., K?hler, H.R., Triebskorn, R., 2005. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J. Therm. Biol. 30, 7-17.
    Hamm, J.T., Hinton, D.E., 2000. The role of development and duration of exposure to the embryotoxicity of diazinon. Aquat. Toxicol. 48, 403-418.
    Harper, D.D., Farag, A.M., Brumbaugh, W.G., 2008. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout. Arch. Environ. Contam. Toxicol. 54, 697-704.
    Hawkins, W.E., Tate, L.G., Sarphie, T.G., 1980. Acute effects of cadmium on the spot Leiostomus xanthurus (Teleostei): tissue distribution of renal ultrastructure. J. Toxicol. Environ. Health 6, 283–295.
    Herrmann, K., 1993. Effects of the anticonvulsant drug valproic acid and related substances on the early development of the zebrafish (Brachydanio rerio). Toxicol. In Vitro. 7, 41–54.
    Hwang, P.P., Tung, Y.C., Chang, M.H., 1996. Effect of environmental calcium levels on calcium uptake in tilapia larvae (Oreochromis mossambicus). Fish Physiol. Biochem. 15, 363-370.
    Jezierska, B., ?ugowska, K., Witeska, M., 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35, 625-640.
    Johnson, A., Carew, E., Sloman, K.A., 2007. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat. Toxicol. 84, 431-438.
    Kazlauskiene, N., Stasiunaite, P., 1999. The lethal and sublethal effect of heavy metal mixture on rainbow trout (Oncorhynchus mykiss) in its early stages of development. Acta. Zool. Lituanica. Hydrobiol. 1, 47-54.
    Krishnani, K.K., Azad, I.S., Kailasam, M., Thirunavukkarasu, A.R., Gupta, B.P., Joseph, K.O., Muralidhar, M., Abraham, M., 2003. Acute toxicity of some heavy metals to Lates calcarifer fry with a note on its histopathological manifestations. J. Environ. Sci. Heal. A 38, 645-655.
    Lacroix, A., Hontela, A., 2004. A comparative assessment of the adrenotoxic effects of cadmium in two teleost species, rainbow trout, Oncorhynchus mykiss, and yellow perch, Perca ?avescens. Aquat. Toxicol. 67, 13-21.
    Lin, H.C., Dunson, W.A., 1993. The effect of salinity on the acute of cadmium to the tropical, estuarine, hermaphroditic fish, Rivulus marmoratus: a comparison of Cd, Cu, and Zn tolerance with Fundulus heteroclitus. Arch. Environ. Contam. Toxicol. 25, 41-47.
    Marty, G.D., Nunez, J.M., Lauren, D.G., Hinton, D.E., 1990. Age-dependent changes in toxicity of N-nitroso compounds to Japanese medaka (Oryzias latipes) embryos.Aquat. Toxicol. 17, 45-62.
    Middaugh, D.P., Dean, J.M., 1977. Comparative sensitivity of eggs, larvae and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia menidia to cadmium. Bull. Environ. Contam. Toxicol. 17(6), 645-652.
    Miliou, H., Zaboukas, N., Moraitou-Apostolopoulou, M., 1998. Biochemical composition, growth, and survival of the guppy, Poecilia reticulata, during chronic sublethal exposure to cadmium. Arch. Environ. Contam. Toxicol. 35, 58-63.
    Muley, D.V., Kamble, G.B., Bhilave, M.P., 2000. Effect of heavy metals on nucleic acids in Cyprinus carpio. J. Environ. Biol. 21, 360-370.
    OECD. 1992. OECD Guideline for testing of chemicals, No. 203: fish, acute toxicity test. Paris. Organization for Economic Cooperation and Development, Paris, France.
    Oliva, M., Garrido, M.D.C., Perez, E., De Canales, M.L.G., 2007. Evaluation of acute copper toxicity during early life stages of gilthead seabream, Sparus aurata. J Environ Sci Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 525-533.
    Oryan, S.H., Nejatkhah, P., 1997. Effects of cadmium on plasma cortisol and prolactin levels in the rainbow trout (Oncorhynchus mykiss). J. Fac. Vet. Med. Univ. Tehran 51, 39-53
    Pascoe, D., Evans, S.A., Woodworth, J., 1986. Heavy metal toxicity to fish and the influence of water hardness. Arch. Environ. Contam. Toxicol. 15, 481-487.
