亚硒酸钠致白内障发病机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白内障是一个全球范围内的致盲性眼疾,在所有致盲性眼科疾病中占据的比例最大。白内障目前只有手术治疗,但因其高昂的手术费用及术后并发症是目前的难题。因此,开展白内障的防治研究已成为当前的研究热点。
     硒性白内障作为一种实验性动物模型,用以模拟人类的老年性白内障,因其造模迅速、方便,被广泛用于研究白内障形成的各种机制,以及筛选抗白内障药物。有趣的是硒性白内障的产生必须在大鼠开眼之前注射亚硒酸钠,开眼之后即使加大亚硒酸钠的剂量,也无法造模成功,这种年龄上的特异性至今原因不明。而开展这个问题的研究,将有助于进一步揭示硒性白内障的形成机理和硒性白内障模型在抗白内障药物筛选中的应用。
     本论文以硒性白内障动物模型和人晶状体上皮(hLE)细胞SRA01/04为实验对象,对血-视网膜屏障的发育与硒性白内障形成的关系、硒诱导晶状体上皮细胞凋亡及其途径等开展了研究。主要结果如下:
     1.血-视网膜屏障的发育对大鼠硒性白内障形成的影响
     采用文献上的方法,给未开眼的Wistar大鼠幼崽皮下注射亚硒酸钠,成功地造成核性白内障模型。首先,我们检测了不同年龄段Wistar鼠晶状体中谷胱甘肽过氧化物酶(GPx)1、蛋氨酸亚砜还原酶(Msr)A、MsrB1的mRNA表达以及GPx活性,结果表明开眼前幼鼠这些酶mRNA的表达和GPx的酶活性最高,之后随着年龄的增长而逐渐下降。进一步,我们采用氢氧化镧示踪法检测了不同年龄段血-视网膜屏障的发育情况,结果表明,19天龄Wistar鼠视网膜色素上皮层氢氧化镧分布显著少于10天龄幼鼠。对8天龄大鼠注射亚硒酸钠48小时后,氢氧化镧明显增加并延伸到视网膜的内层,视网膜色素上皮层严重损伤;而17天龄Wistar鼠注射相同剂量亚硒酸钠48h后,只有少量的氢氧化镧进入更没有延伸到内层。相对应地,在这些组别鼠的眼球中的硒含量、晶状体中的MDA水平与氢氧化镧分布的变化基本一致。而且在开眼前注射亚硒酸钠的晶状体中,其上皮细胞的损伤程度极明显大于开眼后的大鼠。这些结果表明未开眼Wistar鼠的抗氧化能力不是其易于形成白内障的主要原因,而真正原因是由于未开眼幼鼠血-视网膜屏障发育不成熟,使得大量的亚硒酸钠进入眼中,导致晶状体氧化损伤而出现白内障。
     2.硒诱导晶状体上皮细胞的凋亡及其凋亡途径
     为了探讨亚硒酸钠诱发幼鼠白内障形成的机理,我们研究了硒诱导hLE细胞SRA01/04凋亡及其途径。采用MTT法测定细胞存活率显示,hLE细胞的存活率随着Na_2SeO_3浓度的增加呈现浓度依赖性下降,在Na_2SeO_3浓度为6μM、8μM时,细胞存活率约在50%左右。用Annexin V-FITC/PI双染色流式分析显示,随着亚硒酸钠浓度的增加,hLE细胞的凋亡率逐渐升高,在6μM时凋亡率为23.8%,8μM时凋亡率已达74.6%。这一结果与Hoechst33258染色定性分析的结果相一致。进一步我们测定了hLE细胞Caspase-3酶活性的变化,结果表明经过7μM亚硒酸钠处理24h后,Caspase-3的酶活性上升了49.4%;相对应地,ROS的水平上升了73.1%,MDA的含量上升了80.5%,而且使得细胞线粒体膜电位有较大程度的降低,线粒体去极化较为明显。由此可见,亚硒酸钠诱发的人晶状体上皮细胞SRA01/04凋亡,与亚硒酸钠诱发产生的活性氧介导的线粒体凋亡途径密切相关。
     3.硒性白内障对大鼠肝、肾、脑中氧化-还原平衡的影响
     在硒性白内障动物模型中,亚硒酸钠对主要代谢器官氧化还原状态的影响鲜见研究报告,为此我们测定了大鼠硒性白内障模型中肝、肾等组织的抗氧化状态的变化。结果表明,与对照组相比,注射亚硒酸钠使大鼠肝、脑中GPx1的mRNA表达水平下降了25%、20%,但大鼠肾中增加了43.5%;GPx活性的变化趋势也如此。MsrA mRNA表达的变化趋势也类似于GPx1,但注射亚硒酸钠后大鼠肝、肾、脑中MsrB1的mRNA表达水平分别增加了86%、62%、71%。进一步的检测可见,硒性白内障模型动物的肝组织发生明显的氧化应激,与对照组相比,注射亚硒酸钠后大鼠肝中MDA的含量增加了78%,但在肾中减少了29%,而在脑中保持基本不变。这些结果表明,硒性白内障模型大鼠肝和肾的氧化-还原状态已经失去平衡,因此在利用该模型动物进行抗白内障药物的筛选时应考虑这一变化。
Cataract is a kind of worldwide eye diseases leading to blind, occupying the largestproportion in all ophthalmological diseases leading to blind. The current treatment ofcataract is operation merely, but the high cost of operation and post-operationcomplications are currently the most troubled problems. Therefore, to develop theprevention and treatment of cataract has become the current research hotspot.
