干扰素-γ抑制小胶质细胞氧化损伤的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小胶质细胞是脑内固有的巨噬细胞样免疫效应细胞,活化的小胶质细胞释放多种生物活性物质,对中枢神经系统疾病中组织细胞的氧化应激状态、炎症进程以及免疫反应都起到重要的调节作用。充分了解小胶质细胞对体内各种活性物质包括细胞因子的反应,能够为治疗中枢神经系统疾病提供理论依据及线索。
     小胶质细胞释放的自由基,如过氧化氢(H2O2)和一氧化氮(NO),在病理状态下可加强细胞的防御功能,但它们同时也会攻击小胶质细胞。作为一种自我保护机制,小胶质细胞需配备完善的抗氧化防御系统,以抵御自由基诱导的细胞损伤。本论文着重考察干扰素-γ(Interferon-γ, IFN-γ)对小胶质细胞抗氧化防御系统的调节作用及作用机理。我们首先以细胞形态学改变及LDH释放量为指标,比较IFN-γ及白细胞介素-1β(Interleukin-1β,IL-1β)对H2O2诱导的小胶质细胞死亡的影响。结果显示,IFN-γ预处理能够显著抑制H2O2诱导的小胶质细胞死亡,而IFN-γ共处理以及IL-1β预处理对H2O2毒性均未显示明显的保护作用。IFN-γ预处理还能够显著抑制超氧阴离子(O2-)、过氧亚硝酸盐(ONOO-)、HNE和rotenone诱导的小胶质细胞的损伤及死亡。细胞选择性考察结果显示,IFN-γ预处理对H202诱导的星形胶质细胞和腹腔巨噬细胞损伤未显示保护作用。进一步的研究结果显示,IFN-γ预处理小胶质细胞6-24h期间,IFN-γ对H2O2毒性的抑制作用随着预处理时间的延长而增强,而且IFN-γ预处理对小胶质细胞的保护作用可被蛋白合成抑制剂(Cycloheximide)阻断。上述实验结果提示,小胶质细胞在IFN-γ预处理作用下生成的新蛋白质是IFN-γ发挥小胶质细胞保护作用的必要条件。
     为了研究IFN-γ预处理对小胶质细胞抗氧化酶系统的调节作用,我们利用Western blot及抗氧化酶活性测定试剂盒分别检测小胶质细胞抗氧化酶的蛋白表达及活性。在多种抗氧化酶如铜锌超氧化物歧化酶(Cu/Zn-SOD)、锰超氧化物歧化酶(Mn-SOD)、过氧化氢酶(Catalase)、谷胱甘肽过氧化物酶(Gpx)、过氧化还原酶(PrxⅠand PrxⅢ)及硫过氧化物还原因子(Srx)中,IFN-γ预处理可增强小胶质细胞Mn-SOD及Srx的表达,并且能够抑制H2O2引起的Prx过氧化产物(Prx-SO2)的表达。抗氧化酶活性分析结果则显示,IFN-γ提高小胶质细胞Mn-SOD及catalase活性,对Cu/Zn-SOD及Gpx活性无明显影响。通过siRNA转染下调小胶质细胞Mn-SOD的表达,Mn-SOD siRNA转染可部分阻断IFN-γ对Mn-SOD表达的增强作用及其对H2O2毒性的抑制作用。而Catalase抑制剂(3-AT)可部分阻断IFN-γ对小胶质细胞氧化损伤的保护作用。以上实验结果提不,IFN-y通过增强线粒体Mn-SOD的表达及Mn-SOD、catalase的活性,发挥细胞保护作用。此外,IFN-y还可增强小胶质细胞Srx的表达,并且促进氧化应激状态下Prx-SO2的还原,维持细胞内Prx的活性,从而加强小胶质细胞的抗氧化能力。
     IFN-γ预处理6-24h可逐渐增加小胶质细胞NO释放量,而NO对于细胞的氧化应激反应具有双向调节作用。本实验中,诱导型一氧化氮合酶(iNOS)抑制剂可部分阻断IFN-y预处理的细胞保护作用,而NO供体(DEA/NO)能够显著抑制H2O2诱导的小胶质细胞死亡。DEA/NO能够增强小胶质细胞Srx的表达,加快Prx-SO2的还原速率。以上结果提示,NO是介导IFN-y的小胶质细胞保护作用的重要活性分子。
     丝裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)的磷酸化在细胞氧化应激反应中起着重要的作用。为了进一步探讨参与IFN-y预处理保护作用的信号通路,我们利用western blot检测了IFN-y对H2O2诱导的MAPKs磷酸化的影响。结果显示,H2O2可显著提高小胶质细胞MAPKs (p38, JNK, ERK)的磷酸化水平,p38和JNK抑制剂可明显抑制H2O2毒性。因此,p38和JNK MAPK在H2O2诱导的小胶质细胞死亡中起关键作用。IFN-y预处理可显著降低H2O2诱导的p38和JNK MAPK的磷酸化水平。本实验还考察了IFN-y处理1-24h对小胶质细胞丝裂原活化蛋白激酶磷酸酶-1(MAPK phosphatases-1, MKP-1)表达的影响。结果显示,IFN-y预处理1-24h可逐步增强小胶质细胞MKP-1的表达。这些结果提示,除了能够增强小胶质细胞的抗氧化酶系统的功能,上调小胶质细胞MKP-1的表达从而抑制H2O2诱导的p38/JNK MAPK磷酸化是IFN-y的小胶质细胞保护作用的又一作用机制。
     综上所述,IFN-y预处理20h可增强小胶质细胞抗氧化酶系统功能,并且抑制H2O2诱导的小胶质细胞MAPKs磷酸化,从而增加小胶质细胞对氧化应激损伤的抵抗能力。
Microglial cells are resident macrophage-like immune cells in the brain, activated microglial cells produce large amount of biologically active substances, Activated microglial cells play important role in modulating oxidative stress, inflammatory response and immune response in central nervous system diseases. Therefore, a better understanding of the responses of microglial cells to certain kinds of cytokines may provide a valuable clue for the treatment of such central nervous system diseases.