    Ryan, A.C., Van Genderen, E.J., Tomasso, J.R., Klaine, S., 2004. Influence of natural organic matter source on copper toxicity to larval fathead minnows (Pimephales promelas): implications for the biotic ligand model. Environ. Toxicol. Chem. 23, 1567-1574.
    Sastry, K.V., Shukla, V., 1994. Acute and chronic toxic effects of cadmium on some hematological, biochemical, and enzymological parameters in the fresh-water teleost fish Channa punctatus. Acta Hydroch. Hydrob. 22, 171-176.
    Sciera, K.L., Isely, J.J., Tomasso, J.R. Jr., Klaine, S.J., 2004. Influence of multiple water-quality characteristics on copper toxicity to fathead minnows (Pimephales promelas). Environ. Toxicol. Chem. 23, 2900-2905.
    Shah, S.L., Altindag, A., 2005. Effects of heavy metal accumulation on the 96-h LC50 values in tench Tinca tinca L., 1758. Turk. J. Vet. Anim. Sci. 29, 139-144.
    Shariff, M., Jayawardena, P.A.H.L., Yusoff, F.M., Subasinghe, R., 2001.Immunological parameters of Javanese carp Puntius gonionotus (Bleeker) exposed to copper and challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 11, 281-291.
    Shukla, V., Dhankhar, M., Parakash, J., Sastry, K.V., 2007. Bioaccumulation of Zn, Cu and Cd in Channa punctatus. J. Environ. Biol. 28, 395-397.
    Sloman, K.A., Baker, D.W., Ho, C.G., McDonald, D.G., Wood, C.M., 2003. The effects of trace metal exposure on agonistic encounters in juvenile rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol. 63, 187-196.
    Straus, D.L., 2003. The acute toxicity of copper to blue tilapia in dilutions of settled pond water. Aquaculture 219, 233-240.
    Straus, D.L., 2006. Species sensitivity to copper: acute toxicity to channel catfish, Ictalurus punctatus, and sunshine bass, Morone clirysops x M. saxatilis. J. Appl. Aquaculture 18, 88-99.
    Stromberg, P.C., Ferrante, J.G., Carter, S., 1983. Pathology of lethal and sublethal exposure of fathead minnows, Pimephales promelas, to cadmium: a model for aquatic toxicity assessment. J. Toxicol. Environ. Health 11, 247-259.
    S?vényi, J., Szakolczai, J., 1993. Studies on the toxic and immunosuppressive effects of cadmium on the common carp. Acta Vet. Hung. 41, 415-426.
    Subathra, S., Karuppasamy, R., 2008. Bioaccumulation and depuration pattern of copper in different tissues of Mystus vittatus, related to various size groups. Arch. Environ. Contam. Toxicol. 54, 236-244.
    Suresh, A., Sivaramakrishna, B., Radhakrishna, K., 1993. Patterns of cadmium accumulation in the organs of fry and fingerlings of freshwater fish Cyprinus carpio following cadmium exposure. Chemosphere 26, 945-953.
    Thophon, S., Kruatrachue, M., Upatham, E.S., Pokethitiyook, P., Sahaphong, S., Jaritkhuan, S., 2003. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ. Pollut. 121, 307-320.
    Vijayavel, K., Gopalakrishnan, S., Thilagam, H., Balasubramanian, M.P., 2006. Dietary ascorbic acid andα-tocopherol mitigates oxidative stress induced by copper in the thornfish Terapon jarbua. Sci. Total. Environ. 372, 157-163.
    Wangsongsak, A., Utarnpongsa, S., Kruatrachue, M., Ponglikitmongkol, M., Pokethitiyook, P., Sumranwanich, T., 2007. Alterations of organ histopathology and metallolhionein mRNA expression in silver barb, Puntius gonionotus duringsubchronic cadmium exposure. J. Environ. Sci-China. 19, 1341–1348.
    Watling H.R., 1982. Comparative study of the effects of zinc, cadmium, and copper on the larval growth of three oyster species. Bull. Environ. Contam. Toxicol. 28, 195-201.
    Welsh, P.G., Lipton, J., Chapman, G.A., Podrabsky, T.L., 2000. Relative importance of calcium and magnesium in hardness-based modification of copper toxicity. Environ. Toxicol. Chem. 19, 1624-1631.
    Williams, N.D., Holdway, D.A., 2000. The Effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environ. Toxicol. 15, 165-173.
