中国汉族人系统性红斑狼疮全基因组关联分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引言:系统性红斑狼疮(Systemic lupus erythematosus, SLE)是一种经典的自身免疫病,以多种自身抗体产生、补体激活、免疫复合物沉积,进而导致组织和器官的损伤为基本特征。SLE的病因包含遗传和环境两个方面的因素。SLE好发于女性,特别是育龄期妇女,男女的患病率之比约是1:9。SLE的发病率和患病率在世界不同人种、地区间有很大的差异。中国的患病率约为31-70/100000,欧洲人群的患病率约为7-71/100000。不同人种间的SLE临床表现也存在一定差异,在中国人群的SLE患者比欧洲SLE患者更容易发生狼疮肾炎。提示遗传异质性在SLE的临床表现的复杂性方面可能也起着重要的作用。
     在过去的20年多中,通过遗传连锁分析和关联分析等研究方法确定了许多SLE的易感基因和位点。特别是2008年完成的4项欧洲人群的SLE全基因组关联分析研究(genome-wide association studies, GWAS)确定了20多个SLE的易感基因/位点。流行病学研究以及遗传学研究提示种族差异和遗传异质性的在SLE的易感性、疾病的发生、发展以及引起复杂的临床表现方面中起到重要的作用。但是目前大部分连锁分析、关联分析研究以及所有的GWAS研究都是在欧洲人群中进行的。由于遗传异质性的原因,在中国汉族人群中进行SLE的GWAS研究具有重要的意义。目的:在中国汉族人群,利用全基因组关联分析研究方法在全基因组范围内搜寻与SLE关联的遗传变异,鉴定中国汉族人SLE的易感基因/位点。
     方法:按照相同的样本收集标准,从全国各地的医院收集SLE患者和对照样本,以地域来源进行匹配,分成3个独立的人群:初筛样本(1099例SLE患者和1254例正常对照,来自中国中部)、验证样本1(1643例SLE患者和5930例正常对照,来自中国中部)和验证样本2(1509例SLE患者和1120例正常对照,来自中国南部)。首先利用Illumina Human 610-Quard BeadChips基因芯片对初筛样本进行全基因组tag SNPs基因分型。经过质控后,进行全基因组关联分析筛选与SLE关联的SNPs,随后在另外两个独立的病例-对照验证人群中进行验证。将既往欧洲人群SLE的GWAS结果与本研究初筛阶段的统计分析结果进行比较。
     结果:全基因组关联分析结果:在初筛阶段的数据统计分析结果显示3个位点与SLE显著关联,达到全基因组的显著性水平(P<5×10-8),分别是6p21(MHC), 2q32.3(STAT4)和8p23.1(BLK)。在MHC区域,有13个位于HLAⅡ类区域的SNPs的关联性达到全基因组的显著性水平(P<5×10-8)。关联性最为显著的SNP是rs9271100(P=1.42×10-12,OR=1.9),对13个SNPs进行条件回归分析发现它们代表2个关联信号:一个是rs9271100,靠近HLA-DRB1;另外一个是HLA-DQA2附近的rs3997854(P=2.85×10-8,OR= 0.44)。
     根据初筛结果,选择78个非MHC区域的SNPs(来自67个位点)在另外两个验证人群中进行分析,发现位于16个位点的21个SNPs在两个验证人群中都显示与SLE的关联性(P<0.03),并且在合并三个独立人群的数据分析后显示显著的关联(Pcombined<5×10-8),16个位点分别是:1q25.1, 2p22.3, 2q32.3, 5q33.1, 6q21, 6q23.3, 7p12.2, 7q11.23, 7q32.1, 8p23.1, 10q11.22, 11q23.3, 11q24.3, 12q24.32, 16p11.2和22q11.21(5.17×10?42≤Pcombined≤2.77×10?8)。控制MHC的2个SNPs(rs9271100和rs3997854)后,这21个SNPs的关联性仍然存在。其中1q25.1, 2q32.3, 6q21, 6q23.3, 7q32.1, 8p23.1和22q11.21七个位点与SLE的关联性在既往欧洲人群中的GWAS已经有报道,这些易感位点中包含易感基因分别是TNFSF4, STAT4 , PRDM1-ATG5, TNFAIP3, IRF5, BLK和HIC2-UBE2L3。
     深入分析新发现的9个关联信号,对每个关联SNP周围区域的基因组重组率以及每个连锁不平衡区域内存在的基因进行分析。在2p22.3(RASGRP3), 7p12.2(IKZF1), 11q24.3(ETS1)和12q24.32(SLC15A4)四个易感位点的LD区域内仅包含一个已知的基因。在易感位点5q33.1的LD区域内,包含2个已知的基因(TNIP1和GPX3),但是从基因功能角度考虑,由于TNIP1在细胞激活、细胞因子信号转导及凋亡过程发挥着重要的作用,更有可能是SLE的易感基因。新发现的5个易感基因在功能学可能也与SLE发病过程中的病理机制相关,比如:SLC15A4可能参与抗原呈递和免疫复合物的处理;TNIP1可能参与Toll样受体功能及1型干扰素的产生;ETS1, RASGRP3和IKZF1可能参与淋巴细胞中免疫信号的转导。在另外4个易感位点(7q11.23, 10q11.22, 11q23.3和16p11.2)的LD区域内包含多个基因,很难确定哪一个是SLE的真正易感基因,还有待于更加深入、全面的精细定位分析来鉴定位于这些区域内的SLE易感基因。值得一提的是,位于16p11.2易感位点距离欧洲人群中发现的SLE易感基因ITGAM-ITGAX非常接近。但是本研究发现的关联信号与欧洲人群中发现的关联信号不在同一个LD区域内。另外,欧洲人群报道的5个SLE关联SNP在中国汉族人群中的等位基因频率都很低(MAF<0.01),这一区域与SLE的易感性关系复杂,有待于进一步多种族、大样本的研究来阐明其与SLE的具体关系。
     通过分析几项欧洲人群的SLE的GWAS研究报道的48个SNPs(来自22个位点),并对两个人群结果进行比较。可以把所研究的48个SNPs分成4组:第一组是在两个人群都提示有关联性的13个SNPs。其余35个SNPs与SLE的关联性在本项研究中未被发现,根据等位基因频率可以分成3组。第二组的20个SNPs在中国人群中的等位基因频率非常低(MAF<5%),而在欧洲人群中是常见SNPs(MAF>9%),特别是其中有14个SNPs在中国人群中几乎呈单态分布。第三组的4个SNPs在在中国人群中的等位基因频率较低(5%10%)。第四组的11个SNPs在两个人群中的等位基因频率大体一致,均为常见SNPs(MAF>10%)。通过查询既往一项GWAS结果数据库,本研究发现的SLE关联SNPs中有23个SNPs(包括13个位于MHC的SNPs)存在于他们的数据库中。只有位于TNIP1基因内的rs10036748在欧洲人群GWAS中提示关联性,它在两个人群中的等位基因频率明显相反(欧洲人群77%,中国汉族人群26%)。
     结论:本项研究在中国汉族人群进行了大样本量SLE的GWAS研究,在HLA区域的HLA-DRB1和HLA-DQA2附近存在两个独立的SLE关联信号。发现9个新的SLE易感基因/位点,并且验证出既往欧洲人群报道的7个易感基因/位点。另外通过与欧洲人群SLE的GWAS研究结果进行比较,发现影响SLE易感性的遗传变异在不同人种间存在差异,遗传异质性可能在SLE的易感性方面起着重要作用。该项研究将加深我们对SLE遗传基础的认识,为将来SLE机制研究提供启示。