     Microglia-derived reactive species such as hydrogen peroxide (H2O2) and nitric oxide (NO) are thought to play a defensive role in pathological conditions. However, the reactive species may in turn harm microglial cells. For self-protection against oxidative damage, therefore, microglial cells must be equipped with antioxidative defense mechanisms. In this study, we investigated the regulation of interferon-γ(IFN-γ) on oxidative injury in microglial cells as well as the mechanisms involved in the regulation effect. Firstly, the regulation effects of IFN-γand IL-1βon H2O2 toxicity in microglial cells were assessed by morphological examination and LDH measurement. We found that pretreatment with IFN-γfor 20 h, but not IFN-γcotreatment and IL-1βpretreatment, protected microglial cells from the H2O2-evoked toxicity. Pretreatment of IFN-γalso protected microglial cells from the toxicity of various reactive species such as superoxide anion (O2-), peroxynitrite (ONOO-),4-Hydroxynonenal (HNE) and rotenone. In addition, IFN-γdid not protect astrocytes or macrophages from H2O2 toxicity. IFN-γprotected microglial cells in a time-dependent manner when the pretreatment time increased from 6h to 24 h. In addition, the cytoprotective effect of IFN-γpretreatment was abolished by the protein synthesis inhibitor cycloheximide. These results imply that protein synthesis is required for the protection by IFN-γ.
     In order to investigate the effect of IFN-γon microglial antioxidant enzyme system, the expression and activity of antioxidant enzymes were determined with western blot analysis and activity assay kits respectively. Among various antioxidant enzymes such as manganese or copper/zinc superoxide dismutase (Mn-SOD or Cu/Zn-SOD), catalase, glutathione peroxidase (GPx), peroxiredoxin (Prx) and sulfiredoxin (Srx), only Mn-SOD and Srx was augmented in IFN-γ-pretreated microglial cells. Furthermore, the expression of Prx-SO2 induced by H2O2 was attenuated by IFN-y pretreatment. Whereas the activities of Mn-SOD and catalase were up-regulated by IFN-y pretreatment, those of Cu/Zn-SOD and GPx were not. Transfection with siRNA of Mn-SOD abolished both up-regulation of Mn-SOD expression and protection of IFN-y pretreatment on H2O2 toxicity. Application of catalase inhibitor partially abolished the protective effect of IFN-y pretreatment. Moreover, increased level of Srx could enhance the reduction of Prx-SO2 under oxidative stress, which is proposed to keep the activity of Prx. These results indicate that IFN-y pretreatment protects microglial cells from oxidative stress via selective up-regulation of the level of Mn-SOD and Srx and the activities of Mn-SOD and catalase.
     Nitric oxide, which was identified have dual effect on oxidative stress, was produced by IFN-y-treated microglial cells. In this study, iNOS inhibitor inhibited the NO production induced by IFN-y and partially blocked the protective effect of IFN-y pretreatment. Interestingly, NO donor DEA/NO showed similar protective effect on H2O2-induced microglial cell death. The expression of Srx and the reduction of Prx-SO2 were increased by DEA/NO. These results indicate that NO mediates, at least in part, the protection of IFN-y pretreatment.
     Mitogen-activated protein kinases (MAPKs) pathways are well known to be involved in the oxidative stress responses. In order to further investigate the pathways mediating the protection of IFN-y pretreatment on H2O2 toxicity, its effects on H2O2-induced MAPKs phosphorylation were examined. The results showed that the MAPKs including p38, c-jun NH2-terminal kinase (JNK) and extracellular signal-regulated protein kinases (ERK1/2) were activated by H2O2 treatment. And H2O2-induced cell death in microglial cells was markedly blocked by the p38 inhibitor SB203580 or the JNK inhibitor SP600125, but not the ERK inhibitor PD98059, indicating the importance of p38 and JNK MAPK in microglial cell death induced by H2O2. Pretreatment with IFN-y for 20h significantly attenuated phosphorylation of p38 and JNK evoked by H2O2. The regulation of IFN-y pretreatment on the expression of MAPK phosphatase-1 (MKP-1) was also studied here. The expression of MKP-1 of microglial cells was up-regulated time-dependently by pretreatment of IFN-y for 1-24h. These result suggest that besides antioxidant enzyme enhancement, IFN-y pretreatment protects microglial cells from H2O2 toxicity via up-regulation of MKP-1 and subsequent dephosphorylation of p38 and JNK MAPK.
     In conclusion, the results demonstrate that IFN-y pretreatment protects microglial cells from oxidative stress through augmenting the function of antioxidant enzyme system and inhibiting the phosphorylation of MAKPs induced by H2O2.
引文
[1]Kaur C, Hao AJ, Wu CH. Origin of microglia. Microsc Res Tech.2001; 54 (1):2-9.
    [2]Ling EA, Wong WC. The origin and nature of ramified and amoeboid microglia:a historical review and current concepts. Glia.1993; 7(1):9-18.
    [3]Pearson HE, Payne BR, Cunningham TJ. Microglia invasion and activation in response to naturally occurring neuronal degeneration in the ganglion cell layer of the postnatal cat retina. Brain Res Dev Brain Res.1993; 76:249-255.
    [4]Dringen R. Oxidative and Antioxidative Potential of Brain Microglial Cells. Antioxid Redox Signal. 2005; 7(9):1223-1233.
    [5]Fetler L, Amigorena S. Neuroscience. Brain under surveillance:the microglia patrol. Science.2005; 309:392-393.
    [6]Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science.2005; 308:1314-1318
    [7]Kreutzberg GW. Microglia:a sensor for pathological events in the CNS. Trends Neurosci.1996; 19: 312-318.
    [8]Cras P, Kawai M, Siedlak S, Perry G. Microglia are associated with the extracellular neurofibrillary tangles of Alzheimer disease. Brain Res.1991; 558:312-314.
    [9]Zhang Z, Chopp M, Powers C. Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion. Brain Res.1997; 744:189-198.
    [10]Schilling T, Quandt FN, Cherny VV, Zhou W, Heinemann U, Decoursey TE, Eder C. Up regulation of Kvl.3 K+ channels in microglia deactivated by TGF-β.Am J Physiol Cell Physiol.2000,279: 1123-1134.
    [11]Boucsein C, Kettenmann H, Nolte C. Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur. J. Neurosci.2000; 12:2049-2058.
    [12]Sawada M, Suzumura A, Yamamoto H, Marunouchi T. Activation and proliferation of the isolated microglia by colony stimulating factor-1 and possible involvement of protein kinase C. Brain Res. 1990; 509:119-24.