    Witeska, M., Jezierska, B., Chaber, J., 1995. The influence of cadmium on common carp embryos and larvae. Aquaculture 129, 129-132.
    Wong, P.P.K., Chu, L.M., Wong, C.K., 1999. Study of toxicity and bioaccumulation of copper in the silver sea bream Sparus sarba. Environ. Int. 25, 417-422.
    Yilmaz, M., Gül, A., Karak?se, E., 2004. Investigation of acute toxicity and the effect of cadmium chloride (CdCl2·H2O) metal salt on behavior of the guppy (Poecilia reticulata). Chemosphere 56, 375–380.
    国家标准GB/T13267-91, 1991.水质-物质对淡水鱼(斑马鱼Brachydanio rerio)急性致死毒性的测定方法.
    金显仕,赵宪勇,金田湘,崔毅等. 2005.黄、渤海生物资源与栖息环境.北京.科学出版社. 110-111.
    Arnold, R., 2005. Estimations of copper roof runoff rates in the United States. Integr. Environ. Assess. Manag. 1, 333-342.
    Asagba, S.O., Eriyamremu, G.E., Igberaese, M.E., 2008. Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol. Biochem. 34, 61-69.
    Beyers, D.W., Farmer, M.S., 2001. Effects of copper on olfaction of Colorado pikeminnow. Environ. Toxicol. Chem. 20, 907-912.
    Carreau, N.D., Pyle, G.G.., 2005. Effect of copper exposure during embryonic development on chemosensory function of juvenile fathead minnows (Pimephales promelas). Ecotoxicol. Environ. Saf. 61, 1–6.
    Cao, L., Huang, W., Shan, X.J., Xiao, Z.Z., Wang, Q.Y., Dou, S.Z., 2009.
    Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major. Ecotoxicol. Environ. Saf. 72, 1966-1974.
    Cao, L., Huang, W., Liu, J.H., Ye, Z.J., Dou, S.Z., 2010. Toxicity of short-term copper exposure to early life stages of red sea bream Pagrus major. Environ. Toxicol. Chem.. (Accepted).
    Chang, M.H., Lin, H.C., Hwang, P.P., 1997. Effects of cadmium on the kinetics ofcalcium uptake in developing tilapia larvae, Oreochromis mossambicus. Fish Physiol. Biochem. 16, 459–470.
    Cheng, S.H., Wai, A.W.K., So, C.H., Wu, R.S.S., 2000. Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ. Toxicol. Chem. 19, 3024–3031.
    Dave, G., Xiu, R.Q., 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 21, 126-134.
    De Gaspar, I., Blanquez, M.J., Fraile, B., Paniagua, R., Arenas, M.I., 1999. The hatching gland cells of trout embryos: characterisation of N- and O-linked oligosaccharides. J. Anat. 194, 109-118.
    Ellenberger, S.A., Baumann, P.C., May, T.W., 1994. Evaluation of effects caused by high copper concentrations in Torch Lake, Michigan, on reproduction of yellow perch. J. Great Lakes Res. 20, 531–536.
    Fraysse, B., Mons, R., Garric, J., 2006. Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol. Environ. Saf. 63, 253-267.
    Giari, L., Manera, M., Simoni, E., Dezfuli, B.S., 2007. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere 67, 1171-1181.
    Hallare, A.V., Schirling, M., Luckenbacha, T., K?hler, H.R., Triebskorn, R., 2005. Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J. Therm. Biol. 30, 7-17.
    Hallare, A., Nagel, K., K?hler, H.R., Triebskorn, R., 2006. Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos. Ecotoxicol. Environ. Saf. 63, 378-388.
    Hwang, P.P., Lin, S.W., Lin, H.C., 1995. Different sensitivities to cadmium in tilapia larvae (Oreochromis mossambicus; Teleostei). Arch. Environ. Contam. Toxicol. 29, 1-7.
    Jezierska, B., Witeska, M., 2001. Metal Toxicity to Fish. University of Podlasie Publisher, Siedlce, p, 318
    Jezierska, B., ?ugowska, K., Witeska, M., 2002. The effect of temperature and heavy metals on heart rate changes in common carp Cyprinus carpio L. and grass carp Ctenopharyngodon idella (Val.) during embryonic development. Arch. Pol. Fish.10, 153-165.
    Jezierska, B., ?ugowska, K., Witeska, M., 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35, 625-640.