Introduction: Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease, characterized by a diverse array of autoantibody production, complement activation, immune complex deposition, and tissue and organ damage and influenced by both genetic and environmental factors. SLE affects predominantly in women (prevalence ratio of women to men is 9 to 1) and particularly during childbearing years. There are marked disparities in SLE incidence and prevalence worldwide, which varies in different ethnic and geographical populations. The prevalence of SLE ranges from 31 to 70 cases per 100,000 persons among Chinese and 7 to 71 in European populations, and lupus nephritis is more prevalent in Chinese than in Europeans. The ethnic and genetic heterogeneity may contribute to the complexity of its clinical manifestation.
     Over past two decades, numerous studies were performed and identified multiple genetic factors related to SLE by linkage and association study. In particular, recent four genome-wide association studies (GWAS) of SLE in European populations have identified more than twenty robust susceptibility genes and/or loci. Epidemiological and genetic studies the genetic heterogeneity between ethnic populations has been suggested to play an important role in the susceptibility, development and complexity of clinical manifestation of SLE. Up to today, most linkage, association studies and all GWAS for SLE were performed in European population, which called for GWAS in Chinese populations considering the genetic heterogeneity in SLE.
     Object: To screen SLE associated SNPs in whole genome and indetify susceptibility genes/loci for SLE in Chinese Han population by using GWAS approach. Methods: All samples in this study were recruited from the Chinese Han population through collaboration with multiple hospitals, which were matched by geographic regions. All cases and controls were separated into three independent samples, in initial stage (1,099 SLE cases and 1,254 controls) were recruited from central China, samples in replication studies were recruited from the central (Replication 1: 1,643 cases and 5,930 controls) and southern (Replication 2: 1,509 cases and 1,120 controls) China. Samples in the initial stage were genotyped by Illumina Human 610-Quard BeadChips. After quality controls, genome wide association analysis were performed to screen SLE associated SNPs, which were replicated in other two case-control samples. The results of previous SLE GWAS in European population were compared with our GWAS.
     Results: The genome wide association analysis revealed association at three loci: 6p21 (MHC), 2q32.3 (STAT4) and 8p23.1 (BLK) with genome-wide significance (P<5×10-8). In the MHC region, 13 SNPs, all located within the HLA class II region, showed genome-wide significant association (P<5×10-8), and the most significant association was identified at rs9271100 (P=1.42×10?12, OR=1.9). Further conditional association analysis of the 13 SNPs confirmed that there were two independent associations within the region at rs9271100 next to HLA-DRB1 and rs3997854 next to HLA-DQA2(P=2.85×10-8, OR= 0.44).