     Selenite cataract, an experimental animal model for simulating human senile cataract,because of its quick and convenient molding, is widely used in investigating variousmechanisms of cataract formation, as well as screening for anti-cataract drugs.Interestingly, selenite cataract appears, only when sodium selenite injection is beforeeyelid opening of the rats; after this time, even increasing the dose of sodium selenite,selenite cataract can not appear. With regard to this age specific phenomenon in themolding process, people do not know the reason, but the beneficial research on this issuewill further reveal the deep reason of selenite cataract formation, and expand theapplication of senelite cataract animal model in screening anti-cataract drugs.
     In this dissertation, animal model of selenite cataract and human lens epithelial (hLE)cells SRA01/04were used as the experimental objects, to investigate the relationshipbetween development of blood-retina barrier and selenite cataract formation, also thatbetween selenium and apoptosis pathway of lens epithelial cell, and so on. The mainresults are as followed:
     1. Effect of blood-retinal barrier development on formation of selenite nuclearcataract in rat
     According to the method in literatures, injection of sodium selenite to eyelidunopening Wistar rats subcutaneously produced nuclear cataract successfully. Initially, wedetected mRNA expression of GPx1, MsrA, MsrB1and activity of GPx in rat lens ofdifferent ages, the results show that mRNA expression of these enzymes and enzymeactivity of GPx were the highest before eyelid opening, and then progressively decreasedwith age. Further, we used lanthanum hydroxide tracer method to detect development status of blood-retina barrier at different ages, the results show that distribution oflanthanum hydroxide in retinal pigment epithelial layer of19-day-old rats wassignificantly less than10-day-old rats. Injecting sodium selenite to8-day-old rats,lanthanum hydroxide increases obviously and extends to the inner layers of the retina after48h, and the retinal pigment epithelial layer was damaged seriously; while injectingsodium selenite to17-day-old rats with the same dose, number of lanthanum hydroxidedecreased significantly and does not extend to the inner layer after48h. Correspondingly,in these groups of rats, selenium content in the eyeballs and MDA level in the lens are inagreement with the change of lanthanum hydroxide distribution. Injecting sodium selenitebefore eyelid unopening, the damage degree of epithelial cells was significantly greaterthan injecting after that. These results indicate that antioxidant capacity in the eyelidunopening rats is not the main reason for easy cataract formation, but the real reason isthat blood-retina barrier development is not mature in the eyelid unopening rats, and thena lot of sodium selenite gets into the eyes, resulting in oxidative damage to eye lens andformation of cataract.
     2. Apoptosis of lens epithelial cells induced by selenium and its pathway
     In order to study the mechanism of cataract formation induced by sodium selenite,we investigated apoptosis of hLE cells SRA01/04induced by selenium and its pathway.Cell viability was determined by MTT method. The data displayed that, the survival rateof hLE cell showed a concentration-dependent decrease to the increasing concentration ofsodium selenite. When the concentration of Na_2SeO_3is6μM and8μM, the cell survivalrates are about50%. Annexin V-FITC/PI double staining and flow cytometry analysisshowed that, as the increasing concentration of sodium selenite, apoptosis rate of hLE cellincreased gradually: it was23.8%at6μM, however it has reached74.6%at8μM. Thisresult is coincident with the qualitative result of Hoechst33258staining. We furthermeasured the activity change of Caspase-3in hLE cells; the results showed that aftertreatment with7μM sodium selenite for24h, Caspase-3activity increased by49.4%.Correspondingly, level of ROS increased by73.1%, content of MDA increased by80.5%,and the mitochondrial membrane potential is greatly decreased, mitochondrialdepolarization is very obvious. Thus, apoptosis of hLE cells SRA01/04induced by sodium selenite, is closely related to mitochondrial apoptotic pathway mediated by generatedreactive oxygen species.
     3. Influence of selenite cataract on redox balance in liver, kidney and brain of Wistarrat
     In the animal model of selenite cataract, there is little report on the effect of sodiumselenite on the redox status of major metabolic organ, so we measured the changes ofantioxidant status of some tissues in selenite cataract rat model, such as liver, kidney, etc.The results show that, compared with the control group, injecting sodium selenite to ratsresulting in mRNA expression level of GPx1decreased by25%,20%in liver, brain, butthat in kidney increased by43.5%; the change trend of GPx activity is also like this.Compared to GPx1, mRNA expression of MsrA also presented similar change trend;however, mRNA expression levels of MsrB1increased by86%,62%and71%in rat liver,kidney and brain after injection of sodium selenite. It is shown by further detection,significant oxidative stress appeared in liver tissue of selenite cataract model animal;compared with the control group, after injection of sodium selenite, MDA content in ratliver increased by78%, but reduced by29%in kidney, and remained unchanged in brain.These results indicate that, the balance of redox state in liver and kidney of selenitecataract rat model has been broken, so this change should be taken into account whenscreening anti-cataract drugs by this model animal.
引文
[1]郭秉宽.中国医学百科全书——眼科学.上海:上海科学技术出版社,1985.9.
    [2] West S K. Who develops cataracts? Arch. Ophthalmol.1991,109(2):196-198.
    [3] Moghadaszadeh B, Beggs A H. Selenoproteins and their impact on human healththrough diverse physiological pathways. Physiology (Bethesda)2006,21:307-315.
    [4] Papp L V, Lu J, Holmgren A, Khanna K K. From selenium to selenoproteins:synthesis, identity, and their role in human health. Antioxid. Redox Signal2007,9(7):775-806.
    [5] Kryukov G V, Castellano S, Novoselov S V, Lobanov A V, Zehtab O, Guigó R,Gladyshev V N. Characterization of mammalian selenoproteomes. Science2003,300(5624):1439-1443.