    [13]Min KJ, Yang MS, Jou I, Joe EH. Protein kinase A mediates microglial activation induced by plasminogen and gangliosides. Exp Mol Med.2004; 36(5):461-467.
    [14]Garden GA, Moller T. Microglia biology in health and disease. J Neuroimmune Pharmacol.2006; 1(2):127-137.
    [15]Nakajima K, Kohsaka S. Microglia:neuroprotective and neurotrophic cells in the central nervous system [J]. Curr Drug Targets Cardiovasc Haematol Disord,2004; 4(1):65-84.
    [16]Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res.2005; 81 (3):302-313.
    [17]Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity:uncovering the molecular mechanisms. Nat Rev Neurosci.2007; 8(1):57-69
    [18]Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the brain diseases. Curr Med Chem.2007; 14(11):1189-1197.
    [19]Danysz W. Neurotoxicity as a mechanism for neurodegenerative disorders:basic and clinical aspects Expert Opin Investig Drugs.2001; 10(5):985-989.
    [20]Clarkson AN, Sutherland BA, Appleton I. The biology and pathology of hypoxia-ischemia:an update. Arch Immunol Ther Exp.2005; 53(3):213-225.
    [21]Morioka T, Kalehua AN, Streit WJ. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol.1993; 327:123-132.
    [22]J.rgensen MB, Finsen BR, Jensen MB. Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol.1993; 120 (1):70-88
    [23]Zielasek J, Hartung HP. Molecular mechanisms of microglial activation Adv Neuroimmunol.1996; 6 (2):191-222.
    [24]Kitamura Y, Takata K, Inden M. Taniguchi T. Intracerebroventricular injection of microglia protects against focal brain ischemia. Pharmacol Sci.2004; 94(2):203-206.
    [25]Kitamura Y, Yanagisawa D, Inden M. Recovery of focal brain ischemia-induced behavioral dysfunction by intracerebroventricular injection of microglia. J Pharmacol Sci.2005; 97(2): 289-293.
    [26]Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M. Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab.2007; 27(3):488-500.
    [27]Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J.2006; 20(6):714-736.
    [28]Lu YZ, Lin CH, Cheng FC, Hsueh CM. Molecular mechanisms responsible for microglia derived protection of Sprague-Dawley rat brain cells during in vitro ischemia. Neurosci Lett.2005; 373(2): 159-164.
    [29]Li Q, Stephenson D. Postischemic administration of basic fibroblast growth factor improves sensorimotor function and reduces infarct size following permanent focal cerebral ischemia in the rat. Exp Neurol.2002; 177(2):531-537.
    [30]Guan J, Miller O T, Waugh K M, McCarthy DC, Gluckman PD, Gunn AJ. TGF beta-1 and neurological function after hypoxia-ischemia in adult rats. Neuroreport.2004; 15(6):961-964.
    [31]Docagne F, Ali C, Lesne S, Nicole O, MacKenzie ET, Buisson A, Vivien D. [Does transforming growth factor-beta (TGF-beta) act as a neuroprotective agent in cerebral ischemia?]. J Soc Biol. 2003; 197(2):145-150.
    [32]Utsumi H, Chiba H, Kamimura Y, Osanai M, Igarashi Y, Tobioka H, Mori M, Sawada N. Expression of GFRalpha-1, receptor for GDNF, in rat brain capillary during postnatal development of the BBB [J]. Am J Physiol Cell Physiol.2000; 279(2):361-368.
    [33]Lee GA, Lin CH, Jiang HH, Chao HJ, Wu CL, Hsueh CM. Microglia-derived glial cell line-derived neurotrophic factor could protect Sprague-Dawley rat astrocyte from in vitro ischemia induced damage. Neurosci Lett.2004; 356(2):111-114
    [34]Lin S, Fan L W, Pang Y, Rhodes PG, Mitchell HJ, Cai Z. IGF-1 protects oligodendrocyte progenitor cells and improves neurological functions following cerebral hypoxia-ischemia in the neonatal rat. Brain Res.2005; 1063(1):15-26.
    [35]Wang JM, Hayashi T, Zhang WR, Li F, Iwai M, Abe K. Reduction of ischemic damage by application of insulin-like growth factor-1 in rat brain after transient ischemia. Acta Med Okayama. 2001; 55(1):25-30.
    [36]Nakajima K, Tohyama Y, Kohsaka S, Kurihara T. Ability of rat microglia to uptake extracellular glutamate. Neurosci Lett.2001; 307(3):171-174.
    [37]Persson M, Brantefjord M, Hansson E, Ronnback L. Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-alpha. Glia. 2005; 51(2):111-120.
    [38]Lee JC, Cho GS, Kim HJ, Lim JH, Oh YK, Nam W, Chung JH, Kim WK. Accelerated cerebral ischemic injury by activated macrophages/microglia after lipopolysaccharide microinjection into rat corpus callosum. Glia.2005; 50(2):168-181.
    [39]Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal injury via nitric oxide mechanism. J Immunol.1992; 149:2736-2741.
    [40]Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res.1989; 491:394-397.
    [41]Wang CX, Shuaib A. Involvement of inflammatory cytokines in central nervous system injury [J]. Prog Neurobiol.2002; 67(2):161-172.
    [42]Ma XC, Gottschall PE, Chen LT, Wiranowska M, Phelps CP. Role and mechanisms of interleukin-1 in the modulation of neurotoxicity. Neuroimmunomodulation.2002-2003; 10(4):199-207.
    [43]del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke.2007; 38(2 Suppl):646-651.
    [44]Svedin P, Hagberg H, Savman K, Zhu C, Mallard C. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci.2007; 27(7):1511-1518.
    [45]Gourmala NG, Buttini M, Limonta S, Sauter A, Boddeke HW. Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and macrophages in rat brain:effects of ischemia and peripheral lipopolysaccharide administration. J Neuroimmunol.1997; 74:35-44.
    [46]徐皓亮,冯亦璞.细胞因子、趋化细胞因子与脑缺血后炎症损伤.中国药理学通报.1999;15(3):208-211.
    [47]Ito S, Kimura K Swerdlow RH. Pathogenesis of Alzheimer's disease.Clin Interv Aging.2007; 2(3):347-359.
    [48]Mi K, Johnson GV. The role of tau phosphorylation in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res.2006; 3(5):449-463..