     We performed a replication study by genotyping 78 non-MHC SNPs (from 67 loci) in two additional cohorts of Chinese Han (Replication 1 and Replication 2). Twenty-one SNPs within 16 loci were validated with independent supporting evidence for association (P<0.03) from the two replication samples and highly significant evidence in the combined sample that surpassed genome-wide significance (Pcombined<5×10-8). The 16 confirmed susceptibility loci were located at 1q25.1, 2p22.3, 2q32.3, 5q33.1, 6q21, 6q23.3, 7p12.2, 7q11.23, 7q32.1, 8p23.1, 10q11.22, 11q23.3, 11q24.3, 12q24.32, 16p11.2 and 22q11.21 (5.17×10-42≤Pcombined≤2.77×10-8). The associations at the 16 loci were independent of the association within the MHC region, because the associations at these loci remained similar after controlling the genetic effect of rs9271100 and rs3997854 within the MHC region. The associations at 1q25.1, 2q32.3, 6q21, 6q23.3, 7q32.1, 8p23.1 and 22q11.21 were reported by previous GWAS in European populations, implicating susceptibility genes TNFSF4, STAT4, PRDM1-ATG5, TNFAIP3, IRF5,BLK and HIC2-UBE2L3 for SLE, respectively.
     To identify susceptibility gene underlying each of the 9 novel associations, we investigated the patterns of the recombination and LD around the risk-associated SNPs and the gene(s) located within each region harboring the association. Only one gene was implicated by each of the associations at 2p22.3 (RASGRP3), 7p12.2 (IKZF1), 11q24.3 (ETS1), 12q24.32 (SLC15A4), where a single gene was found within the LD block harboring the association. At 5q33.1, two genes, TNIP1 and GPX3, were found within this locus, but TNIP1 is more plausible as susceptibility gene, due to its important role in modulating cell activation, cytokine signaling and apoptosis. These five novel susceptibility genes provide further supporting evidence for their biological function, such as: immune complex processing (SLC15A4); Toll-like receptor function and type I interferon production (TNIP1); and immune signal transduction in lymphocytes (ETS1, RASGRP3 and IKZF1). For the association at 7q11.23, 10q11.22, 11q23.3 and 16p11.2, there were more than one gene or transcript within the each region. Further fine mapping analysis is required to determine the susceptibility genes underlying these novel association loci for SLE. Interestingly, the association at 16p11.2 located close to the susceptibility locus of ITGAM-ITGAX identified in European population. The association identified in our study with a LD pattern that was different from the one where ITGAM and ITGAX located. Furthermore, the MAFs of 5 reported SNPs within ITGAM-ITGAX locus were very low (<0.01) in Chinese Han population. Further study will be needed to confirm the susceptibility gene within this region.
     The association evidence for 48 SLE-associated SNPs (from 22 loci) identified by the previous GWAS in European populations was also investigated in our GWAS dataset. These SNPs were summarized into four groups. Group 1 included 13 SNPs confirmed by our GWAS. However, our study did not provide evidence for the associations at the remaining 35 SNPs, which were divided into three groups based on their allele frequencies. Group 2 included 20 SNPs are very rare in Chinese Han population (MAF<5%), especially 14 of them are almost monomorphism. However, all these 20 SNPs are common SNPs in Europeans. Group 3 included 4 SNPs with low population frequency in Chinese Han population (5%     Conclusion: This study was the first large scale GWAS of SLE in Asian population (Chinese Han) and identified 9 novel susceptibility genes/loci as well as additional 8 previously reported ones for SLE. By compared with previous GWAS in Europeans, genetic heterogeneity was suggested playing an important role in the disease susceptibility. This study not only advanced our understanding on the genetic basis of SLE susceptibility, but also provided enlightenment for future research of SLE.
引文
1 Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358: 929-39.
    2 Hopkinson ND, Doherty M, Powell RJ. Clinical features and race-specific incidence/prevalence rates of systemic lupus erythematosus in a geographically complete cohort of patients. Ann Rheum Dis 1994; 53: 675-80.
    3 Lau CS, Yin G, Mok MY. Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 2006; 15: 715-9.
    4 Zeng QY, Chen R, Darmawan J et al. Rheumatic diseases in China. Arthritis Res Ther 2008; 10: R17.
    5 Danchenko N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 2006; 15: 308-18.
    6 Wang J, Yang S, Chen JJ et al. Systemic lupus erythematosus: a genetic epidemiology study of 695 patients from China. Arch Dermatol Res 2007; 298: 485-91.
    7 Wong M, Tsao BP. Current topics in human SLE genetics. Springer Semin Immunopathol 2006; 28: 97-107.
    8 Ardoin SP, Pisetsky DS. Developments in the scientific understanding of lupus. Arthritis Res Ther 2008; 10: 218.
    9 Lee-Kirsch MA, Gong M, Schulz H et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet 2006; 79: 731-7.
    10 Rice G, Newman WG, Dean J et al. Heterozygous mutations in TREX1 causefamilial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 2007; 80: 811-5.
    11 Lee-Kirsch MA, Gong M, Chowdhury D et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007; 39: 1065-7.
    12 Hawn TR, Wu H, Grossman JM et al. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci U S A 2005; 102: 10593-7.
    13 Prokunina L, Castillejo-Lopez C, Oberg F et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666-9.
    14 Remmers EF, Plenge RM, Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977-86.
    15 Goring HH, Terwilliger JD, Blangero J. Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 2001; 69: 1357-69.
    16 Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241-7.