    [6] Rayman M P. The importance of selenium to human health. Lancet2000,356:233-241.
    [7] Combs G F Jr, Midthune D N, Patterson K Y, Canfield W K, Hill A D, Levander O A,Taylor P R, Moler J E, Patterson B H. Effects of selenomethionine supplementationon selenium status and thyroid hormone concentrations in healthy adults. Am. J. Clin.Nutr.2009,89(6):1808-1814.
    [8] Stadtman T C. Biosynthesis and function of selenocysteine-containing enzymes. J.Biol. Chem.1991,266:16257-16260.
    [9] Goldhaber S B. Trace element risk assessment: essentiality vs. toxicity. Regul. Toxicol.Pharmacol.2003,38:232-242.
    [10]Kitahara J, Seko Y, Imura N. Possible involvement of active oxygen species inselenite toxicity in isolated rat hepatocytes. Arch. Toxicol.1993,67:497-501.
    [11]Yan L, Spallholz J E. Generation of reactive oxygen species from the reaction ofselenium compounds with thiols and mammary tumor cells. Biochem. Pharmacol.1993,45:429-437.
    [12]Manikandan R, Thiagarajana R, Beulaja S, Chindhud S, Mariammale K,Sudhandiranc G and Arumugama M. Anti-cataractogenic effect of curcumin andaminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar ratpups: An in vitro study using isolated lens. Chem. Biol. Interact.2009,181:202-209.
    [13] Valdiglesias V, Pásaro E, Méndez J, Laffon B. In vitro evaluation of seleniumgenotoxic, cytotoxic, and protective effects: a review. Arch. Toxicol.2010,84(5):337-351.
    [14]Truscott R J, Augusteyn R C. Oxidative changes in human lens proteins during senilenuclear cataract formation. Biochim. Biophys. Acta.1977,492(1):43-52.
    [15]Smith J B, Jiang X, Abraham E C. Identification of hydrogen peroxide oxidation sitesof alpha A-and alpha B-crystallins. Free Radic. Res.1997,26(2):103-111.
    [16]Marchetti M A, Lee W, Cowell T L, Wells T M, Weissbach H, Kantorow M. Silencingof the methionine sulfoxide reductase A gene results in loss of mitochondrialmembrane potential and increased ROS production in human lens cells. Exp. Eye Res.2006,83:1281-1286.
    [17]Hawse J R IV. Identification and functional characterization of cataract-specific geneexpression changes reveals important pathways for human lens maintenance, agingand disease. Morgantown: West Virginia University,2004,1-7.
    [18]Wagner L M, Takemoto D J. PKCalpha and PKCgamma overexpression causeslentoid body formation in the N/N1003A rabbit lens epithelial cell line. Mol. Vis.2001,7:138-144.
    [19]Francis P J, Berry V, Bhattacharya S S, Moore A T. The genetics of childhoodcataract. J. Med. Genet.2000,37(7):481-488.
    [20]Rao N A, Thaete L G, Delmage J M, Sevanian A. Superoxide dismutase in ocularstructures. Invest. Ophthalmol. Vis. Sci.1985,26(12):1778-1781.
    [21]Atalla L R, Sevanian A, Rao N A. Immunohistochemcal localization of glutathioneperoxidase in ocular tissue. Curr. Eye Res.1988,7(10):1023-1027.
    [22]曹锡清.脂质过氧化对细胞与机体的作用.生物化学和生物物理进展,1986,2:17-23.
    [23]Chandrasena L G, Chackrewarthy S, Perera P T, de Silva D. Erythrocyte antioxidantenzymes in patients with cataract. Ann. Clin. Lab Sci.2006,36(2):201-204.
    [24]Linetsky M, Shipova E, Cheng R, Ortwerth B J. Glycation by ascorbic acid oxidationproducts leads to the aggregation of lens proteins. Biochim. Biophys. Acta.2008,1782(1):22-34.
    [25]Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB J.1995,9:1173-1182.
    [26]Spector A, Wang G M, Wang R R, Garner W H, Moll H. The prevention of cataractcaused by oxidative stress in cultured rat lenses. I. H2O2and photochemically inducedcataract. Curr. Eye Res.1993,12(2):163-179.
    [27]Wegner A, Khoramnia R. Cataract is a self-defence reaction to protect the retina fromoxidative damage. Med. Hypotheses2011,76(5):741-744.
    [28]Babizhayev M A. Failure to withstand oxidative stress induced by phospholipidhydroperoxides as a possible cause of the lens opacities in systemic diseases andageing. Biochim. Biophys. Acta.1996,1315:87-99.
    [29]张士元.我国白内障的流行病学调查资料分析.中华眼科杂志,1999,35(5):336-339.
    [30]Brian G, Taylor H. Cataract blindness-challenges for the21st century. Bull WorldHealth Organ2001,79(3):249-256.
    [31]Dartt D A, Besharse J C, Dana R (Eds). Encyclopedia of the eye. Oxford: AcademicPress,2010,76-81.
    [32]Malhotra R. Eye Essentials: Cataract. Elsevier,2008,2-15.
    [33]Chen Muh-Shy, Hou Ping-Kang, Tai Tong-Yuan, Lin B J. Blood-Ocular Barriers. TzuChi Medical Journal2008,20(1):25-34.
    [34]Cunha-Vaz J. The blood-retinal barriers. Doc. Ophthalmol.1976,41:287-327.
    [35]Kim J H, Kim J H, Park J A, Lee S W, Kim W J, Yu Y S, Kim K W. Blood-neuralbarrier: intercellular communication at glio-vascular interface. J. Biochem. Mol. Biol.2006,39:339-345.
