2-SeCD对糖尿病视网膜微血管病变AGEs传导通路的干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病视网膜病变(diabetic retinopathy, DR)为糖尿病严重微血管病变,已经成为世界最重要致盲疾病之一。目前,对于糖尿病视网膜病变的发病机制和药物的研究仍处于探索阶段。糖基化终末产物(Advanced Glycation End products, AGEs)是已知的糖尿病微血管并发症的发病机制之一,在糖尿病并发症的发生、发展中起重要作用,其中确切的信号传导通路,损伤基因表达等过程仍未彻底明了。因此更加深入的探讨AGEs其可能的传导通路,并在其可能的传导通路上进行干预将有重要的意义。
     本实验针对糖尿病视网膜微血管病变发病机制中的AGEs途径,利用免疫荧光染色、逆转录PCR、Western Blot等实验发法及FFA等检查手段,通过体内和体外实验研究AGEs对视网膜血管内皮细胞、视网膜色素上皮细胞等作用的可能机制。并且应用由吉林大学超分子结构与材料国家重点实验室自行合成的谷胱甘肽过氧化物酶(GPX)模拟物:2-位硒桥联环糊精(2-SeCD),对AGEs体内及体外的作用进行干预和阻断作用,以期达到对糖尿病视网膜疾病的预防和治疗。
     本研究的创新性包括:(1)2-SeCD为吉林大学超分子结构与材料国家重点实验室以CD为主体构建的GPX模拟物,将2-SeCD应用于眼底疾病的干预国内外未见报道;(2)本实验动物模型的制作,采取尾静脉注射AGEs的方法,FFA显示造成了视网膜微血管的损伤及静脉改变,模拟高血糖记忆效应。这种新型动物模型的成功建立国内未见报道。
Diabetic retinopathy (DR) is a leading cause of blindness in theworking-age population of most developed countries. Advanced glycation end product is one of pathogenesies of diabetic capillary complications. It plays an important role in the process of diabetic complication, but the exact signal path is not clear. In that case, it is important to approach the possible signal path and to block the path. AGEs is the oxidizing reaction and structural rearrangement end products of protein, lipid, acid or nucleic with glucose. The concentration of the AGEs in the normal adults'blood will increase following the age. AGEs may make oxidative injury to the cells through receptor dependent or non-receptor dependent pathway. It may have the reaction with the NADPH oxidase and the reactive oxygen species. And ROS active the nuclear factor kappa B and phosphokinase C, then make the target gene transcription.
     2-SeCD is the simulant of glutathione peroxidase which is composed by polymer chemistry lab in Jilin University. The vigor of 2-SeCD is 7.4 U/μmol, and it has a better stability, water solubility. Its substance is carbohydrate, and there is no aromatic ring in its formation. It has potential to be an important antioxygen medicine. The main mechanism of action is to clear the ROS which is the product of the biological oxidation in vivo. The pathogenesies of diabetic capillary complication include: polyalcohol pathway, AGEs, aninohexose pathway and PKC. Some scholar pointed out that the ROS accumulation may be the co-pathogenesy of diabetic capillary complication. So clearance of ROS can be a possible and important target to block the development of diabetic capillary complication.
     We approach the RPE cells and vascular endothelial cells proliferation activity, PKC pathway and NF-κB affected by AGEs. We use GPX stimulant 2-SeCD to interfere the process of AGEs affect on RPE cells and RF/6A in vitro. We injected the AGEs which is prepared in vitro into the Wistar rats from the tail veins. To directly observe the injury by AGEs to the retina in vivo and to deplete the effect of carbohydrate and ROS the product of other pathway. We also approach the protection by 2-SeCD to the injury induced by AGEs in retina. We hope that 2-SeCD can be a new medicamentum to DR.