    17 Sabatti C, Service S, Freimer N. False discovery rate in linkage and association genome screens for complex disorders. Genetics 2003; 164: 829-33.
    18 Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-7.
    19 Graham DS, Graham RR, Manku H et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 2008; 40: 83-9.
    20 Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associatedwith increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550-5.
    21 Graham RR, Kyogoku C, Sigurdsson S et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 2007; 104: 6758-63.
    22 Kyogoku C, Langefeld CD, Ortmann WA et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75: 504-7.
    23 Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851-61.
    24 Hattersley AT, McCarthy MI. What makes a good genetic association study? Lancet 2005; 366: 1315-23.
    25 Klein RJ, Zeiss C, Chew EY et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385-9.
    26 Steemers FJ, Gunderson KL. Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2007; 2: 41-9.
    27 Kennedy GC, Matsuzaki H, Dong S et al. Large-scale genotyping of complex DNA. Nat Biotechnol 2003; 21: 1233-7.
    28 Gunderson KL, Steemers FJ, Lee G et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 2005; 37: 549-54.
    29 Purcell S, Neale B, Todd-Brown K et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559-75.
    30 Harley JB, Alarcon-Riquelme ME, Criswell LA et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204-10.
    31 Hom G, Graham RR, Modrek B et al. Association of systemic lupuserythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358: 900-9.
    32 Kozyrev SV, Abelson AK, Wojcik J et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 211-6.
    33 Graham RR, Cotsapas C, Davies L et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1059-61.
    34 Musone SL, Taylor KE, Lu TT et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1062-4.
    35 Moser KL, Kelly JA, Lessard CJ et al. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 2009; 10: 373-9.
    36 Alarcon-Riquelme ME. The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. Springer Semin Immunopathol 2006; 28: 109-17.
    37 Yang W, Ng P, Zhao M et al. Population differences in SLE susceptibility genes: STAT4 and BLK, but not PXK, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 2009; 10: 219-26.
    38 Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science 2008; 322: 881-8.
    39 Harley IT, Kaufman KM, Langefeld CD et al. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet 2009; 10: 285-90.
    40 Chen J, Zheng H, Bei JX et al. Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. Am J Hum Genet 2009; 85: 775-85.
    41 Xu S, Yin X, Li S et al. Genomic dissection of population substructure of HanChinese and its implication in association studies. Am J Hum Genet 2009; 85: 762-74.
    42 Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1725.
    43 Barrett JC, Fry B, Maller J et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263-5.
    44 Grumet FC, Coukell A, Bodmer JG et al. Histocompatibility (HL-A) antigens associated with systemic lupus erythematosus. A possible genetic predisposition to disease. N Engl J Med 1971; 285: 193-6.
    45 Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006; 28: 119-30.
    46 Gateva V, Sandling JK, Hom G et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1228-33.
    47 Yang W, Shen N, Ye DQ et al. Genome-Wide Association Study in Asian Populations Identifies Variants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus. PLoS Genet; 6: e1000841.
    48 Sekine H, Ferreira RC, Pan-Hammarstrom Q et al. Role for Msh5 in the regulation of Ig class switch recombination. Proc Natl Acad Sci U S A 2007; 104: 7193-8.
    49 Fernando MM, Stevens CR, Sabeti PC et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet 2007; 3: e192.
    50 Barcellos LF, May SL, Ramsay PP et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet 2009; 5:e1000696.
    51 Stone JC. Regulation of Ras in lymphocytes: get a GRP. Biochem Soc Trans 2006; 34: 858-61.
    52 Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11-22.
    53 Campbell SL, Khosravi-Far R, Rossman KL et al. Increasing complexity of Ras signaling. Oncogene 1998; 17: 1395-413.
    54 Stang SL, Lopez-Campistrous A, Song X et al. A proapoptotic signaling pathway involving RasGRP, Erk, and Bim in B cells. Exp Hematol 2009; 37: 122-34.
    55 Dower NA, Stang SL, Bottorff DA et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 2000; 1: 317-21.
    56 Zheng Y, Liu H, Coughlin J et al. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood 2005; 105: 3648-54.
    57 Teixeira C, Stang SL, Zheng Y et al. Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood 2003; 102: 1414-20.
    58 Coughlin JJ, Stang SL, Dower NA et al. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J Immunol 2005; 175: 7179-84.
    59 Verstrepen L, Carpentier I, Verhelst K et al. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 2009; 78: 105-14.
    60 Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000; 60: 1143-51.
    61 Nair RP, Duffin KC, Helms C et al. Genome-wide scan reveals association ofpsoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009; 41: 199-204.
    62 Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009; 30: 383-91.
    63 Georgopoulos K, Bigby M, Wang JH et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79: 143-56.
    64 Nera KP, Alinikula J, Terho P et al. Ikaros has a crucial role in regulation of B cell receptor signaling. Eur J Immunol 2006; 36: 516-25.
    65 Wojcik H, Griffiths E, Staggs S et al. Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis. Eur J Immunol 2007; 37: 1022-32.