    [36]Jo D H, Kim J H, Kim J H. How to overcome retinal neuropathy: the fight againstangiogenesis-related blindness. Arch. Pharm. Res.2010,33:1557-1565.
    [37]霍中和,王喜中,丁明孝主编.第3版.北京:高等教育出版社,2007,8:442-452.
    [38]Gupta S. Suicidal journey in the Fas (t) track. Recent Res. Dev. Immunol.2000,2:11-19.
    [39]Gupta S. Molecular and biochemical pathways of apoptosis in lymphocytes from agedhumans. Vaccine2000,18:1596-1601.
    [40]Gupta S. Molecular steps of cell suicide: an insight into immune senescence. J. Clin.Immunol.2000,20(4):229-239.
    [41]Ashkenazi A, Dixit V M. Death receptors: signaling and modulation. Science1998,281(5381):1305-1308.
    [42]Gupta S, Su H, Bi R, Agrawal S, Gollapudi S. Life and death of lymphocytes: a rolein immunesenescence. Immun. Ageing2005,2:12.
    [43]Green D R, Reed J C. Mitochondria and apoptosis. Science1998,281:1309-1312.
    [44]Kroemer G, Reed J C. Mitochondrial control of cell death. Nat. Med.2000,6(5):513-519.
    [45]Adams J M, Cory S. The Bcl-2protein family: arbiters of cells survival. Science1998,281(5381):1322-1326.
    [46]Kqan H Y, Leung P C, Huang Y, Yao X. Depletion of intraceUular Ca2+storessensitizes the flow-induced Ca2+innux in rat endothelial cells. Circ. Res.2003,92(3):286-292.
    [47]宋建领,王金萍,杨斌.细胞凋亡的研究近况.云南畜牧兽医.2003,(1):5-7.
    [48]Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfoldedprotein response. Physiology (Bethesda)2007,22:193-201.
    [49]Michael R, Vrensen G F, van Marle J, Gan L, S derberg P G. Apoptosis in the rat lensafter in vivo threshold dose ultraviolet irradiation. Invest. Ophthalmol. Vis. Sci.1998,39(13):2681-2687.
    [50]Maruno K A, Lovicu F J, Chamberlain C G, McAvoy J W. Apoptosis is a feature ofTGF beta-induced cataract. Clin. Exp. Optom.2002,85:76-82.
    [51]Murata M, Ohta N, Sakurai S, Alam S, Tsai J, Kador P F, Sato S. The role of aldosereductase in sugar cataract formation: aldose reductase plays a key role in lensepithelial cell death (apoptosis). Chem. Biol. Interact.2001,130-132:617-625.
    [52]Hetts S W. To die or not to die: an overview of apoptosis and its role in disease. JAMA1998,279(4):300-307.
    [53]Vaux D L, Strasser A. The molecular biology of apoptosis. Proc. Natl. Acad. Sci. USA1996,93(6):2239-2244.
    [54]Kyselova Z. Different experimental approaches in modelling cataractogenesis: Anoverview of selenite-induced nuclear cataract in rats. Interdiscip. Toxicol.2010,3(1):3-14.
    [55]Simpson R J. SDS-PAGE of Proteins. Cold Spring Harbor Protocols,2006,2006(16):pdb.prot4313.
    [56]温炎华,宋秀君,韩英,等.晶状体上皮细胞凋亡与硒性白内障关系的实验研究.眼科研究,1999,17(6):432-434.
    [57]Flohe L. Selenium, selenoproteins and vision. Dev. Ophthalmol.2005,38:89-102.
    [58]Orhan H, Marol S, Hep en I F, Sahin G. Effects of some probable antioxidants onselenite-induced cataract formation and oxidative stress-related parameters in rats.Toxicology1999,139(3):219-232.
    [59]徐辉碧,孙恩杰,杨祥良,邹娟.硒的生物效应的活性氧自由基机理.华中科技大学学报(自然科学版).1991,19(5):33-37.
    [60]Martín-Alonso J M, Ghosh S, Coca-Prados M. Cloning of the bovine plasmaselenium-dependent glutathione peroxidase (GP) cDNA from the ocular ciliaryepithelium: expression of the plasma and cellular forms within the mammalian eye. J.Biochem.1993,114(2):284-291.
    [61]Rao G N,Sadasivudu B, Cotlier E. Studies on glutathione s-tranferase, glutathioneperoxidase and glutathione reductase in human normal and cataractons lenses.Ophahalmic. Res.1983,15(4):173-179.
    [62]Lawrence R A, Sunde R A, Schwartz G L, Hoekstra W G. Glutathione peroxidaseactivity in rat lens and other tissues in relation to dietary selenium intake. Exp. EyeRes.1974,18:563-569.
    [63]蔡求因,薛安娜,朱莲珍等.微量元素硒缺乏对大鼠眼晶状体的影响.卫生研究,1992,21(2):89-92.
    [64]孔祥瑞.必需微量元素的营养、生理及临床意义.合肥:安微科技出版社,1982.212.
    [65]Ostádalová I, Babicky A, Obenberger J. Cataract induced by administration of a singledose of sodium selenite to ruckling rats. Experientia1978,34(2):222-223.
    [66]Bhuyan K C, Bhuyan D K, Podos S M. Cataract induced by selenium in rat: I. Effecton the lenticular protein and thiols. IRCS Med. Sci.1981,9(3):194.
    [67]黄莉莉,贾维红,张昌颖.抗氧化剂与自由基清除剂对硒性白内障形成的影响.生物化学杂志,1989,5(4):369-375.