    [49]王春艳,郭景森,田晶,崔万丽.β淀粉样蛋白与阿尔茨海默病.吉林医药学院学报.2009;30(2):99-102.
    [50]许丹 王鲁宁 桂秋萍 朱明伟 张红红 胡亚卓.老化及阿尔茨海默病患者脑中星形胶质细胞及小胶质细胞改变的观察.中华老年心脑血管病杂志,2005;(3):181-183
    [51]Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol.1989; 24(3):173-182.
    [52]Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Activation of microglia by amyloid{beta} requires P2X7 receptor expression. J Immunol.2009; 182(7):4378-4385.
    [53]Jana M, Palencia CA, Pahan K. Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer's disease. J Immunol.2008; 181 (10):7254-7262
    [54]CombsCK, KaloJC, KaoSC. Beta-amyloid stimulation of microglia and monocytes results in TNF alpha-dependant expression of inducible nitric oxide synthas and neuronal apoptosis. Neurosci.2001; 21(4):1179.
    [55]Garcao P, Oliveira CR, Agostinho P. Comparative study of microglia activation induced by amyloid-beta and prion peptides:role in neurodegeneration. J Neurosci Res.2006; 84(1):182-193.
    [56]Ito S, Kimura K, Haneda M, Ishida Y, Sawada M, Isobe K.Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3K/Akt pathway. Exp Gerontol.2007 Jun; 42(6):532-537.
    [57]Ito S, Sawada M, Haneda M, Ishida Y, Isobe K.Amyloid-beta peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line via the PI3K/Akt and/or ERK pathway. Neurosci Res.2006; 56(3):294-299.
    [58]Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, Maxfield FR. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell. 2007; 18(4):1490-1496.
    [59]朱舟,潘邓记,王伟.小胶质细胞与Aβ研究进展.神经损伤与功能重建.2007;2(4):249-250
    [60]Streit WJ.Microglia as neuroprotective, immunocompetent cells of the CNS. Glia.2002; 40(2):133-9.
    [61]Akiyama H, McGeer PL. Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res.1989; 489(2):247-253.
    [62]Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of MHC Ⅱ positive microglia and cytokine profile of Parkinson's disease brains. Acta Neuropathol.2003; 106: 518-526.
    [63]Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh TH.Matrix metalloproteinase-3:a novel signaling proteinase from apoptotic neuronal cells that activates microglia.J Neurosci.2005; 25(14):3701-3711.
    [64]Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J.2007; 21(1):179-187.
    [65]Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J. Aggregated alpha-synuclein activatesmicroglia:a process leading to disease progression in Parkinson's disease. FASEB J.2005; 19 (6):533-542.
    [66]Yasuda Y, Shinagawa R, Yamada M, Mori T, Tateishi N, Fujita S. Long-lasting reactive changes observed in microglia in the striatal and substantia nigral of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res.2007; 1138:196-202.
    [67]Carlsson A, Hansson LO, Waters N, Carlsson ML. Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci.1997; 61(2):75-94.
    [68]Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett.1999; 271(2):126-128.
    [69]van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS.Microglia activation in recent-onset schizophrenia:a quantitative (R)-[11C] PK11195 positron emission tomography study. Biol Psychiatry.2008; 64(9):820-822.
    [70]Munn NA. Microglia dysfunction in schizophrenia:an integrative theory. Med Hypotheses.2000; 54(2):198-202.
    [71]Ni L, Acevedo G, Muralidharan B, Padala N, To J, Jonakait GM. Toll-like receptor ligands and CD 154 stimulate microglia to produce a factor(s) that promotes excess cholinergic differentiation in the developing rat basal forebrain:implications for neurodevelopmental disorders. Pediatr Res.2007; 61(1):15-20.
    [72]Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis:a PET study. J Nucl Med.2009; 50(11):1801-1807.
    [73]Choi J, Koh S. Role of brain inflammation in epileptogenesis. Yonsei Med J.2008; 49(1):1-18.
    [74]Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain.2009; 132(Pt 9): 2478-2486.
    [75]Somera-Molina KC, Robin B, Somera CA, Anderson C, Stine C, Koh S, Behanna HA, Van Eldik LJ, Watterson DM, Wainwright MS. Glial activation links early-life seizures and long-term neurologic dysfunction:evidence using a small molecule inhibitor of proinflammatory cytokine upregulation. Epilepsia.2007; 48(9):1785-1800.
    [76]Zhang Z, Artelt M, Burnet M, Trautmann K, Schluesener HJ. Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury. Neuroscience.2006; 141(2):637-644.
    [77]Beschorner R, Nguyen TD, Gozalan F, Pedal I, Mattern R, Schluesener HJ, Meyermann R, Schwab JM. CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol.2002; 103(6):541-549.
    [78]Schwab JM, Seid K, Schluesener HJ. Traumatic brain injury induces prolonged accumulation of cyclooxygenase-1 expressing microglia/brain macrophages in rats. J Neurotrauma.2001; 18(9): 881-890.
    [79]Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol.2000; 161(1):102-114.
    [80]Marques CP, Cheeran MC, Palmquist JM, Hu S, Lokensgard JR. Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. J Neurovirol.2008; 14(3):229-238.
    [81]Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007; 55(5):483-496.
    [82]Saito K, Suyama K, Mishida K, Sei Y, Basile AS. Early increase in TNF-α, IL2-6and IL-1β levels following transient cerebral ischemia in gerbil brain. Neurosci Lett.1996; 206 (2-3):149-152
    [83]Huang Y, Erdmann N, Peng H, Zhao Y, Zheng J. The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell Mol Immunol.2005; 2:113-122.
    [84]Lindberg C, Chromek M, Ahrengart L, Brauner A, Schultzberg M, Garlind A. Soluble interleukin-1 receptor type Ⅱ,IL-18 and caspase-1 in mild cognitive impairment and severe Alzheimer's disease. Neurochem Int.2005; 46:551-557.
    [85]李伟,吕传真.脑缺血和炎性细胞因子.国外医学脑血管疾病分册.1999;7(1):3-5
    [86]Gerard C, Rollins BJ. (2001) Chemokines and disease. Nat Immunol.2(2):108-115
    [87]Wang X., Yue TL., Barone FC, Feuerstein GZ. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke.1995; 26:661-665
    [88]Engelhardt B. Molecular mechanisms involved in T cell migration across t he blood brain barrier. J Neural Transm.2006; 113 (4):477-485.