     We cultured the RPE cells and macaque retinal vascular endothelial cell in vitro. The RPE cells is cultured in 10% DMEM low carbohydrates medium. We utilized different concentration 2-SeCD to effect the RPE cells induced by AGEs. The groups divided in RPE cells induced by AGEs are:normal control; low concentration BSA control (50.0 mg·L-1); middle concentration BSA control (100.0 mg·L-1); high concentration BSA control (200.0 mg·L-1); low concentration AGE (50.0 mg·L-1); middle concentration AGE(100. 0mg·L-1); high concentration AGE (200.0mg·L-1). The groups divided in RPE cells effected by 2-SeCD:normal control; BSA control (200.0 mg·L-1); AGE (200.0 mg·L-1); aminoguanidine(AG 320μmol/L+ AGEs 200.0 mg·L-1); 2-SeCD low concentration (2-SeCD 80μmol/L+AGEs200.0 mg·L-1); 2-SeCD mid-concentration (2-SeCD 160μmol/L+AGEs200.0 mg·L-1); 2-SeCD high concentration (2-SeCD 320μmol/L+AGEs200.0 mg·L-1). Then we detected the cells proliferate activation by MTT assay; detected VEGF protein expression by immunochemistry; detected the activation of NF-kappa B by immunofluorescence; detected the concentration of MDA in medium of RPE cells; detected the VEGF and PKCβⅡprotein level by western blot. The experiments results:(1) the VEGF detected by immunochemistry, the VEGF shows masculine expression in all groups, it shows the yellow and buffy grains in kytoplasm. The color of the grains darkens in accompany of the increase concentration. (2) the immunofluorescence shows that NF-κB p65 masculine expression transfer into nucleus in AGE groups, but it has no concentration dependent. (3) the western blot shows that the VEGF protein level step up obviously in low, middle, high concentration AGEs groups contrast to normal control group. The VEGF protein level in high concentration AGEs group is higher obviously than the low and middle AGEs group. (3) The MTT assay shows the cells proliferation activation:RPE cells proliferation activation decrease in the AGEs (200.0 mg·L-1)group; RPE cells proliferation increase obviously in the 2-SeCD high concentration group than the AGEs (200.0 mg·L-1)group. (4) To detect MDA in the cell medium:the MDA concentration in the cell medium in 2-SeCD high concentration group is higher obviously than the AGEs (200.0 mg·L-1)group. (5) Western Blot detected the PKCβⅡprotein level:the PKCβⅡprotein level is lower in the high concentration 2-SeCD group than the low, middle concentration 2-SeCD group, AGEs group and AG group.
     We also cultured the RF/6A cells in 10% RPMI-1640 medium. We detected the cells proliferate activation by MTT assay; detected NOX2, NOX3, NF-kappa B and VEGF protein expression by immunochemistry; detected the concentration of MDA in medium of RPE cells; detected the VEGF m RNA level by RT-PCR; detect the PKCβⅡprotein level by western blot. The experiments results:(1) MTT assay:the AGEs can suppress the RF/6A cells proliferation. The RF/6A cells proliferation increased in the high concentration 2-SeCD group compared with AGEs groups. (2) Immunochemistry:The NOX2, NF-κB p65 and VEGF protein expression decreased in the high concentration 2-SeCD group than AGEs groups. (3) RT-PCR:The VEGF m RNA level in high concentration 2-SeCD group is higher than AGEs groups. (4) Western Blot:The PKCβⅡprotein level in the high concentration 2-SeCD group is higher than AGEs groups.
     We divided 50 Wistar rats into five groups:normal control group (CON,n=10); RSA control group (RSA, n=10); AGEs group (AGE, n=10) aminoguanidine group (AGE+AG, n=10); 2-SeCD group (AGE+CD, n=10) There is no treatment to the CON group; to inject RSA 100 mg/kg each day from tail vein to RSA group; to inject AGEs 100 mg/kg each day to vena caudalis to AGE group; to inject intraperitoneal aminoguanidine 40 mg/kg, then 30 minutes later inject AGE 100 mg/kg to vena caudalis each day in AG group; to inject intraperitoneal 2-SeCD 16μmol/kg, then 30 minutes later inject AGE 100 mg/kg to vena caudalis each day in AG group. We take fluorescein fundus angiography to the rats one month later to observe the retinal vessels; detect the blood-serum MDA concentration and blood sugar level; take electron microscope to the retina, HE drum dyeing; immunohistochemistry to detect the retina NF-κB、VEGF protein expression; to detect the retina VEGF、PDGF mRNA level by RT-PCR. The results:(1) FFA shows 6 to 8 retinal artery and veins diverge from optic disc. There is no avascular area or macula lutea-like structure in CON group. The terminations of the retinal capillary expand, the vasopermeability increase, and there is fluorescein leakage around the termination of the retinal capillary. The retinal veins dilat and distort in AGE group. The RSA group shows the same as CON group. The FFA in AG group and 2-SeCD group show veins dilat and distort, but no fluorescein leakage. (2) MDA concentration:the AGE group is higher obviously than CON, RSA and CD groups. The blood-serum MDA concentration in CD group is lower than the AG group.