    [68]Park S H, Kim J H, Chi G Y, Kim G Y, Chang Y C, Moon S K, Nam S W, Kim W J,Yoo Y H, Choi Y H. Induction of apoptosis and autophagy by sodium selenite in A549human lung carcinoma cells through generation of reactive oxygen species. Toxicol.Lett.2012,212(3):252-261.
    [69]Luo H, Yang Y, Huang F, Li F, Jiang Q, Shi K, Xu C. Selenite induces apoptosis incolorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis. CancerLett.2012,315(1):78-85.
    [70]Chen X J, Duan F D, Zhang H H, Xiong Y, Wang J. Sodium selenite-inducedapoptosis mediated by ROS attack in human osteosarcoma U2OS cells. Biol. TraceElem. Res.2012,145(1):1-9.
    [71]Fu L, Liu Q, Shen L, Wang Y. Proteomic study on sodium selenite-induced apoptosisof human cervical cancer HeLa cells. J. Trace Elem. Med. Biol.2011,25(3):130-137.
    [72]Zhu X, Guo K, Lu Y. Selenium effectively inhibits1,2-dihydroxynaphthalene-inducedapoptosis in human lens epithelial cells through activation of PI3-K/Akt pathway. Mol.Vis.2011,17:2019-2027.
    [73]Anderson R S, Trune D R, Shearer T R. Histologic changes in selenite corticalcataract. Invest. Ophthalmol. Vis. Sci.1988,29:1418.
    [74]Shearer T R, Anderson R S, Britton J L, Palmer E A. Early development ofselenium-induced cataract: slit lamp evalution. Exp. Eye Res.1983,36(6):781-788.
    [75]Anderson R S, Shearer T R, Claycomb C K. Selenite-induced epithelial damage andcortical cataract. Curr. Eye Res.1986,5(1):53-61.
    [76]Wang Z, Hess J L, Bunce G E. Calcium efflux in rat lens: Na/Ca exchange related tocataract induced by selenite. Curr. Eye Res.1992,11(7):625-632.
    [77]Shearer T R, Ma H, Fukiage C, Azuma M. Selenite nuclear cataract: review of themodel. Mol. Vis.1997,3:8-16.
    [78]Behn D, Weiss-Nowak C, Kalckl sch M, Westphal C, Gessner H, Kyriakopoulos A.Studies on the distribution and characteristics of new mammalian selenium-containingproteins. Analyst1995,120(3):823-825.
    [79]Stadtman T C. Selenocysteine. Annu. Rev. Biochem.1996,65:83-100.
    [80]Hatfield D L, Gladyshev V N. How selenium has altered our understanding of thegenetic code. Mol. Cell Biol.2002,22:3565-3576.
    [81]Zinoni F, Heider J, B ck A. Features of the formate dehydrogenase mRNA necessaryfor decoding of the UGA codon as selenocysteine. Proc. Natl. Acad. Sci. USA1990,87:4660-4664.
    [82]Sandman K E, Noren C J. The efficiency of Escherichia coli selenocysteine insertionis influenced by the immediate downstream nucleotide. Nucleic Acids Res.2000,28:755-761.
    [83]Kryukov G V, Kumar R A, Koc A, Sun Z, Gladyshev V N. Selenoprotein R is azinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl. Acad. Sci.USA2002,99:4245-4250.
    [84]Aachmann F L, Sal L S, Kim H Y, Marino S M, Gladyshev V N, Dikiy A. Insightsinto function, catalytic mechanism, and fold evolution of selenoprotein methioninesulfoxide reductase B1through structural analysis. J. Biol. Chem.2010,285(43):33315-33323.
    [85]Hondal R J. Using chemical approaches to study selenoproteins—Focus onthioredoxin reductases. Biochim. Biophys. Acta.2009,1790(11):1501-1512.
    [86]Kim H Y, Gladyshev V N. Methionine sulfoxide reduction in mammals:characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell2004,15:1055-1064.
    [87]Marchetti M A, Pizarro G O, Sagher D, DeAmicis C, Brot N, Hejtmancik J F,Weissbach H, Kantorow M. Methionine sulfoxide reductases B1, B2, and B3arepresent in the human lens and confer oxidative stress resistance to lens cells. Invest.Ophthalmol. Vis. Sci.2005,46:2107-2112.
    [88]Picot C R, Perichon M, Lundberg K C, Friguet B, Szweda L I, Petropoulos I.Alterations in mitochondrial and cytosolic methionine sulfoxide reductase activityduring cardiac ischemia and reperfusion. Exp. Gerontol.2006,41:663-667.
    [89]Mary J, Vougier S, Picot C R, Perichon M, Petropoulos I, Friguet B. Enzymaticreactions involved in the repair of oxidized proteins. Exp. Gerontol.2004,39:1117-1123.
    [90]Reeves M A, Hoffmann P R. The human selenoproteome: recent insights intofunctions and regulation. Cell Mol. Life Sci.2009,66:2457-2478.
    [91]Hoshi T, Heinemann S. Regulation of cell function by methionine oxidation andreduction. J. Physiol.2001,531(Pt1):1-11.
    [92]Jia Y, Li Y, Du S, Huang K. Involvement of MsrB1in the regulation of redox balanceand inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells. Exp.Eye Res.2012,100:7-16.
    [1] US Department of Health and Human Services, Public Health Service, NationalInstitutes of Health, National Eye Institute,1998. Vision Research, a National Plan1999-2002. Report of the National Advisory Council59.
    [2] Sakthivel M, Geraldine P, Thomas P A. Alterations in the lenticular protein profile inexperimental selenite-induced cataractogenesis and prevention by ellagic acid.Graefes. Arch. Clin. Exp. Ophthalmol.2011,249:1201-1210.