    [89]Minami M, Satoh M. Chemokines and their receptors in the brain:pathophysiological roles in ischemic brain injury. Life Sci.2003; 74(2-3):321-327
    [90]Myers SJ, Wong LM, Charo IF. Signal transduction and ligand specificity of the human monocyte chemoattractant protein-1 receptor in transfected embryonic kidney cells. J Biol Chem.1995; 270(11):5786-5792.
    [91]Cambien B, Pomeranz M, Millet MA, Rossi B, Schmid-Alliana A.Signal transduction involved in MCP-1-mediated monocytic transendothelial migration. Blood.2001; 97(2):359-366.
    [92]Zhu Y, Yang GY, Ahlemeyer B, Pang L. Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci.2002; 22(10):3898-3909.
    [93]Buisson A, Lesne S, Docagne F, Ali C, Transforming growth factor-beta and ischemic brain injury. Cell Mol Neurobiol.2003; 23(4-5):539-550.
    [94]Gross CE, Bednar MM, Howard DB, Sporn MB. Transforming growth factor β reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke.1993; 24 (4):558-562.
    [95]Kong T, Choi JK, Park H, Choi BH. Reduction in programmed cell death and improvement in functional outcome of transient focal cerebral ischemia after administration of granulocyte-macrophage colony-stimulating factor in rats. Laboratory investigation. J Neurosurg. 2009; 111(1):155-163.
    [96]Minnerup J, Sevimli S, Schabitz WR.Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies. Exp Transl Stroke Med.2009; 1:2.
    [97]陈运贤,陆英,钟雪云,欧瑞明.粒细胞集落刺激因子动员骨髓干细胞治疗大鼠缺血性脑梗死.中国病理生理杂志.2004;4:67-72.
    [98]孙亚萍,王英明,乔守怡.干扰素及其最新研究进展.中国免疫学杂志.2006;22(7):676-679.
    [99]季文珺.γ-干扰素信号通路及功能相关基因.生命的化学.2004;24(1):7-9.
    [100]Platanias LC, Fish EN. Signaling pathways activated by interferons. Exp Hematol.1999; 27(11): 1583-1592.
    [101]Platanias LC. The p38 mitogen-activated protein kinase pathway and its role in interferon signaling. Pharmacol Ther.2003; 98(2):129-142.
    [102]Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-y. Annu Rev Immunol. 1997; 15:749-795.
    [103]de Prati AC, Ciampa AR, Cavalieri E, Zaffini R, Darra E, Menegazzi M, Suzuki H, Mariotto S. STAT1 as a new molecular target of anti-inflammatory treatment. Curr Med Chem.2005; 12(16): 1819-1828.
    [104]Link J, Soderstrom M, Olsson T, Hojeberg B, Ljungdahl A, Link H. Increased transforming growth factor-beta, interleukin-4, and interferon-gamma in multiple sclerosis. Ann Neurol.1994; 36(3): 379-386.
    [105]Vartanian T, Li Y, Zhao M, Stefansson K. Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med.1995; 1(7):732-743.
    [106]Kaempfer R. Interferon-gamma mRNA attenuates its own translation by activating PKR:a molecular basis for the therapeutic effect of interferon-beta in multiple sclerosis. Cell Res.2006; 16(2):148-153.
    [107]Ahn J, Feng X, Patel N, Dhawan N, Reder AT. Abnormal levels of interferon-gamma receptors in active multiple sclerosis are normalized by IFN-beta therapy:implications for control of apoptosis. Front Biosci.2004; 9:1547-1555.
    [108]Mizuno T, Zhang G, Takeuchi H, Kawanokuchi J, Wang J, Sonobe Y, Jin S, Takada N, Komatsu Y, Suzumura A.Interferon-gamma directly induces neurotoxicity through a neuron specific, calcium-permeable complex of IFN-gamma receptor and AMPA GluR1 receptor. FASEB J.2008; 22(6):1797-1806.
    [109]Martino G, Moiola L, Brambilla E, Clementi E, Comi G, Grimaldi LMInterferon-gamma induces T lymphocyte proliferation in multiple sclerosis via a Ca(2+)-dependent mechanism. J Neuroimmunol. 1995; 62(2):169-176.
    [110]Buntinx M, Ameloot M, Steels P, Janssen P, Medaer R, Geusens P, Raus J, Stinissen P. Interferon-gamma-induced calcium influx in T lymphocytes of multiple sclerosis and rheumatoid arthritis patients:a complementary mechanism for T cell activation? J Neuroimmunol.2002; 124(1-2):70-82.
    [111]Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of the interferon-gamma inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol.2000; 26(2):133-142.
    [112]Burster T, Beck A, Poeschel S,(?)ren A, Baechle D, Reich M, Roetzschke O, Falk K, Boehm BO, Youssef S, Kalbacher H, Overkleeft H, Tolosa E, Driessen C. Interferon-gamma regulates cathepsin G activity in microglia-derived lysosomes and controls the proteolytic processing of myelin basic protein in vitro. Immunology.2007; 121(1):82-93.
    [113]Takeuchi H, Wang J, Kawanokuchi J, Mitsuma N, Mizuno T, Suzumura A. Interferon-gamma induces microglial-activation-induced cell death:a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol Dis.2006; 22(1):33-39.
    [114]Li HL, Kostulas N, Huang YM, Xiao BG, van der Meide P, Kostulas V,Giedraitas V, Link H. IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebralartery occlusion in the rat. J Neuroimmunol.2001; 116:5-14..
    [115]张惊宇,李国忠,孙博,曹京燕,王广友,马珊珊,王曙辰,李呼伦,金连弘.大鼠脑缺血后IFN-y mRNA的表达。中国免疫学杂志.2006;(6):526-530.
    [116]Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation.2006; 113(17):2105-2112.
    [117]Lambertsen KL, Gregersen R, Meldgaard M, Clausen BH, Heibol EK, Ladeby R, Knudsen J, Frandsen A, Owens T, Finsen B. A role for interferon-gamma in focal cerebral ischemia in mice. J Neuropathol Exp Neurol.2004; 63(9):942-955.
    [118]Hashioka S, Klegeris A, Schwab C, McGeer PL. Interferon-gamma-dependent cytotoxic activation of human astrocytes and astrocytoma cells. Neurobiol Aging.2009; 30(12):1924-1935.