     The conclusions are:AGEs may cause the ROS cumulation through the NADPH oxidase pathway, then activate the PKC and NF-κB signal trans-path and the VEGF up-regulation. In our research we use the GPX stimulant which is composed in our cooperational lab to interfere the AGEs damage. It points out a new way and a new medicine for the prevention and cure to the DR in earlier period.
引文
(1)赵琳,邹大进.氧化应激致胰岛R细胞损伤的研究进展.国际内分泌代谢杂志.2006,26(Suppl S1)
    (2)杨前勇,邹大进.糖尿病中的氧化损伤与抗氧化研究进展.国际内分泌代谢杂志.2006,26(Suppl S1)
    (3)Brownlee M. The pathobiology of diabetic complications:a unifying mechanism. Diabetes,2005,54:1615-1625.
    (4)Ceriello A. Oxidative stress and diabetes-associated complications. Endocrine practice.12 Suppl 1:60-2,2006 Jan-Feb.
    (5)King GL. Loeken MR. Hyperglycemia-induced oxidative stess in diabetic complications. Histochemistry and Cell Biology.2004,122(4):333-8.
    (6)Rolo AP. Palmeira CM. Diabetes and mitochondrial function:role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology.2006,212(2):167-78
    (7)Allen DA, Yaqoob MM, Harwood SM. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. Journal of Nutritional Biochemistry.2005,16(12):705-13.
    (8)Annu KM, Zilmer M, Fellstrom B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure:Impact on cardiovascular disease[J]. Kidney Int Suppl,2003,84:50-53.
    (9)Bouloumie A,Marumo T,Marumo T, et al. Leptin induces oxidative stress in human endothelial cells [J]. Faseb J,1999,13:1231-1238.
    (10)Dietrich M, Block G, Hudes M, et al. Antioxidant supplementation decreases lipid peroxidation biomarker F(2) is oprostanes in plasma of smokers [J]. Cancer Epidemiol Biomarkers Pre,2002,1:7-13.
    (11)Hua Cai,David G,Harrison. Endothelial dysfunction in cardiovascular disease[J]. Circulation Research,2000,10 840-843.
    (12)Shijie Cai, Jeffrey Khoo, Keith M, et al. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells [J]. Cardiovascular Research,2005 65:823-831.
    (13)Stanger O, Weger M. Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium [J]. Clin Chem Lab Med,2003,41:1444-1454
    (14)Mills G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobinfrom oxidase breakdown. J. Biol. Chem.1957,229:189-197.
    (15)Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium:Biochemical role as a component of glutathione peroxidase. Science 1973,179:588-590.
    (16)Flohe L., Gunzler W. A., Schock H. H. Glutathione peroxidase:a selenoenzyme. FEBS Letts.1973,32:132-134.
    (17)Luo G. M., Ren X. J., Liu J. Q., Mu Y., Shen J. C. Towards more efficient glutathione peroxidase mimics:substrate recognition and catalytic group assembly. Curr. Med. Chem.2003,10:1151-1183.
    (18)Takebe G., Yarimizu J., Saito Y., Hayashi T., Nakamura H., Yodoi J., Nagasawa S. Takahashi K. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Bio. Chem.2002,277:41254-41258.
    (19)Jiang Z. H. The read-through efficiency of selenocysteine and expression of selenocysteine containing GST in Escherichia coli. PhD Thesis, Jilin University,2005, p136.