    [3] Rooban B N, Sasikala V, Sahasranamam V. Amelioration of selenite toxicity andcataractogenesis in cultured rat lenses by Vitex negundo. Graefes. Arch. Clin. Exp.Ophthalmol.2011,249:685-692.
    [4] Varma S D, Hegde K R, Kovtun S. Inhibition of selenite-induced cataract by caffeine.Acta. Ophthalmol.2010,88: e245-249.
    [5] Devi V G, Rooban B N, Sasikala V, Sahasranamam V, Abraham A.Isorhamnetin-3-glucoside alleviates oxidative stress and opacification in selenitecataract in vitro. Toxicol. In Vitro2010,24:1662-1669.
    [6] Kyselova Z. Different experimental approaches in modelling cataractogenesis: Anoverview of selenite-induced nuclear cataract in rats. Interdiscip. Toxicol.2010,3:3-14.
    [7] Shearer T R, Ma H, Fukiage C, Azuma M. Selenite nuclear cataract: review of themodel. Mol. Vis.1997,3:8-16.
    [8] Elanchezhian R, Sakthivel M, Geraldine P. The effect of acetyl-L-carnitine onlenticular calpain activity in prevention of selenite-induced cataractogenesis. Exp. EyeRes.2009,88:938-944.
    [9] Huang L, Zhang C, Hess J, Bunce G. Biochemical changes and cataract formation inlenses from rats receiving multiple, low doses of sodium selenite. Exp. Eye Res.1992,55:671-678.
    [10]Orhan H, Marol S, Hepsen I F, Sahin G. Effects of some probable antioxidants onselenite-induced cataract formation and oxidative stress-related parameters in rats.Toxicology1999,139:219-232.
    [11]Dong D, Lu A, Liu Y, Jia W, Hou W. The early biochemical changes of cataractouslenses of rats cultured in vitro. Chin. J. Ophthalmol.2000,36:344-347,21.
    [12]David L L, Shearer T R. Calcium-activated proteolysis in the lens nucleus duringselenite cataraetogenesis. Invest. Ophthalmol. Vis. Sci.1984,25:1275-1283.
    [13]Palmquist B M, Fagerholm P, Landau I. Selenium-induced cataract-a correlation ofdry mass content and light scattering. Exp. Eye Res.1986,42:35-42.
    [14]Esterbauer H, Cheeseman K H. Determination of aldehydic lipid peroxidationproducts: malonaldehyde and4-hydroxynonenal. Methods Enzymol.1990,186:407-421.
    [15]Huang L, Jia W, Chang C. Effects of antioxidants or free free radical scavengers oncataract formation induced by selenium. Chinese J. Biochem. Mol. Biol.1989,5:369-374.
    [16]Ito Y, Cai H, Koizumi Y, Nakao M, Terao M. Correlation between prevention ofcataract development by disulfiram and fates of selenium in selenite-treated rats. Curr.Eye Res.1999,18:292-299.
    [17]Varma S D, Chand D, Sharma Y R, Kuck J F Jr, Richards R D. Oxidative stress onlens and cataract formation: role of light and oxygen. Curr. Eye Res.1984,3(1):35-57.
    [18]Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M. Effect ofcurcumin on selenite-induced cataractogenesis in Wistar rat pups. Curr. Eye Res.2010,35:122-129.
    [19]Gupta S K, Kalaiselvan V, Srivastava S, Saxena R, Agrawal S S. Trigonellafoenum-graecum (Fenugreek) protects against selenite-induced oxidative stress inexperimental cataractogenesis. Biol. Trace Elem. Res.2010,136:258-268.
    [20]Haung W, Koralewska-Makár A, Bauer B, Akesson B. Extracellular glutathioneperoxidase and ascorbic acid in aqueous humor and serum of patients operated on forcataract. Clin. Chim. Acta.1997,261:117-130.
    [21]Srivastava S K, Lal A K, Ansari N H. Defense system of the lens against oxidativedamage: effect of oxidative challenge on cataract formation in glutathione peroxidasedeficient-acatalasemic mice. Exp. Eye Res.1980,31:425-433.
    [22]Stone W L, Dratz E A. Selenium and non-selenium glutathione peroxidase activitiesin selected ocular and non-ocular rat tissues. Exp. Eye Res.1982,35:405-412.
    [23]Fujii T, Ikeda Y, Yamashita H, Fujii J. Transient elevation of glutathione peroxidase1around the time of eyelid opening in the neonatal Rat. J. Ocul. Pharmacol. Ther.2003,19:361-369.
    [24]Garner M H, Spector A. Selective oxidation of cysteine and methionine in normal andsenile cataractous lenses. Proc. Natl. Acad. Sci. USA1980,77:1274-1277.
    [25]Kim H Y, Gladyshev V N. Methionine sulfoxide reductases: selenoprotein forms androles in antioxidant protein repair in mammals. Biochem. J.2007,407:321-329.
    [26]Marchetti M A, Pizarro G O, Sagher D, Deamicis C, Brot N, Hejtmancik J F,Weissbach H, Kantorow M. Methionine sulfoxide reductases B1, B2, and B3arepresent in the human lens and confer oxidative stress resistance to lens cells. Invest.Ophthalmol. Vis. Sci.2005,46:2107-2112.
    [27]Brennan L A, Lee W, Giblin F J, David L L, Kantorow M. Methionine sulfoxidereductase A (MsrA) restores alpha-crystallin chaperone activity lost upon methionineoxidation. Biochim. Biophys. Acta.2009,1790:1665-1672.
    [28]Kantorow M, Hawse J R, Cowell T L. Methionine sulfoxide reductase A is importantfor lens cell viability and resistance to oxidative stress. Proc. Natl. Acad. Sci. USA2004,101:9654-9659.