    [119]Bate C, Kempster S, Last V, Williams A. Interferon-gamma increases neuronal death in response to amyloid-beta1-42. J Neuroinflammation.2006; 3:7.
    [120]Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol.2007; 170(2): 680-692.
    [121]Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. Tumor necrosis factor-alpha, interleukin-lbeta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem.2004; 279(47):49523-49532.
    [122]Yamada A, Akimoto H, Kagawa S, Guillemin GJ, Takikawa O. Proinflammatory cytokine interferon-gamma increases induction of indoleamine 2,3-dioxygenase in monocytic cells primed with amyloid beta peptide 1-42:implications for the pathogenesis of Alzheimer's disease. J Neurochem.2009 Aug; 110(3):791-800.
    [123]Li M, Pisalyaput K, Galvan M, Tenner AJ. Macrophage colony stimulatory factor and interferon gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity. J Neurochem.2004;;91(3):623-633.
    [124]Mogi M, Kondo T, Mizuno Y, Nagatsu T. p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett.2007; 414(1):94-97.
    [125]Ciesielska A, Joniec I, Przybylkowski A, Gromadzka G, Kurkowska-Jastrzebska I, Czlonkowska A, Czlonkowski A.Dynamics of expression of the mRNA for cytokines and inducible nitric synthase in a murine model of the Parkinson's disease. Acta Neurobiol Exp.2003; (63):117-126.
    [126]Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, Anisman H, Hayley S, Park DS. Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci. 2007; 27(12):3328-3337.
    [127]Okuno T, Nakatsuji Y, Kumanogoh A, Moriya M, Ichinose H, Sumi H, Fujimura H, Kikutani H, Sakoda S.Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD 40:relevance to Parkinson's disease. J Neurosci Res.2005; 81(6): 874-882.
    [128]Suzuki Y, Claflin J, Wang X, Lengi A, Kikuchi T. Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii. Int J Parasitol.2005; 35(1):83-90.
    [129]Kawanokuchi J, Mizuno T, Takeuchi H, Kato H, Wang J, Mitsuma N, Suzumura A. Production of interferon-gamma by microglia. Mult Scler.2006; 12(5):558-564.
    [130]Delgado M. Inhibition of interferon (IFN) gamma-induced Jak-STAT1 activation in microglia by vasoactive intestinal peptide:inhibitory effect on CD40, IFN-induced protein-10, and inducible nitric-oxide synthase expression. J Biol Chem.2003; 278(30):27620-27629.
    [131]Park JS, Woo MS, Kim SY, Kim WK, Kim HS. Repression of interferon-gamma-induced inducible nitric oxide synthase (iNOS) gene expression in microglia by sodium butyrate is mediated through specific inhibition of ERK signaling pathways. J Neuroimmunol.2005; 168(1-2):56-64.
    [132]Kang J, Yang M, Jou I, Joe E. Identification of protein kinase C isoforms involved in interferon-gamma-induced expression of inducible nitric oxide synthase in murine BV2 microglia. Neurosci Lett.2001; 299(3):205-208.
    [133]Woodroofe MN, Hayes GM, Cuzner ML. Fc receptor density, MHC antigen expression and superoxide production are increased in interferon-gamma-treated microglia isolated from adult rat brain. Immunology.1989; 68(3):421-426.
    [134]Nguyen VT, Walker WS, Benveniste EN. Post-transcriptional inhibition of CD40 gene expression in microglia by transforming growth factor-beta. Eur J Immunol.1998; 28(8):2537-2548.
    [135]Menendez Iglesias B, Cerase J, Ceracchini C, Levi G, Aloisi F. Analysis of B7-1 and B7-2 costimulatory ligands in cultured mouse microglia:upregulation by interferon-gamma and lipopolysaccharide and downregulation by interleukin-10, prostaglandin E2 and cyclic AMP-elevating agents. J Neuroimmunol.1997; 72(1):83-93.
    [136]Strack A, Asensio VC, Campbell IL, Schluter D, Deckert M. Chemokines are differentially expressed by astrocytes, microglia and inflammatory leukocytes in Toxoplasma encephalitis and critically regulated by interferon-gamma. Acta Neuropathol.2002; 103(5):458-468.
    [137]Hausler KG, Prinz M, Nolte C, Weber JR, Schumann RR, Kettenmann H, Hanisch UK. Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide-and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur J Neurosci.2002; 16(11):2113-2122.
    [138]Aloisi F, De Simone R, Columba-Cabezas S, Levi G.Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia:a regulatory loop controlling microglia pro-and anti-inflammatory activities. J Neurosci Res.1999; 56(6): 571-580.
    [139]Loughlin AJ, Woodroofe MN. Inhibitory effect of interferon-gamma on LPS-induced interleukin 1 beta production by isolated adult rat brain microglia. Neurochem Int.1996; 29(1):77-82.
    [140]Badie B, Schartner J, Vorpahl J, Preston K.Interferon-gamma induces apoptosis and augments the expression of Fas and Fas ligand by microglia in vitro. Exp Neurol.2000; 162(2):290-296.
    [141]Noack H, Possel H, Rethfeldt C, Keilhoff G, and Wolf G. Peroxynitrite mediated damage and lowered superoxide tolerance in primary cortical glial cultures after induction of the inducible isoform of NOS. Glia.1999; 28(1):13-24.
    [142]Ferret PJ, Soum E, Negre O, Fradelizi, D. Auto-protective redox buffering systems in stimulated macrophages. BMC Immunol.2002; 3:3.
    [143]Sano H, Hirai M, Saito H, Nakashima I, Isobe K.I. A nitric oxide-releasing reagent, S-nitroso-N-acetylpenicillamine, enhances the expression of superoxide dismutases mRNA in the murine macrophage cell line RAW264-7. Immunology.1997; 92:118-122.
    [144]Lindenau J, Noack H, Asayama K, and Wolf G. Enhanced cellular glutathione peroxidase immunoreactivity in activated astrocytes and in microglia during excitotoxin induced neurodegeneration. Glia.1998; 24(2):252-256.
    [145]Nakaso K, Kitayama M, Mizuta E, Fukuda H, Ishii T, Nakashima K, andYamada K. Co-induction of heme oxygenase-1 and peroxiredoxin I in astrocytes and microglia around hemorrhagic region in the rat brain. Neurosci Lett.2000; 293(1):49-52.