    Johnson, A., Carew, E., Sloman, K.A., 2007. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat. Toxicol. 84, 431-438.
    Latif, M.A., Bodaly, R.A., Johnston, T.A., Fudge, R.J.P., 2001. Effects of environmental and maternally derived methylmercury on the embryonic and larval stages of walleye (Stizostedion vitreum). Environ. Pollut. 111, 139-148.
    Lema, S.C., Schultz, I.R., Scholz, N.L., Incardona, J.P., Swanson, P., 2007. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2’,4,4’-tetrabromodiphenyl ether (PBDE 47). Aquat. Toxicol. 82, 296-307.
    Linder, M.C., Hazegh-Azam, M., 1996. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 63, 797–811.
    Liu, C., Wang, Z.Y., He, Y., 2003. Water pollution in the river mouths around Bohai Bay. Int. J. Sediment. Res. 18, 326-332.
    Lugowska, K., Witeska, M., 2004. The effect of copper exposure during embryonic development on deformations of newly hatched common carp larvae, and further consequences. Electron. J. Pol. Agric. Univ, Ser. Fish. 7, (2).
    Lugowska, K., 2005. Effect of copper and cadmium on carp (Cyprinus carpio L.) embryogenesis and larval quality. PhD thesis. University of Podlasie, Prusa, Siedlce, Poland.
    McGeer, J.C., Szebedinszky, C., McDonald, D.G., Wood, C.M., 2000. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquat. Toxicol. 50, 231–243.
    Miliou, H., Zaboukas, N., Moraitou-Apostolopoulou, M., 1998. Biochemical composition, growth, and survival of the guppy, Poecilia reticulata, during chronic sublethal exposure to cadmium. Arch. Environ. Contam. Toxicol. 35, 58-63.
    Morad, M., Goldman, Y.E., Trentham, D.R., 1981. Rapid photochemical inactivation of Ca2+-antagonists shows that Ca2+ entry directly activates contraction in frog heart. Nature 304, 635-638.
    Munkittrick, K.R., Dixon, D.G., 1989. Effects of natural exposure to copper and zincon egg size and larval copper tolerance in white sucker (Catostomus commersoni). Ecotoxicol. Environ. Saf. 18, 15–26.
    Oliva, M., Garrido, M.D.C., Perez, E., De Canales, M.L.G., 2007. Evaluation of acute copper toxicity during early life stages of gilthead seabream, Sparus aurata. J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng. 42, 525-533.
    Ozoh, P.T.E., 1979. Malformations and inhibitory tendencies induced to Brachydanio rerio (Hamilton-Buchanan) eggs and larvae due to exposures in low concentrations of lead and copper ions. Bull. Environ. Contam. Toxicol. 21, 668–675.
    OECD. 1998. OECD Guideline for testing of chemicals, No. 212: fish, short-term toxicity test on embryo and sac-fry stages. Paris. Organization for Economic Cooperation and Development, Paris, France.
    Rombough, P.J., Garside, E.T., 1982. Cadmium toxicity and accumulation in eggs and alevins of Atlantic salmon Salmo salar. Can. J. Zool. 60, 2006–2014.
    Shariff, M., Jayawardena, P.A.H.L., Yusoff, F.M., Subasinghe, R., 2001. Immunological parameters of Javanese carp Puntius gonionotus (Bleeker) exposed to copper and challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 11, 281-291.
    Soller, J., Stephenson, J., Olivieri, K., Downing, J., Olivieri, A.W., 2005. Evaluation of seasonal scale first flush pollutant loading and implications for urban runoff management. J. Environ. Manage. 76, 309-318.
    Stouthart, X.J.H.X., Haans, J.L.M., Lock, R.A.C., Wendelaar, B.S.E., 1996. Effects of water pH on copper toxicity to early life stages of the common carp (Cyprinus carpio). Environ. Toxicol. Chem. 15, 376-383.
    Villalobos, S.A., Hamm, J.T., Teh, S.J., Hinton, D.E., 2000. Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes): stage-specific toxicity and the protective role of chorion. Aquat. Toxicol. 48, 309-326.
    Westernhagen, H.V, Dethlefsen, V., Rosenthal, H., 1975. Combined effects of cadmium and salinity on development and survival of garpike eggs. Helgolander Wiss. Meer. 27, 268-282.