    (20)Chu F. F., Doroshow J. H., Esworthy R. S. Expression, characterization, and tissue distribution of a new celluar selenium-dependent glutathione peroxidase, GSH-PX-GI. J. Biol. Chem.1993,268:2571-2576.
    (21)Mork H., Lex B., Scheurlen M. Expression pattern of gastrointestinal selenoproteins-targets for selenium supplementation. Nutrition and Cancer 1998,32:64-65.
    (22)Yamamoto Y., Nagata Y., Niki E. Plasma glutathione peroxidase reduces phosphatidylcholine hydroperoxide. Biochem. Biophys. Res. Commun.1993,193:133-138.
    (23)Ciappellano S., Testolin G., Porrini M. Effects of durum wheat dietary selenium on glutathione peroxidase activity and Se content in long-term-fed rats. Ann. Nutr. Metab.1989,33:22-30.
    (24)Bellomo G., Maggi E., Palladini G. Endogenous and exogenous antioxidants and thegeneration of antigenic epitopes in oxidatively-modified LDL. Biofactors 1997,6:91-98.
    (25)Nakagawa Y., Imai H. Novel functions of mitochondrial phospholipids hydroperoxide glutathione peroxidase (PHGPx) as an anti-apoptotic factor. J. Health Sci.2000,46:414-417.
    (26)Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J. Flohe L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999,285:1393-1396.
    (27)Imai H., Suzuki K., Ishizaka K., Ichinose S., Oshima H., Okayasu I. Emotod K., Umedad M., Nakagawa Y. Failure of the expression of phospholipid hydroperoxide glutathione peroxidase in the spermatozoa of human infertile males. Biol Reprod.2001,64: 674-683.
    (28)Zini A., Schlegel P. N. Expression of glutathione peroxidases in the adult male rat reproductive tract. Fertil Steril 1997,68: 689-695.
    (29)Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem.1983,133:51-69.
    (30)Ren B., Huang W.,?kesson B., Ladenstein R. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9? resolution. J. Mol. Biol.1997,268:869-885.
    (31)Mugesh G., du Mont W. W., Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev.2001,101: 2125-2179.
    (32)Mugesh G., Singh H. B. Synthetic organoselenium compounds as antioxidants:glutathione peroxidase activity. Chem. Soc. Rev.2000, 29:347-357.
    (33)Mugesh G., du Mont W. W. Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics:a biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry-A European Journal.2004,7:1365-1370.
    (34)Mugesh G., Singh H. B. Heteroatom-directed aromatic lithiation:a versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res.2002,35:226-236.
    (35)Prabhakar R., Vreven T., Morokuma K., Musaev D. G. Elucidation of the mechanism of selenoprotein glutathione peroxidase(GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules:a density functional study. Biochemistry 2005,44:11864-11871.
    (36)Gettins P., Crews B. C.77Se NMR characterization of 77Se-labeled ovine erythrocyte glutathione peroxidase. J. Biol. Chem.1991,266: 4804-4809.
    (37)Wu R., Hernandez G., Odom J. D., Dunlap R. B., Silks L. Unusual N-H...Se bonding detected by HMQC 1H/77Se NMR spectroscopy. Chem. Commun.1996,1125-1126.
    (38)Rocher C., Lalanne J. L., Chaudiere J. Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur. J. Biochem.1992,205:955-960.
    (39)Sies H., Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol.1997,38:229-246.
    (40)Liu J., Gao S., Luo G., Yan G., Shen J. Artificial imitation of glutathione peroxidase with 6-selenium-bridged β-cyclodextrin. Biochem. Biophys. Res. Commun.1998,247:397-400.
    (41)Liu J., Luo G., Ren X., Mu Y., Bai Y., Shen, J. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochim. Biophys. Acta.2000,1481:222-228.
    (42)Ren X., Yang L., Liu J., Su D., You D., Liu C., Zhang K., Luo G. Mu Y., Yan G., Shen J. A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys.2001,387:250-256.