    [146]Brown GC, Borutaite V. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic. Biol. Med.2002; 33:1440-1450.
    [147]Tabner BJ, Turnbull S, El-Agnaf OM, Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease. Free Radic Biol Med.2002; 32(11):1076-1083.
    [148]Floyd RA, Carney JM. Free radical damage to protein and DNA:mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol.1992; 32 (Suppl.):S22-27.
    [149]Janero DR, Hreniuk D, Sharif HM. Hydrogen peroxide-induced oxidativestress to the mammalian heart-muscle cell (cardiomyocyte):lethal peroxidative membrane injury. J. Cell. Physiol.1991; 149: 347-364;
    [150]Park EJ, Ji KA, Jeon SB, Choi WH, Han IO, You HJ, Kim JH, Jou I, Joe EH.Racl contributes to maximal activation of STAT1 and STAT3 in IFN-gamma-stimulated rat astrocytes.J Immunol.2004; 173(9):5697-5703.
    [151]熊加祥,白云,宋敏,许雪青,王艳艳,杨晓亚.炎性介质脂多糖、γ干扰素活化星形胶质细胞效应第三军医大学学报.2008;22:2065-2068.
    [152]覃汉军,江中喜.体外IFN-y对小鼠腹腔巨噬细胞抗瘤作用的影响.广东医学院学报.2000;18(3):237-238.
    [153]Wink DA, Mitchell JB. Chemical biology of nitric oxide:Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med.1998; 25(4-5):434-456.
    [154]Zarkovic K.4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med.2003; 24(4-5): 293-303.
    [155]Siegel SJ, Bieschke J, Powers ET, Kelly JW. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry.2007; 46(6):1503-1510.
    [156]Schaur RJ. Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med.2003; 24(4-5):149-159.
    [157]Whitsett J, Picklo MJ Sr, Vasquez-Vivar J.4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradation. Arterioscler Thromb Vasc Biol.2007; 27(11):2340-2347.
    [158]Nakamura K, Miura D, Kusano KF, Fujimoto Y, Sumita-Yoshikawa W, Fuke S, Nishii N, Nagase S, Hata Y, Morita H, Matsubara H, Ohe T, Ito H.4-Hydroxy-2-nonenal induces calcium overload via the generation of reactive oxygen species in isolated rat cardiac myocytes. J Card Fail.2009; 15(8): 709-716.
    [159]Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol.2003; 552(Pt 2): 335-344.
    [160]Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol.2006; 291(5):C1082-1088.
    [161]Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free RadicBiolMed.2000; 29:222-230.
    [162]Sims NR, Anderson MF, Hobbs LM, Kong JY, Phillips S, Powell JA, Zaidan E. Impairment of brain mitochondrial function by hydrogen peroxide. Brain Res Mol Brain Res.2000; 77(2):176-184.
    [163]Nulton-Persson AC.; Szweda LI. Modulation of mitochondrial function by hydrogen peroxide. J. Biol. Chem.2001; 276:23357-23361.
    [164]Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis.2003; 8(2):115-128.
    [165]Lee SJ.; Jin Y.; Yoon HY.; Choi BO.; Kim HC.; Oh YK.; Kim HS.; Kim WK. Ciclopirox protects mitochondria from hydrogen peroxide toxicity. Br. J. Pharmacol.2005; 145:469-476.
    [166]Medina, S.; Martinez, M.; Hernanz, A. Antioxidants inhibit the human cortical neuron apoptosis induced by hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1-42. Free Radic. Res.2002; 36:1179-1184.
    [167]Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis.2007; 12(5):913-922.
    [168]Huang TT, Carlson EJ, Kozy HM, Mantha S, Goodman SI, Ursell PC, Epstein CJ. Genetic modification of prenatal lethality and dilated cardiomyopathy in Mn superoxide dismutase mutant mice. Free Radic Biol Med.2001; 31(9):1101-1110.
    [169]Harris ED. Regulation of antioxidant enzymes. FASEB J.1992; 6(9):2675-2683.
    [170]章波,向渝梅,白云.抗氧化蛋白Peroxiredoxin家族研究进展.生理科学进展.2004;35(4):352-355.
    [171]Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH.2-Cys peroxiredoxin function in intracellular signal transduction:therapeutic implications. Trends Mol Med.2005; 11(12):571-578.
    [172]高博尹桂山.神经系统中的一氧化氮.生物化学与生物物理进展1999;26(1):29-32
    [173]Yoshioka Y, Kitao T, Kishino T, Yamamuro A, Maeda S. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase. J Immunol.2006; 176(8):4675-4681.
    [174]Scorziello A, Santillo M, Adornetto A, Dell'aversano C, Sirabella R, Damiano S, Canzoniero LM, Renzo GF, Annunziato L. NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J Neurochem.2007; 103(4):1472-1480.
    [175]Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ, Cho JW, Oh YJ. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8-and-9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem.2004; 279(19): 20451-20460.
    [176]Kim SH, Johnson VJ, Shin TY, Sharma RP. Selenium attenuates lipopolysaccharide induced oxidative stress responses through modulation of p38 MAPK and NF-kappaB signaling pathways. Exp Biol Med (Maywood).2004; 229(2):203-213.
    [177]Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S. Neuro protection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett.2000; 288(2):163-166.
    [178]Saeki K, Kobayashi N, Inazawa Y, Zhang H, Nishitoh H, Ichijo H, Saeki K, Isemura M, Yuo A. Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochem J. 2002; 368(Pt 3):705-720.
    [179]Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases:a gene family for control of MAP kinase function. FASEB J.2000; 14(1):6-16.
    [180]Keyse SM, Emslie EA. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature.1992; 359:644-647.
    [181]Charles CH, Abler AS, Lau LF. cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene.1992; 7:187-190.
    [182]Chi H, Flavell RA.Acetylation of MKP-1 and the control of inflammation. Sci Signal.2008; 1(41): pe44.
    [183]Franklin CC, Srikanth S, Kraft AS. Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV induced apoptosis. Proc Natl Acad Sci US A 1998; 95:3014-3019.
    [184]Fujii J, Nakata T, Miyoshi E, Ikeda Y, Taniguchi N. Induction of manganese superoxide dismutase mRNA by okadaic acid and protein synthesis inhibitors. Biochem. J.1994; 301:31-34.