    Williams, N.D., Holdway, D.A., 2000. The Effects of pulse-exposed cadmium and zinc on embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environ. Toxicol. 15, 165-173.
    Witeska, M., Jezierska, B., Chaber, J., 1995. The influence of cadmium on common carp embryos and larvae. Aquaculture 129, 129-132.
    Wong, C.K.C., Wong, M.H., 2000. Morphological and biochemical changes in the gills of tilapia (Oreochromis mossambicus) to ambient cadmium exposure. Aquat. Toxicol. 8, 517–527.
    Wu, S.M., Jong, K.J., Kuo, S.Y., 2003. Effects of copper sulfate on ion balance and growth in tilapia larvae (Oreochromis mossambicus). Arch. Environ. Contam. Toxicol. 45, 357-363.
    Yamauchi, M., Kim, E.-Y., Iwata, H., Shima, Y., Tanabe, S., 2006. Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing red seabream (Pagrus major) embryo: An association of morphological deformities with AHR1, AHR2 and CYP1A expressions. Aquat. Toxicol. 80, 166-179.
    程济生,2004.黄渤海近岸水域生态环境与生物群落.青岛;青岛海洋大学出版社.,109-126.
    杨纪明,杨伟祥,王新成,成贵书,1990.渤海底层的鱼类生物量估计.海洋学报. 12(3),359-365
    张小林,2001.渤海海域海水、沉积物中铅、镉、汞、砷污染调查.黑龙江环境通报. 25(3),87-90.
    Asagba, S.O., Eriyamremu, G.E., Igberaese, M.E., 2008. Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol. Biochem. 34, 61-69.
    Atli, G., Alptekin, O., Tukel, S., Canli, M., 2006. Response of catalase activity to Ag2+,Cd2+,Cr2+,Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp. Biochem. Physiol. C 143, 218–224.
    Beers, R.F., Seizer, I. W., 1952. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 115, 133–140.
    Beutler, E., Duron, O., Kelly, B.M., 1963. Improved method for the determination of blood glutathione. J. Lab. Clinic. Med. 61, 882–890.
    Bouraoui, Z., Banni, M., Ghedira, J., Clerandeau, C., Guerbej, H., Narbonne, J.F., Boussetta, H., 2008. Acute effects of cadmium on liver phase I and phase II enzymes and metallothionein accumulation on sea bream Sparus aurata. FishPhysiol. Biochem. 34, 201-207.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
    Cao, L., Huang, W., Shan, X.J., Xiao, Z.Z., Wang, Q.Y., Dou, S.Z., 2009. Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major. Ecotoxicol. Environ. Saf. 72, 1966-1974.
    Carriquiriborde, P., Ronco, A.E., 2008. Distinctive accumulation patterns of Cd(II), Cu(II), and Cr(VI) in tissue of the South American teleost, pejerrey (Odontesthes bonariensis). Aquat. Toxicol. 86, 313-322.
    Dou, S.Z., Masuda, R., Tanaka, M., Tsukamoto, K., 2002. Feeding resumption, morphological changes and mortality during starvation in Japanese flounder larvae. J. Fish Biol. 60, 1363-1380.
    El-Demerdash, F.M., Elagamy, E.I., 1999. Biological effects in Tilapia nilotica fish as indicators of pollution by cadmium and mercury. Int. J. Environ. Heal. Res. 9, 173-186.
    El-Demerdash, F.N., Yousef, M.I., Kedwany, F.S., Baghdadi, H.H., 2004. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and β-carotene. Food Chem. Toxicol. 42, 1563-1571.
    Firat, O., Cogun, H.Y., Aslanyavrusu, S., Kargin, F., 2009. Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn+Cd exposures. J. Appl. Toxicol. 29, 295-301.
    Furuta, T., Iwata, N., Kikuchi, K., 2008. Effects of fish size and water temperature on the acute toxicity of copper for Japanese flounder, Paralichthys olivaceus, and red sea bream, Pagrus major. J. World Aquacult. Soc. 39, 766-773.
    Gwak, W.S., Tanaka, M., 2002. Changes in RNA, DNA and protein contents of laboratory-reared Japanese flounder Paralichthys olivaceus during metamorphosis and settlement. Fish. Sci. 68, 27-33.
    Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.
    Hansen, J.A., Welsh, P.G., Lipton, J., Suedkamp, M.J., 2002. The effects of long-term cadmium exposure on the growth and survival of juvenile bull trout (Salvelinus confluentus). Aquat. Toxicol. 58, 165-174.