    (43)Ren X., Liu J., Luo G., Zhang Y., Luo Y., Yan G., Shen J. A novel selenocystine-β-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chem.2000,11:682-687.
    (44)Coresh J, Longencker JC, Miller ER, et al. Epidemiology of cardiovascular risk factors in chronic renal disease. J Am Soc Nephrol.1998;9:S24-30.
    (45)Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature.2001;13:414:813-20.
    (46)Yamagishi S, Hsu CC, Taniguchi M, et al. Receptor-mediated toxicity to pericytes of advanced glycosylation end products:a possible mechanism of pericyte loss in diabetic microangiopathy. Biochem. Biophys Res Commun,1995,213:681-687.
    (47)Ruggiero-Lopez D, Rellier N, Lecomte M, et al. Growth modula-tion of retinal microvascular cells by early and advanced glycationproducts. Diabetes Res Clin Pract,1997,34:135-142.
    (48)Vlassara H, Bucala R. Recent progress in advanced glycation and diabetic vascular disease:role of advanced glycation end product receptors. Diabetes,1996,45(Suppl 3):65-66.
    (49)Xiao W. Advances in NF-kappaB signaling transduction and transcription. CellMol Immunol.2004;1(6):425-435.
    (50)Yoshida A, Yoshida S, Hata Y, etal. The role of NF-kappa B in retinal neovascularization in the rat. Possible involvement of cytokine-induced neutrophil chemo attractant (CINC), a member of the interleukin-8 family. J Histochem Cytochem,1998,46(4):429-436
    (51)ChenW, EsselmanWJ, Jump DB, et al. Anti-inflammatory effect of docosahexaenoic acid on cytokine-induced adhesion molecule expression in human retinal vascular endothelial cells. InvestOphthalmolVis Sci 2005;46(11):4342-4347
    (52)SiebenlistU, FranzosoG, BrownK. Structure, regulation and function of NF-kappa B. AnnuRevCellBiol1994;10:405-455
    (53)Bailey TA, Kanuga N, Romero IA, et al. Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci,2004,45:675-684.
    (54)Shijie Cai, Jeffrey Khoo, Keith M, et al. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovascular Research,2005, 65:823-831.
    (55)Stanger O, Weger M. Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med,2003,41:1444-1454.
    (56)Akihiro Ohira, Masaki Tanito, Sachiko Kaidzu, and Takahito Kondo. Glutathione Peroxidase Induced in Rat Retinas to Counteract Photic Injury. Investigative Ophthalmology and Visual Science. 2003:44:1230-1236
    (57)Andrew D. Gosbell, Nada Stefanovic, Lyndee L. Scurr, et al. Retinal Light Damage:Structural and Functional Effects of the Antioxidant Glutathione Peroxidase-1. Investigative Ophthalmology and Visual Science.2006;47:2613-2622.
    (58)Giebel SJ, Menicucci G, McGuire PG, et al. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier [J]. Lab Invest,2005,85(5):597-607
    (59)Nagineni CN, Samuel W, Nagineni S, et al. Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells:involvement of mitogen-activated protein kinases[J]. J Cell Physiol,2003,197(3): 453-462
    (60)Giebel SJ, Menicucci G, McGuire PG, et al. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier [J]. Lab Invest,2005,85(5):597-607
    (61)Yasushi T, Masaharu A, Steven P. J, et al. Cariporide(Hoe642), a Selective Na+-H+Exchange Inhibitor, Inhibits the Mitochondrial Death Pathway. Circulation.2003,108:2275-81.
    (62)Rodriguez-Sinovas A, Garcia-Dorado D, Padilla F, et al. Pre-treatment with the Na+-H+Exchange Inhibitor cariporide delays cell-to-cell electrical uncoupling during myocardial ischemia. Cardiovase Res.2003,58:109-17
    (63)Akihiro Ohira, Masaki Tanito, Sachiko Kaidzu, and Takahito Kondo. Glutathione Peroxidase Induced in Rat Retinas to Counteract Photic Injury. Investigative Ophthalmology and Visual Science. 2003:44:1230-1236
    (64)Andrew D. Gosbell, Nada Stefanovic, Lyndee L. Scurr, et al. Retinal Light Damage:Structural and Functional Effects of the Antioxidant Glutathione Peroxidase-1. Investigative Ophthalmology and Visual Science.2006:47:2613-2622.