    [185]Valledor AF, Sanchez-Tillo E, Arpa L, Park JM, Caelles C, Lloberas J, Celada A. Selective roles of MAPKs during the macrophage response to IFN-gamma. J Immunol.2008; 180(7):4523-4529.
    [186]Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene.2007; 26(22):3203-3213.
    [187]Hou RC, Wu CC, Huang JR, Chen YS.; Jeng KC. Oxidative toxicity in BV-2 microglia cells: sesamolin neuroprotection of H2O2 injury involving activation of p38 mitogen-activated protein kinase. Ann. N.Y. Acad. Sci.2005; 1042:279-285.
    [188]Huang Q, Wu LJ, Tashiro S, Onodera S, Ikejima T. Elevated levels of DNA repair enzymes and antioxidative enzymes by (+)-catechin in murine microglial cells after oxidative stress. J. Asian Nat. Prod. Res.2006; 8:61-71.
    [189]Venkataraman S, Wagner BA, Jiang X, Wang HP, Schafer FQ, Ritchie JM, Patrick BC, Oberley LW, Buettner GR. Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic. Res.2004; 38:1119-1132.
    [190]Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury:suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci.1998; 18:687-697.
    [191]Bruno-Barcena JM, Andrus JM, Libby SL, Klaenhammer TR, Hassan HM. Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl. Environ. Microbiol.2004; 70(8):4702-4710.
    [192]McCormick ML, Buettner GR, Britigan BE. Endogenous superoxide dismutase levels regulate iron-dependent hydroxyl radical formation in Escherichia coli exposed to hydrogen peroxide. J. Bacteriol.1998; 180(3):622-625.
    [193]Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS Lett.2001; 495:12-15.
    [194]Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci.1996; 93(24):13635-13640.
    [195]Chaudiere J, Ferrari-Iliou R. Intracellular antioxidants:from chemical to biochemical mechanisms. Food Chem. Toxicol.1999; 37:949-962.
    [196]Kim YS, Han S. Nitric oxide protects Cu,Zn-superoxide dismutase from hydrogen peroxide-induced inactivation. FEBS Lett.2000; 479(1-2):25-8.
    [197]Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract.1999; 45(2-3):101-12.
    [198]Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG. Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem.1998; 273(11):6297-6302.
    [199]Kang SW, Chang TS, Lee TH, Kim ES, Yu DY, Rhee SG. Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha. J Biol Chem.2004; 279(4):2535-2543.
    [200]Kim SU, Hwang CN, Sun HN, Jin MH, Han YH, Lee H, Kim JM, Kim SK, Yu DY, Lee DS, Lee SH. Peroxiredoxin I is an indicator of microglia activation and protects against hydrogen peroxide-mediated microglial death. Biol Pharm Bull.2008; 31(5):820-825.
    [201]Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG. Peroxiredoxin Ⅲ, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem.2004; 279(40): 41975-41984.
    [202]Li L, Shoji W, Takano H, Nishimura N, Aoki Y, Takahashi R, Goto S, Kaifu T, Takai T, Obinata M. Increased susceptibility of MER5 (peroxiredoxin Ⅲ) knockout mice to LPS-induced oxidative stress. Biochem Biophys Res Commun.2007; 355(3):715-721.
    [203]Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation.Science.2003; 300(5619):653-656.
    [204]Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem.2004; 279(49):50994-51001.
    [205]Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG.Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem.2005; 280(5):3125-3128.
    [206]Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS. Sulfiredoxin Translation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin Ⅲ. J Biol Chem.2009; 284(13): 8470-8477.
    [207]Kim H, Kim KH. Effect of nitric oxide on hydrogen peroxide-induced damage in isolated rabbit gastric glands. Pharmacology.1998; 57(6):323-330.
    [208]Katsube T, Tsuji H, Onoda M. Nitric oxide attenuates hydrogen peroxide-inducedbarrier disruption and protein tyrosine phosphorylation in monolayers of intestinal epithelial cell. Biochim Biophys Acta.2007; 1773(6):794-803.
    [209]Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR. Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med.2006; 40(3):501-506.
    [210]Diet A, Abbas K, Bouton C, Guillon B, Tomasello F, Fourquet S, Toledano MB, Drapier JC. Regulation of peroxiredoxins by nitric oxide in immunostimulated macrophages. J Biol Chem.2007; 282(50):36199-36205.
    [211]Scorziello A, Santillo M, Adornetto A, Dell'aversano C, Sirabella R, Damiano S, CanzonieroLM, Renzo GF, Annunziato L. NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J Neurochem.2007; 103(4):1472-1480.
    [212]Rauen U, Li T, de Groot H. Inhibitory and enhancing effects of NO on H(2)O(2) toxicity: dependence on the concentrations of NO and H(2)O(2). Free Radic Res.2007; 41(4):402-412.
    [213]Cho ES, Lee KW, Lee HJ. Cocoa procyanidins protect PC 12 cells from hydrogen-peroxide-induced apoptosis by inhibiting activation of p38 MAPK and JNK. Mutat Res.2008; 640(1-2):123-130.
    [214]Pelaia G, Cuda G, Vatrella A, Gallelli L, Fratto D, Gioffre V, D'Agostino B, Caputi M, Maselli R, Rossi F, Costanzo FS, Marsico SA. Effects of hydrogen peroxide on MAPK activation, IL-8 production and cell viability in primary cultures of human bronchial epithelial cells. J Cell Biochem. 2004; 93(1):142-152.
    [215]Chen L, Liu L, Yin J, Luo Y, Huang S. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol.2009; 41(6):1284-1295.
    [216]Niwa K, Inanami O, Ohta T, Ito S, Karino T, Kuwabara M.p38 MAPK and Ca2+ contribute to hydrogen peroxide-induced increase of permeability in vascular endothelial cells but ERK does not. Free Radic Res.2001; 35(5):519-527.
    [217]Hou RC, Wu CC, Huang JR, Chen YS, Jeng KC. Oxidative toxicity in BV-2 microglia cells: sesamolin neuroprotection of H2O2 injury involving activation of p38 mitogen-activated protein kinase. Ann N Y Acad Sci.2005; 1042:279-285.
    [218]Zhou JY, Liu Y, Wu GS. The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res.2006; 66(9):4888-4894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700