    Jezierska, B., ?ugowska, K., Witeska, M., 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol. Biochem. 35, 625-640.
    Johnson, A., Carew, E., Sloman, K.A., 2007. The effects of copper on the morphological and functional development of zebrafish embryos. Aquat. Toxicol. 84, 431-438.
    Kappus, H., 1985. Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. In: Sies, H. (Ed.), Oxidative Stress. Academic Press, London, pp. 273–310.
    Kim, S.G., Jee, J.H., Kang, J.C., 2004. Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure. Environ. Pollut. 127, 117-123.
    Kono, Y., Fridovich, I., 1982. Superoxide radical inhibits catalase. J. Biol. Chem. 257, 5751-5754.
    Lange, A., Ausseil, O., Segner, H., 2002. Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comp. Biochem. Physiol. C 131, 231-243.
    Livingstone, D.R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656-666.
    Liu, C., Wang, Z.Y., He, Y., 2003. Water pollution in the river mouths around Bohai Bay. Int. J. Sediment Res. 18, 326-332.
    Lopez, E., Arce, C., Oset-Gasque, M.J., Canadas, S., Gonzalez, M.P., 2006. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic. Biol. Med. 40, 940–951.
    Marklund, S., Marklund, G., 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J . Biochem. 47, 469-474.
    OECD, 1992. OECD guideline for the testing of chemicals 215: Fish, early-life stage toxicity test. Paris. Organization for Economic Cooperation and Development, Paris, France.
    Ohkawa, H., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.
    Padmini, E., Rani, M.U., 2009. Evaluation of oxidative stress biomarkers in hepatocytes of grey mullet inhabiting natural and polluted estuaries. Sci. Total Environ. 407, 4533-4541.
    Pandey, S., Parvez, S., Sayeed, I., Haque, R., Bin-Hafeez, B., Raisuddin, S., 2003. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci. Total Environ. 309, 105–115.
    Pandey, S., Parvez, S., Ansari, R.A., Ali, M., Kaur, M., Hayat, F., Ahmad, F., Raisuddin, S., 2008. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem-Biol. Interact. 174, 183-192.
    Peters, L.D., Livingstone, D.R., 1996. Antioxidant enzyme activities in embryologic and early larval stages of turbot. J. Fish Biol. 49, 986–997.
    Pruell, R.J., Engelhardt, F.R., 1980. Liver cadmium uptake, catalase inhibition and cadmium thionein production in the killifish (Fundulus heteroclitus) induced by experimental cadmium exposure. Mar. Environ. Res. 3, 101–111.
    Rabago-Castro, J.L., Sanchez, J.G., Perez-Castaneda, R., Gonzalez-Gonzalez, A., 2006. Effects of the prophylactic use of RometR-30 and copper sulfate on growth, condition and feeding indices in Channel catfish (Ictalurus punctatus). Aquaculture 253, 343-349.
    Radi, A.A.R., Matkovics, B., 1988. Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissue. Comp. Biochem. Physiol. C 90, 69-72.
    Reed, D.J., Beatty, P.W., 1980. Biosynthesis and regulation of glutathione: toxicological implications. Rev. Biochem. Toxicol. 2, 213–41.
    Reméo, D., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard, J.P., 2000. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat. Toxicol. 48, 185-194.
    Ruas, C.B.G., Carvalho, C.D.S., de Araujo, H.S.S., Espindola, E.L.G.., Fernandes, M.N., 2008. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol. Environ. Saf. 71, 86-93.
    Sampaio, F.G.S., Boijink, C.D.L., Oba, E.T., dos Santos, L.R.B., Kalinin, A.L., Rantin, F.T., 2008. Antioxidant defenses and biochemical changes in pacu (Piaractusmesopotamicus) in response to single and combined copper and hypoxia exposure. Comp. Biochem. Physiol. C 147, 43-57.
    Sanchez, W., Palluel, O., Meunie, L., Coquery, M., Porcher, J.M., Ait-A-issa, S., 2005. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environmen. Toxicol. Phar. 19, 177-183.
    Solé, M., Potrykus, J., Fernandez-Diaz, C., Blasco, J., 2004. Variations on stress defences and metallothionein levels in the Senegal sole, Solea senegalensis, during early larval stages. Fish Physiol. Biochem. 30, 57-66.