    66 Wang JH, Nichogiannopoulou A, Wu L et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 1996; 5: 537-49.
    67 Winandy S, Wu L, Wang JH et al. Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 1999; 190: 1039-48.
    68 Yap WH, Yeoh E, Tay A et al. STAT4 is a target of the hematopoietic zinc-finger transcription factor Ikaros in T cells. FEBS Lett 2005; 579: 4470-8.
    69 Ezzat S, Mader R, Yu S et al. Ikaros integrates endocrine and immune system development. J Clin Invest 2005; 115: 1021-9.
    70 Sun J, Matthias G, Mihatsch MJ et al. Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. J Immunol 2003; 170: 1699-706.
    71 Papaemmanuil E, Hosking FJ, Vijayakrishnan J et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009; 41: 1006-10.
    72 Dittmer J. The biology of the Ets1 proto-oncogene. Mol Cancer 2003; 2: 29.
    73 Gallant S, Gilkeson G. ETS transcription factors and regulation of immunity. Archivum Immunologiae et Therapiae Experimentalis 2006; 54: 149-63.
    74 Bories JC, Willerford DM, Grevin D et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 1995; 377: 635-8.
    75 Muthusamy N, Barton K, Leiden JM. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 1995; 377: 639-42.
    76 Bhat NK, Thompson CB, Lindsten T et al. Reciprocal expression of human ETS1 and ETS2 genes during T-cell activation: regulatory role for the protooncogene ETS1. Proc Natl Acad Sci U S A 1990; 87: 3723-7.
    77 Thomas RS, Tymms MJ, McKinlay LH et al. ETS1, NFkappaB and AP1 synergistically transactivate the human GM-CSF promoter. Oncogene 1997; 14: 2845-55.
    78 Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 2004; 447: 610-8.
    79 Charrier L, Merlin D. The oligopeptide transporter hPepT1: gateway to the innate immune response. Lab Invest 2006; 86: 538-46.
    80 Matsumura K, Miki T, Jhomori T et al. Possible role of PEPT1 in gastrointestinal hormone secretion. Biochem Biophys Res Commun 2005; 336: 1028-32.
    81 Lee J, Tattoli I, Wojtal KA et al. pH-dependent Internalization of Muramyl Peptides from Early Endosomes Enables Nod1 and Nod2 Signaling. J Biol Chem 2009; 284: 23818-29.
    82 Graham RR, Hom G, Ortmann W et al. Review of recent genome-wide association scans in lupus. J Intern Med 2009; 265: 680-8.
    83 Nath SK, Han S, Kim-Howard X et al. A nonsynonymous functional variant inintegrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 2008; 40: 152-4.
    84 Stuber E, Strober W. The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response. J Exp Med 1996; 183: 979-89.
    85 Croft M, So T, Duan W et al. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 2009; 229: 173-91.
    86 Manku H, Graham DS, Vyse TJ. Association of the co-stimulator OX40L with systemic lupus erythematosus. J Mol Med 2009; 87: 229-34.
    87 Namjou B, Sestak AL, Armstrong DL et al. High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum 2009; 60: 1085-95.
    88 Taylor KE, Remmers EF, Lee AT et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet 2008; 4: e1000084.
    89 Abelson AK, Delgado-Vega AM, Kozyrev SV et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis 2009; 68: 1746-53.
    90 Nguyen KB, Watford WT, Salomon R et al. Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 2002; 297: 2063-6.
    91 Sakaguchi S, Sakaguchi N, Asano M et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155: 1151-64.
    92 Watford WT, Hissong BD, Bream JH et al. Signaling by IL-12 and IL-23 and theimmunoregulatory roles of STAT4. Immunol Rev 2004; 202: 139-56.
    93 Mathur AN, Chang HC, Zisoulis DG et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 2007; 178: 4901-7.
    94 Miossec P. Interleukin-17 in fashion, at last: ten years after its description, its cellular source has been identified. Arthritis Rheum 2007; 56: 2111-5.
    95 Raychaudhuri S, Thomson BP, Remmers EF et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet 2009; 41: 1313-8.
    96 Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40: 955-62.
    97 Plenge RM, Cotsapas C, Davies L et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007; 39: 1477-82.
    98 Thomson W, Barton A, Ke X et al. Rheumatoid arthritis association at 6q23. Nat Genet 2007; 39: 1431-3.
    99 Raychaudhuri S, Remmers EF, Lee AT et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 2008; 40: 1216-23.
    100 Wang K, Baldassano R, Zhang H et al. Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum Mol Genet.
    101 Sigurdsson S, Nordmark G, Goring HH et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528-37.
    102 Kelly JA, Kelley JM, Kaufman KM et al. Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans. Genes Immun 2008; 9: 187-94.
    103 Deltour S, Pinte S, Guerardel C et al. Characterization of HRG22, a humanhomologue of the putative tumor suppressor gene HIC1. Biochem Biophys Res Commun 2001; 287: 427-34.
    104 Chen WY, Wang DH, Yen RC et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005; 123: 437-48.
    105 Pediconi N, Guerrieri F, Vossio S et al. hSirT1-dependent regulation of the PCAF-E2F1-p73 apoptotic pathway in response to DNA damage. Mol Cell Biol 2009; 29: 1989-98.
    1 Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358: 929-39.