    (65)Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007:55:498-510
    (66)Avignon A, Sultan A. PKC-B inhibition:a new therapeutic approach for diabetic complications? Diabetes & metabolism 2006; 32:205-213.
    (67)Budhiraja S, Singh J. Protein kinase C beta inhibitors:a new therapeutic target for diabetic nephropathy and vascular complications. Fundamental & clinical pharmacology 2008:22:231-240.
    (68)Brownlee, M., Cerami, A., and Vlassara, H. (1998) N. Engl. J. Med. 318,1315-1321
    (69)Dyer, D. G., Blackledgem, J. A., Thorpe, S. R., and Baynes, J. W. (1991) J. Biol. Chem.266,11654-11660
    (70)Grandhee, S. K., and Monnier, V. M. (1991) J. Biol. Chem.266, 11649-11653
    (71)Guan HJ, GongQR. ModernBasic Ophthalmology.1st ed. Beijing: People's MilitaryMedicalPress,1998:534-5358. Vlassara, H., and Bucala, R. (1996) Diabetes 3, S65-S66
    (72)Yamagishi, S., Fujimori, H., Yonekura, H., Yamamoto, Y., and Yamamoto, H. (1998) Diabetologia 41,1435-1441
    (73)Wendt, T., Bucciarelli, L., Qu, W., Lu, Y., Yan, S. F., Stern, D. M., and Schmidt, A. M. (2000) Curr. Atheroscler. Rep.4,228-237
    (74)Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I., and Brownlee, M. (2000) Nature 404,787-790
    (75)Yamagishi, S., Inagaki, Y., Amano, S., Okamoto, T., Takeuchi, M. and Makita, Z. (2002) Biochem. Biophys. Res. Commun.296,877-882
    (76)Yamagishi, S., Inagaki, Y., Okamoto, T., Amano, S., Koga, K. Takeuchi, M., and Makita, Z. (2002) J. Biol. Chem.277,20309-20315
    (77)Yamagishi, S., Amano, S., Inagaki, Y., Okamoto, T., Takeuchi, M. and Makita, Z. (2002) Mol. Med.8,546-550
    (78)Yamagishi, S., Inagaki, Y., Amano, S., Okamoto, T., Koga, K., and Takeuchi, M. (2003) Kidney Int.63,464-473
    (79)Srinivasan S, Hatley ME, Bolick DT, et al. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia 2004;47:1727-1734.
    (80)Kikuchi H, Hikage M, Miyashita H, Fukumoto M. NADPH oxidase subunit, gp91 (phox) homologue, preferentially expressed in human colon epithelial cells. Gene 2000,254:237-243.
    (81)Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, Bergstrom DE. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 2004,18:486-491.
    (82)Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3:a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 2004,279:46065-46072.
    (83)Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3:a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065-46072,2004
    (84)Cheng G, Ritsick D, Lambeth JD. Nox3 regulation by NOXO1, p47phox, p67phox. J Biol Chem 279:34250-34255,2004.
    (85)Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner:its regulation by oxidase organizers and activators. J Biol Chem 280:23328-23339,2005.
    (86)Ueyama T, Geiszt M, Leto TL. Involvement of racl in activation of multicomponent noxl-and nox3-based NADPH oxidases. Mol Cell Biol 26:2160-2174,2006.
    (87)Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, Bergstrom DE. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486-491,2004.
    (88)Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007:55:498-510
    (89)Avignon A, Sultan A. PKC-B inhibition:a new therapeutic approach for diabetic complications? Diabetes & metabolism 2006;32:205-213.
    (90)Budhiraja S, Singh J. Protein kinase C beta inhibitors:a new therapeutic target for diabetic nephropathy and vascular complications. Fundamental & clinical pharmacology 2008:22:231-240.