    Thomas, P., Wofford, H.W., 1993. Effects of cadmium and Aroclor 1254 on lipid peroxidation, glutathione peroxidase activity, and selected antioxidants in Atlantic croaker tissues. Aquat. Toxicol. 27, 159–178.
    van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57-149.
    Wang, C.Y., Wang, X.L., 2007. Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai sea. J. Environ. Sci. 19, 1061-1066.
    Wofford, H.W., Thomas, P., 1988. Effects of xenobiotics on peroxidation of hepatic microsomal lipids from striped mullet and Atlantic croaker. Mar. Environ. Res. 24, 285–289.
    Wu, S.M., Jong, K.J., Lee, Y.J., 2006. Relationships among metallothionein, cadmium accumulation, and cadmium tolerance in three species of fish. Bull. Environ. Contam. Toxical. 76, 595-600.
    Wu, S.M., Shih, M.J., Ho, Y.C., 2007. Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) upon cadmium exposure. Comp. Biochem. Physiol. C 145, 218-226.
    张小林,2001.渤海海域海水、沉积物中铅、镉、汞、砷污染调查.黑龙江环境通报. 25(3),87-90.
    Asagba, S.O., Eriyamremu, G.E., Igberaese, M.E., 2008. Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol. Biochem. 34, 61-69.
    Atli, G., Alptekin, O., Tukel, S., Canli, M., 2006. Response of catalase activity to Ag2+,Cd2+,Cr2+,Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp. Biochem. Physiol. C 143, 218–224.
    Barata, C., Varo, I., Navarro, J.C., Arun, S., Porte, C., 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp. Biochem. Physiol. C 140, 175–186.
    Basha, S.P., Rani, U.A., 2003. Cadmium-induced antioxidant defence mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol. Environ. Saf. 56, 218-221.
    Beers, R.F., Seizer, I. W., 1952. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 115, 133–140.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
    Cao, L., Huang, W., Shan, X.J., Xiao, Z.Z., Wang, Q.Y., Dou, S.Z., 2009. Cadmium toxicity to embryonic-larval development and survival in red sea bream Pagrus major. Ecotoxicol. Environ. Saf. 72, 1966-1974.
    Dang, F., Wang, W.X., 2009. Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet. Aquat. Toxicol. 95, 248-255.
    Dimitrova, M.St., Tishinova, V., Velcheva, V., 1994. Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comp. Biochem. Physiol. C 108, 43–46.
    Dural, M., G?ksu, M.Z.L., ?zak, A.A., Derici, B., 2006. Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the Camlik lagoon of the eastern cost of Mediterranean (Turkey). Environ. Monit. Assess. 118, 65-74.
    Filho, D.W., 1996. Fish antioxidant defences—a comparative approach. Braz. J. Med.Biol. Res. 29, 1735–1742.
    Giari, L., Manera, M., Simoni, E., Dezfuli, B.S., 2007. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere 67, 1171-1181.
    Gill, T.S., Bianchi, C.P., Epple, A., 1992. Trace metal (Cu and Zn) adaptation of organ systems of the American eel, Anguilla rostrata, to external concentrations of cadmium. Comp. Biochem. Physiol. C. 102, 361–371.
    Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.
    Hafeman, D.G., Sunde, R.A., Hoekstra, W.G., 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J. Nutr. 104, 580-587.
    Hansen, J.A., Welsh, P.G., Lipton, J., Suedkamp, M.J., 2002. The effects of long-term cadmium exposure on the growth and survival of juvenile bull trout (Salvelinus confluentus). Aquat. Toxicol. 58, 165-174.
    Hansen, B.H., Romma, S., Garmo, O.A., Pedersen, S.A., Olsvik, P.A., Andersen, R.A., 2007. Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). Chemosphere 67, 2241-2249.
    Hawkins, W.E., Tate, L.G., Sarphie, T.G., 1980. Acute effects of cadmium on the spot Leiostomus xanthurus (Teleostei): tissue distribution of renal ultrastructure. J. Toxicol. Environ. Health 6, 283–295.
    Kappus, H., 1985. Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. In: Sies, H. (Ed.), Oxidative Stress. Academic Press, London, pp. 273–310.
    Livingstone, D.R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656-666.
    Long, A.M., Wang, W.X., 2005. Assimilation and bioconcentration of Ag and Cd by the marine black bream after waterborne and dietary metal exposure. Environ. Toxicol. Chem. 24, 709–716.