    2 Danchenko N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 2006; 15: 308-18.
    3 Zeng QY, Chen R, Darmawan J et al. Rheumatic diseases in China. Arthritis Res Ther 2008; 10: R17.
    4 Wang J, Yang S, Chen JJ et al. Systemic lupus erythematosus: a genetic epidemiology study of 695 patients from China. Arch Dermatol Res 2007; 298: 485-91.
    5 Wong M, Tsao BP. Current topics in human SLE genetics. Springer Semin Immunopathol 2006; 28: 97-107.
    6 Kelly JA, Moser KL, Harley JB. The genetics of systemic lupus erythematosus: putting the pieces together. Genes Immun 2002; 3 Suppl 1: S71-85.
    7 Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006; 28: 119-30.
    8 Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-7.
    9 Kozyrev SV, Abelson AK, Wojcik J et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 211-6.
    10 Graham RR, Cotsapas C, Davies L et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1059-61.
    11 Harley JB, Alarcon-Riquelme ME, Criswell LA et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204-10.
    12 Hom G, Graham RR, Modrek B et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358: 900-9.
    13 Han JW, Zheng HF, Cui Y et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1234-7.
    14 Gateva V, Sandling JK, Hom G et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1228-33.
    15 Yang W, Shen N, Ye DQ et al. Genome-Wide Association Study in Asian Populations Identifies Variants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus. PLoS Genet; 6: e1000841.
    16 Grumet FC, Coukell A, Bodmer JG et al. Histocompatibility (HL-A) antigens associated with systemic lupus erythematosus. A possible genetic predisposition to disease. N Engl J Med 1971; 285: 193-6.
    17 van der Linden MW, van der Slik AR, Zanelli E et al. Six microsatellite markers on the short arm of chromosome 6 in relation to HLA-DR3 and TNF-308A in systemic lupus erythematosus. Genes Immun 2001; 2: 373-80.
    18 Scofield RH, Harley JB. Association of anti-Ro/SS-A autoantibodies with glutamine in position 34 of DQA1 and leucine in position 26 of DQB1. Arthritis Rheum 1994; 37: 961-2.
    19 Sekine H, Ferreira RC, Pan-Hammarstrom Q et al. Role for Msh5 in the regulation of Ig class switch recombination. Proc Natl Acad Sci U S A 2007; 104: 7193-8.
    20 Fernando MM, Stevens CR, Sabeti PC et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet 2007; 3: e192.
    21 Barcellos LF, May SL, Ramsay PP et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet 2009; 5: e1000696.
    22 Navratil JS, Korb LC, Ahearn JM. Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 1999; 42: 47-52.
    23 Sullivan KE, Petri MA, Schmeckpeper BJ et al. Prevalence of a mutation causing C2 deficiency in systemic lupus erythematosus. J Rheumatol 1994; 21: 1128-33.
    24 Johnson CA, Densen P, Hurford RK, Jr. et al. Type I human complement C2 deficiency. A 28-base pair gene deletion causes skipping of exon 6 during RNA splicing. J Biol Chem 1992; 267: 9347-53.
    25 Yang Y, Chung EK, Zhou B et al. The intricate role of complement componentC4 in human systemic lupus erythematosus. Curr Dir Autoimmun 2004; 7: 98-132.
    26 Yang Y, Chung EK, Wu YL et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 2007; 80: 1037-54.
    27 Nath SK, Harley JB, Lee YH. Polymorphisms of complement receptor 1 and interleukin-10 genes and systemic lupus erythematosus: a meta-analysis. Hum Genet 2005; 118: 225-34.
    28 Wu H, Boackle SA, Hanvivadhanakul P et al. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci U S A 2007; 104: 3961-6.
    29 Lee YH, Harley JB, Nath SK. Meta-analysis of TNF-alpha promoter -308 A/G polymorphism and SLE susceptibility. Eur J Hum Genet 2006; 14: 364-71.
    30 Eskdale J, Gallagher G, Verweij CL et al. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci U S A 1998; 95: 9465-70.
    31 Sung YK, Park BL, Shin HD et al. Interleukin-10 gene polymorphisms are associated with the SLICC/ACR Damage Index in systemic lupus erythematosus. Rheumatology (Oxford) 2006; 45: 400-4.
    32 Chi M, Tridandapani S, Zhong W et al. C-reactive protein induces signaling through Fc gamma RIIa on HL-60 granulocytes. J Immunol 2002; 168: 1413-8.
    33 Russell AI, Cunninghame Graham DS, Shepherd C et al. Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 2004; 13: 137-47.
    34 Jonsen A, Gunnarsson I, Gullstrand B et al. Association between SLE nephritis and polymorphic variants of the CRP and FcgammaRIIIa genes. Rheumatology(Oxford) 2007; 46: 1417-21.
    35 Edberg JC, Wu J, Langefeld CD et al. Genetic variation in the CRP promoter: association with systemic lupus erythematosus. Hum Mol Genet 2008; 17: 1147-55.
    36 Rovin BH, Lu L, Saxena R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 1999; 259: 344-8.
    37 Lima G, Soto-Vega E, Atisha-Fregoso Y et al. MCP-1, RANTES, and SDF-1 polymorphisms in Mexican patients with systemic lupus erythematosus. Hum Immunol 2007; 68: 980-5.