    (91)Stitt, AW, Bhaduri, T, McMullen, CB, Gardiner, TA, Archer, DB. (2000) Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats Mol Cell Biol Res Commun 3,380-388
    (92)Stitt, AW, Bucala, R, Vlassara, H. (1997) Atherogenesis and advanced glycation:promotion, progression, and prevention Ann NY Acad Sci 811,115-127discussion 127-129
    (93)Vlassara H, Fuh H, Makita Z, et al. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA,1992,89:12043-12047.
    (94)Fuh H, Yang D, Striker L, et al. In vivo AGE-peptide injection induces kidney enlargement and glomerular hypertrophy in rabbits. Prevention by aminoguanidine. Diabetes,1992,41:9A.
    (95)Charlene E, Frederick M, Kymberly A, et al. Thrombomadulin Deficiency in Human Diabetic Nerve Microvasculature[J]. Diabetes,2002,51(6):1957-63
    (96)Niwa T, Katsuzaki T, Miyazaki S, Miyazaki T, Ishizaki Y, Hayase F, Tatemichi N, Takei Y:Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients. J Clin Invest 99:1272-1280,1997
    (97)Corbett JA, Tilton RG, Chang K, Hasan KS, Ido Y, Wang JL, Sweet land MA, Lancaster JR Jr, Williamson JR, McDaniel ML:Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 41:552-556,1992
    (98)Kihara M, Schmelzer JD, Poduslo JF, Curran GL, Nickander KK, Low PA:Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals. Proc Natl Acad Sci U S A 88:6107-6111,1991
    (99)Tilton RG, Chang K, Hasan KS, Smith SR, Petrash JM, Misko TP, Moore WM, Currie MG, Corbett JA, McDaniel ML, Williamson JR:Prevention of diabetic vascular dysfunction by guanidines:inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes 42:221-232,1993
    (100)Soulis-Liparota T, Cooper M, Dunlop M, Jerums G:The relative roles of advanced glycation, oxidation and aldose reductase inhibition in the development of experimental diabetic nephropathy in the Sprague-Dawley rat. Diabetologia 38:387-394,1995
    (101)Yu PH, Zuo DM:Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity:implications for advanced glycation and diabetic complications. Diabetologia 40:1243-1250,1997
    (102)do Carmo A, Lopes C, Santos M, Proenca R, Cunha-Vaz J, Carvalho AP:Nitric oxide synthase activity and L-arginine metabolism in the retinas from streptozotocin-induced diabetic rats. Gen Pharmacol 30:319-324,1998
    (103)Giardino I, Fard AK, Hatchell DL, Brownlee M:Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 47:1114-1120,1998
    (104)Kowluru RA, Engerman RL, Kern TS:Effects of aminoguanidine on hyperglycemia-induced retinal metabolic abnormalities (Abstract). Diabetes 48 (Suppl.1):A19,1999
    (105)Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparinbinging growth factor specific for vascular endothelial cells [J].Biochem Biophys Res Commun,1989,161:851.
    (106)Ferrara N, Leung DW, Cachianes G, et al. Purification and cloning of vascular endothelial growth factor secrete by folliculo-stellate cells[J]. Methods Enzymol,1991,198:391.
    (107)Murata T, Ishibashi T, Khalil A, et al. Vascular endothelial growth factor plays a role in hypwemeability of diabetic retinal vessesl[J]. Ophthalmic Res,1995,27:48.
    (108)Yamagishi, S., Yonekura, H., Yamamoto, Y., Katsuno, K., Sato, F. Mita, I., Ooka, H., Satozawa, N., Kawakami, T., Nomura, M., and Yamamoto, H. (1997) J. Biol. Chem.272,8723-8730
    (109)Okamoto, T., Yamagishi, S., Inagaki, Y., Amano, S., Koga, K., Abe, R..Takeuchi, M., Ohno, S., Yoshimura, A., and Makita, Z. (2002) FASEB J.16,1928-1930
    (110)Stitt, A. W., Bhaduri, T., McMullen, T., Gardiner, T. A., and Archer, D. B. (2000) Mol. Cell. Biol. Res. Commun.3,380-388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700