    Marklund, S., Marklund, G., 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J . Biochem. 47, 469-474.
    Meister, A., 1988. Glutathione metabolism and its selective modification. J. Biol. Chem. 263, 17205-17208.
    Messaoudi, I., Barhoumi, S., Said, K., Kerken, A., 2009. Study on the sensitivity to cadmium of marine fish Salaria basilisca (Pisces: Blennidae). J. Environ. Sci. 21, 1620-1624.
    Miliou, H., Zaboukas, N., Moraitou-Apostolopoulou, M., 1998. Biochemical composition, growth and survival of the guppy, Poecilia reticulata, during chronic sublethal exposure to cadmium. Arch. Environ. Contam. Toxicol. 35, 58–63.
    Moron, M.S., Depierre, J.W., Mannervik, B., 1979. Levels of glutathione, glutathione reductase, glutathione-S-transferase activities in rat lung and liver. Biochim. Biophy. Acta-Gen. Subj. 582, 67–78.
    Nordberg, J., Arnér, E.S.J., 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287-1312.
    OECD, 2000. OECD guidelines for the testing of chemicals, Section 2: Effects on Biotic systems No. 215: Fish, Juvenile Growth Test, Organization for Economic Cooperation and Development, Paris, France.
    Ohkawa, H., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.
    Padmini, E., Rani, M.U., 2009. Evaluation of oxidative stress biomarkers in hepatocytes of grey mullet inhabiting natural and polluted estuaries. Sci. Total Environ. 407, 4533-4541.
    Pandey, S., Ahmad, I., Parvez, S., Bin-Hafeez, B., Haque, R., Raisuddin, S., 2001. Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch. 1.
    Protection against lipid peroxidation in liver by copper pre-exposure. Arch. Environ. Contam. Toxicol. 41, 345–352.
    Pandey, S., Parvez, S., Ansari, R.A., Ali, M., Kaur, M., Hayat, F., Ahmad, F., Raisuddin, S., 2008. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem-Biol. Interact. 174, 183-192.
    Perkins, E.J., Gryffin, B., Hobbs, M., Gollon, J., Wolford, L., Schlenk, D., 1997. Sexual differences in mortality and sublethal stress in channel catfish following a 10 week exposure to copper sulfate. Aquat. Toxicol. 37, 327-339.
    Ranaldi, M.M., Gagnon, M.M., 2009. Accumulation of cadmium in the otoliths and tissues of juvenile pink snapper (Pagrus auratus Forster) following dietary and waterborne exposure. Comp. Biochem. Physiol. C 150, 421-427.
    Reméo, D., Bennani, N., Gnassia-Barelli, M., Lafaurie, M., Girard, J.P., 2000.Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat. Toxicol. 48, 185-194.
    Rose, W.L., Nisbet, R.M., Green, P.G., Norris, S., Fan, T., Smith, E.H., Cherr, G.N., Anderson, S.L., 2006. Using an integrated approach to link biomarker responses and physiological stress to growth impairment of cadmium-exposed larval topsmelt. Aquat. Toxicol. 80, 298-308.
    Sana, B., Imed, M., Tmim, D., Khaled, S., Abdelhamid, K., 2009. Cadmium bioaccumulation in three benthic fish species, Salaria basilisca, Zosterisessor ophiocephalus and Solea vulgaris collected from the Gulf of Gabes in Tunisia. J. Environ. Sci. 21, 980-984.
    Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., Raisuddin, S., 2003. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol. Environ. Saf. 56, 295-301.
    Shi, H.H., Sui, Y.X., Wang, X.R., Luo, Y., Ji, L.L., 2005. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comp. Biochem. Physiol. C 140, 115-121.
    Soares, S.S., Martins, H., Gutierrez-Merino, C., Aureliano, M., 2008. Vanadium and cadmium in vivo effects in teleost cardiac muscle: Metal accumulation and oxidative stress markers. Comp. Biochem. Physiol. C 147, 168-178.
    van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57-149.
    Vijayavel, K., Gopalakrishnan, S., Thilagam, H., Balasubramanian, M.P., 2006. Dietary ascorbic acid andα-tocopherol mitigates oxidative stress induced by copper in the thornfish Terapon jarbua. Sci. Total Environ. 372, 157-163.
    Xu, Z.R., Bai, S.J., 2007. Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicol. Environ. Saf. 67, 89-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700