    38 Aguilar F, Gonzalez-Escribano MF, Sanchez-Roman J et al. MCP-1 promoter polymorphism in Spanish patients with systemic lupus erythematosus. Tissue Antigens 2001; 58: 335-8.
    39 Kyogoku C, Tsuchiya N. A compass that points to lupus: genetic studies on type I interferon pathway. Genes Immun 2007; 8: 445-55.
    40 Alarcon-Riquelme ME. The genetics of systemic lupus erythematosus: understanding how SNPs confer disease susceptibility. Springer Semin Immunopathol 2006; 28: 109-17.
    41 Zhuang H, Kosboth M, Lee P et al. Lupus-like disease and high interferon levels corresponding to trisomy of the type I interferon cluster on chromosome 9p. Arthritis Rheum 2006; 54: 1573-9.
    42 Tangwattanachuleeporn M, Sodsai P, Avihingsanon Y et al. Association of interferon-gamma gene polymorphism (+874A) with arthritis manifestation in SLE. Clin Rheumatol 2007; 26: 1921-4.
    43 Yao X, Chen ZQ, Gong JQ et al. The interferon-gamma receptor gene polymorphisms (Val14Met and Gln64Arg) are not associated with systemic lupus erythematosus in Chinese patients. Arch Dermatol Res 2007; 299: 367-71.
    44 Nakashima H, Inoue H, Akahoshi M et al. The combination of polymorphisms within interferon-gamma receptor 1 and receptor 2 associated with the risk of systemic lupus erythematosus. FEBS Lett 1999; 453: 187-90.
    45 Sigurdsson S, Nordmark G, Goring HH et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 2005; 76: 528-37.
    46 Graham DS, Akil M, Vyse TJ. Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families. Rheumatology (Oxford) 2007; 46: 927-30.
    47 Han JW, Zheng HF, Cui Y et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1234-7.
    48 Shin HD, Sung YK, Choi CB et al. Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res Ther 2007; 9: R32.
    49 Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550-5.
    50 Akahoshi M, Nakashima H, Shirakawa T. Roles of genetic variations in signalling/immunoregulatory molecules in susceptibility to systemic lupus erythematosus. Semin Immunol 2006; 18: 224-9.
    51 Salmon JE, Pricop L. Human receptors for immunoglobulin G: key elements in the pathogenesis of rheumatic disease. Arthritis Rheum 2001; 44: 739-50.
    52 Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum 2002; 46: 1563-71.
    53 Karassa FB, Trikalinos TA, Ioannidis JP. The Fc gamma RIIIA-F158 allele is arisk factor for the development of lupus nephritis: a meta-analysis. Kidney Int 2003; 63: 1475-82.
    54 Kyogoku C, Dijstelbloem HM, Tsuchiya N et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002; 46: 1242-54.
    55 Chen JY, Wang CM, Ma CC et al. Association of a transmembrane polymorphism of Fcgamma receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum 2006; 54: 3908-17.
    56 Su K, Wu J, Edberg JC et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 2004; 172: 7186-91.
    57 Blank MC, Stefanescu RN, Masuda E et al. Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum Genet 2005; 117: 220-7.
    58 Olferiev M, Masuda E, Tanaka S et al. The role of activating protein 1 in the transcriptional regulation of the human FCGR2B promoter mediated by the -343 G -> C polymorphism associated with systemic lupus erythematosus. J Biol Chem 2007; 282: 1738-46.
    59 Aitman TJ, Dong R, Vyse TJ et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851-5.
    60 Fanciulli M, Norsworthy PJ, Petretto E et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 2007; 39: 721-3.
    61 Sanchez E, Callejas JL, Sabio JM et al. Polymorphisms of the FCRL3 gene in aSpanish population of systemic lupus erythematosus patients. Rheumatology (Oxford) 2006; 45: 1044-6.
    62 Prokunina L, Castillejo-Lopez C, Oberg F et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666-9.
    63 Ferreiros-Vidal I, Gomez-Reino JJ, Barros F et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis Rheum 2004; 50: 2590-7.
    64 Kong EK, Prokunina-Olsson L, Wong WH et al. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum 2005; 52: 1058-62.
    65 Lin SC, Yen JH, Tsai JJ et al. Association of a programmed death 1 gene polymorphism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum 2004; 50: 770-5.
    66 Wang Q, Ye D, Yin J et al. Programmed cell death 1 genotypes are associated with susceptibility to systemic lupus erythematosus among Chinese. Arch Dermatol Res 2008; 300: 91-3.
    67 Wang SC, Chen YJ, Ou TT et al. Programmed death-1 gene polymorphisms in patients with systemic lupus erythematosus in Taiwan. J Clin Immunol 2006; 26: 506-11.
    68 Bottini N, Musumeci L, Alonso A et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337-8.
    69 Kaufman KM, Kelly JA, Herring BJ et al. Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus erythematosus. Arthritis Rheum 2006; 54: 2533-40.
    70 Baca V, Velazquez-Cruz R, Salas-Martinez G et al. Association analysis of thePTPN22 gene in childhood-onset systemic lupus erythematosus in Mexican population. Genes Immun 2006; 7: 693-5.