    [29]Cunha-Vaz J. The blood-retinal barriers. Doc. Ophthalmol.1976,41:287-327.
    [30]Kim J H, Kim J H, Park J A, Lee S W, Kim W J, Yu Y S, Kim K W. Blood-neuralbarrier: intercellular communication at glio-vascular interface. J. Biochem. Mol. Biol.2006,39:339-345.
    [31]Jo D H, Kim J H, Kim J H. How to overcome retinal neuropathy: the fight againstangiogenesis-related blindness. Arch. Pharm. Res.2010,33:1557-1565.
    [32]汪家政,范明。蛋白质技术手册。北京:科学出版社,2000,77-92.
    [33]E.哈洛,D.莱恩。抗体技术实验指南。北京:科学出版社,2002,165-177.
    [34]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the2-ΔΔCtmethod. METHODS2001,25(4):402-408.
    [35]Bulvik B, Grinberg L, Eliashar R, Berenshtein E, Chevion M M. Iron, ferritin andproteins of the methionine-centered redox cycle in young and old rat hearts. Mech.Ageing Dev.2009,130:139-144.
    [36]Barnes K M, Evenson J K, Raines A M, Sunde R A. Transcript analysis of theselenoproteome indicates that dietary selenium requirements of rats based onselenium-regulated selenoprotein mRNA levels are uniformly less than those based onglutathione peroxidase activity. J. Nutr.2009,139:199-206.
    [37]Hafeman D G, Sunde R A, Hoekstra W G. Effect of dietary selenium on erythrocyteand liver glutathione peroxidase in the rat. J. Nutr.1974,104(5):580-587.
    [38]Placer Z A, Cushman L L, Johnson B C. Estimation of product of lipid peroxidation(malonyl dialdehyde) in biochemical systems. Anal. Biochem.1966,16(2):359-364.
    [39]Matthews J L, Talrnage R V. Influence of parathyroid hormone on bone cellultrastructure. Clin. Orthop. Relat. Res.1981,(156):27-38.
    [40]Stibilj V, Mazej D, Falnoga I. A study of low level selenium determination by hydridegeneration atomic fluorescence spectrometry in water soluble protein and peptidefractions. Anal. Bioanal. Chem.2003,377:1175-1183.
    [41]Freel C D, Gilliland K O, Wesley Lane C, Giblin F J, Joseph Costello M. Fourieranalysis of cytoplasmic texture in nuclear fiber cells from transparent and cataractoushuman and animal lenses. Exp. Eye Res.2002,74:689-702.
    [42]Bradford M M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.1976,72:248-254.
    [43]Wingler K, B cher M, Flohé L, Kollmus H, Brigelius-Flohé R. mRNA stability andselenocysteine insertion sequence efficiency rank gastrointestinal glutathioneperoxidase high in the hierarchy of selenoproteins. Eur. J. Biochem.1999,259(1-2):149-157.
    [44]David L L, Shearer T R. State of sulfhydryl in selenite cataract. Toxicol. Appl.Pharmacol.1984,74:109-115.
    [45]Liu X, Li X, Yang Y, Zhang J, Zhang C. GR and GSH-Px Expression in CataractousLens of Rats Induced by Sodium Selenite. Chinese J. Biochem. Mol. Biol.2001,17:492-495.
    [46]Vinceti M, Bonvicini F, Bergomi M, Malagoli C. Possible involvement ofoverexposure to environmental selenium in the etiology of amyotrophic lateralsclerosis: a short review. Ann. Ist. Super Sanita.2010,46(3):279-283.
    [47]Gong X, Shang F, Obin M, Palmer H, Scrofano M M, Jahngen-Hodge J, Smith D E,Taylor A. Antioxidant enzyme activities in lens, liver and kidney of calorie restrictedEmory mice. Mech. Ageing Dev.1997,99:181-192.
    [48]Gupta A, Gupta A, Nigam D, Shukla G S, Agarwal A K. Profile of reactive oxygenspecies generation and antioxidative mechanisms in the maturing rat kidney. J. Appl.Toxicol.1999,19:55-59.
    [49]Gautam N, Das S, Mahapatra S K, Chakraborty S P, Kundu P K, Roy S. Ageassociated oxidative damage in lymphocytes. Oxid. Med. Cell Longev.2010,3:275-282.
    [50]Kim H Y, Gladyshev V N. Methionine sulfoxide reduction in mammals:characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell2004,15:1055-1064.
    [51]Cunha-Vaz J. The blood-retinal barrier in retinal disease. Eur. Ophthalmic. Rev.2009,3:105-108.
    [52]Kim J H, Lee S J, Kim K W, Yu Y S, Kim J H. Oxidized low densitylipoprotein-induced senescence of retinal pigment epithelial cells is followed by outerblood-retinal barrier dysfunction. Int. J. Biochem. Cell Biol.2012,44:808-814.
    [53]Bunce G E, Hess J L. Biochemical changes associated with selenite-induced cataractin the rat. Exp. Eye Res.1981,33:505-514.
    [54]Shearer T R, Anderson R S, Bitton J L. Uptake and distribution of radioactiveselenium in cataractous rat lens. Curr. Eye Res.1982-1983,2:561-564.
    [55]Babicky A, Rychter Z, Kopoldova J, Ostádalová I. Age dependence of selenite uptakein rat eye lenses. Exp. Eye Res.1985,40:101-103.
    [56]Li G, Chen C. Mechanism and therapeutic effect of antioxidants on curing cataract.Ophthalmological Section of Foreign Medical Science1992,16:110-114.