    71 Kyogoku C, Langefeld CD, Ortmann WA et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 2004; 75: 504-7.
    72 Mori M, Yamada R, Kobayashi K et al. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 2005; 50: 264-6.
    73 Krishnan S, Chowdhury B, Tsokos GC. Autoimmunity in systemic lupus erythematosus: integrating genes and biology. Semin Immunol 2006; 18: 230-43.
    74 Haug BL, Lee JS, Sibley JT. Altered poly(ADP-ribose) metabolism in family members of patients with systemic lupus erythematosus. J Rheumatol 1994; 21: 851-6.
    75 Tsao BP, Cantor RM, Kalunian KC et al. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997; 99: 725-31.
    76 Tsao BP, Cantor RM, Grossman JM et al. PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. J Clin Invest 1999; 103: 1135-40.
    77 Delrieu O, Michel M, Frances C et al. Poly(ADP-ribose) polymerase alleles in French Caucasians are associated neither with lupus nor with primary antiphospholipid syndrome. GRAID Research Group. Group for Research on Auto-Immune Disorders. Arthritis Rheum 1999; 42: 2194-7.
    78 Hur JW, Sung YK, Shin HD et al. Poly(ADP-ribose) polymerase (PARP) polymorphisms associated with nephritis and arthritis in systemic lupus erythematosus. Rheumatology (Oxford) 2006; 45: 711-7.
    79 Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410: 1099-103.
    80 Hawn TR, Wu H, Grossman JM et al. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci U S A 2005; 102: 10593-7.
    81 De Jager PL, Richardson A, Vyse TJ et al. Genetic variation in toll-like receptor 9 and susceptibility to systemic lupus erythematosus. Arthritis Rheum 2006; 54: 1279-82.
    82 Demirci FY, Manzi S, Ramsey-Goldman R et al. Association study of Toll-like receptor 5 (TLR5) and Toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. J Rheumatol 2007; 34: 1708-11.
    83倪玉华,张建军,孙宝贵. DNA酶Ⅰ的研究进展.国际病理科学与临床杂志2006; 26: 531-5.
    84 Yasutomo K, Horiuchi T, Kagami S et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 2001; 28: 313-4.
    85 Liu MF, Wang CR, Fung LL. No evidence of mutation in exon 2 of DNAse1 gene in Chinese patients with systemic lupus erythematosus. Lupus 2004; 13: 142-3.
    86 Shin HD, Park BL, Kim LH et al. Common DNase I polymorphism associated with autoantibody production among systemic lupus erythematosus patients. Hum Mol Genet 2004; 13: 2343-50.
    87 Bodano A, Gonzalez A, Balada E et al. Study of DNASE I gene polymorphisms in systemic lupus erythematosus susceptibility. Ann Rheum Dis 2007; 66: 560-1.
    88 Bodano A, Gonzalez A, Ferreiros-Vidal I et al. Association of a non-synonymous single-nucleotide polymorphism of DNASEI with SLE susceptibility. Rheumatology (Oxford) 2006; 45: 819-23.
    89 Lee-Kirsch MA, Chowdhury D, Harvey S et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med 2007; 85: 531-7.
    90 Lee-Kirsch MA, Gong M, Chowdhury D et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007; 39: 1065-7.
    91 Remmers EF, Plenge RM, Lee AT et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357: 977-86.
    92 Graham DS, Graham RR, Manku H et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 2008; 40: 83-9.
    93 Zhang SQ, Han JW, Sun LD et al. A single-nucleotide polymorphism of the TNFSF4 gene is associated with systemic lupus erythematosus in Chinese Han population. Rheumatol Int 2009.
    94 Chang YK, Yang W, Zhao M et al. Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese. Genes Immun 2009; 10: 414-20.
    95 Nath SK, Han S, Kim-Howard X et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 2008; 40: 152-4.
    96 Jacob CO, Zhu J, Armstrong DL et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A 2009; 106: 6256-61.
    97 Webb R, Wren JD, Jeffries M et al. Variants within MECP2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1076-84.
    98 Sawalha AH. Xq28 and lupus: IRAK1 or MECP2? Proc Natl Acad Sci U S A 2009; 106: E62; author reply E3.
    99 Zhang Z, Zhu KJ, Xu Q et al. The association of the BLK gene with SLE wasreplicated in Chinese Han. Arch Dermatol Res.
    100 Kamatani Y, Matsuda K, Ohishi T et al. Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population. J Hum Genet 2008; 53: 64-73.
    101 Oishi T, Iida A, Otsubo S et al. A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population. J Hum Genet 2008; 53: 151-62.
    102 Musone SL, Taylor KE, Lu TT et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1062-4.
    103 Cai LQ, Wang ZX, Lu WS et al. A single-nucleotide polymorphism of the TNFAIP3 gene is associated with systemic lupus erythematosus in Chinese Han population. Mol Biol Rep; 37: 389-94.
    104 Moser KL, Kelly JA, Lessard CJ et al. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 2009; 10: 373-9.
    105 Harley IT, Kaufman KM, Langefeld CD et al. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet 2009; 10: 285-90.
    106 Graham RR, Hom G, Ortmann W et al. Review of recent genome-wide association scans in lupus. J Intern Med 2009; 265: 680-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700