    [57]Shang F, Chen C. Oxidation and cataract. Ophthalmological Section of ForeignMedical Science1989,13:297-300.
    [58]Lou M F. Redox regulation in the lens. Prog. Retin.Eye Res.2003,22(5):657-682.
    [59]Wang T, Zhang P, Zhao C. Prevention effect in selenite-induced cataract in vivo andantioxidative effects in vitro of Crataegus pinnatifida leaves. Biol. Trace Elem. Res.2011,142:106-116.
    [60]Manikandan R, Thiagarajan R, Beulaja S, Chindhu S, Mariammal K, Sudhandiran G,Arumugam M. Anti-cataractogenic effect of curcumin and aminoguanidine againstselenium-induced oxidative stress in the eye lens of Wistar rat pups: An in vitro studyusing isolated lens. Chem. Biol. Interact.2009,181:202-209.
    [61]Gupta S K, Halder N, Srivastava S, Trivedi D, Joshi S, Varma S D. Green tea(Camellia sinensis) protects against selenite-induced oxidative stress in experimentalcataractogenesis. Ophthalmic. Res.2002,34:258-263.
    [62]Wang D, Li Y, Hou G, Wang P, Zhang J, Laudon V, Shi B. Pygeum africanum: effecton oxidative stress in early diabetes-induced bladder. Int. Urol. Nephrol.2010,42:401-408.
    [63]Bala K, Tripathy B C, Sharma D. Neuroprotective and antiageing effects of curcuminin aged rat brain regions. Biogerontology2006,7:81-89.
    [64]Gupta S K, Kalaiselvan V, Srivastava S, Agrawal S S, Saxena R. Evaluation ofanticataract potential of Triphala in selenite-induced cataract: In vitro and in vivostudies. J. Ayurveda. Integr. Med.2010,1:280-286.
    [65]Li N, Zhu Y, Deng X, Gao Y, Zhu Y, He M. Protective effects and mechanism oftetramethylpyrazine against lens opacification induced by sodium selenite in rats. Exp.Eye Res.2011,93:98-102.
    [1] Steller H. Mechanisms and genes of cellular suicide. Science1995,267:1145-1149.
    [2] Thompson C B. Apoptosis in the pathogenesis and treatment of disease. Science1995,267:1456-1462.
    [3] Carson D A, Ribeiro J M. Apoptosis and disease. Lancet1993,341:1251-1254.
    [4] Li W C, Spector A. Lens epithelial cell apoptosis is an early event in the developmentof UVB-induced cataract. Free Radical Biol. Med.1996,20:301-311.
    [5] Kato K, Kurosaka D, Nagamoto T. Apoptotic cell death in rabbit lens after lensextraction. Invest. Ophthalmol. Visual Sci.1997,38:2322-2330.
    [6] Yan Q, Liu J P, Li D W. Apoptosis in lens development and pathology. Differentiation2006,74:195-211.
    [7] Yao K, Tan J, Gu W Z, Ye P P, Wang K J. Reactive oxygen species mediates theapoptosis induced by transforming growth factor beta(2) in human lens epithelial cells.Biochem. Biophys. Res. Commun.2007,354:278-283.
    [8] Li W C, Kuszak J R, Dunn K, Wand R R, Ma W, Wang G M, Spector A, Leib M,Cotliar A M, Weiss M, Epsy J, Howard G, Farris R L, Auran J, Donn A, Hofeldt A,Mackay C, Merriam J, Mittle R, Smith T R. Lens epithelial cell apoptosis appears tobe a common cellular basis for non-congenital cataract development in humans andanimals. J. Cell Biol.1995,130(1):169-181.
    [9] Maruno K A, Lovicu F J, Chamberlain C G, McAvoy J W. Apoptosis is a feature ofTGF beta-induced cataract. Clin. Exp. Optom.2002,85:76-82.
    [10]Murata M, Ohta N, Sakurai S, Alam S, Tsai J, Kador P F, Sato S. The role of aldosereductase in sugar cataract formation: aldose reductase plays a key role in lensepithelial cell death (apoptosis). Chem. Biol. Interact.2001,130-132:617-625.
    [11]Li W C, Kuszak J R, Wang G M, Spector A. H2O2-induced lens epithelial cellapoptosis may contribute to a fundamental mechanism of maturity onset cataractdevelopment. In Molecular Genetics of Cancer.1994,112.59Symposium onQuantitative Biology, Cold Spring Harbor Laboratory Press: New York, USA.
    [12]Li W C, Kuszak J R, Dunn K, Wang G M, Spector A. Induced lens epithelial cellapoptosis as a common cellular mechanism for non-congenital cataract formation inhumans and animals. Investigative ophthalmology&visual science,1995,36(4):616.
    [13]Spector A, Wang G M, Wang R R, Li W C, Kuszak J R. A brief photochemicallyinduced oxidative insult causes ireversible lens damage and cataract. I. Transparencyand epithelial cell layer. Exp. Eye Res.1995,60:471-481.
    [14]Spector A, Wang G M, Wang R R, Li W C, Kleiman N J. A brief photochemicallyinduced oxidative insult causes irreversible lens damage and cataract. II. Mechanismof action. Exp. Eye Res.1995,60:483-493.
    [15]Huang X R, Qi M X, Kang K R. Apoptosis of lens epithelial cell induced by curcuminand its mechanism. Zhonghua Yan Ke Za Zhi2006,42(7):649-653.
    [16]Rudolf E, Rudolf K, Cervinka M. Selenium activates p53and p38pathways andinduces caspase-independent cell death in cervical cancer cells. Cell Biol. Toxicol.2008,24:123-141.
    [17]Xu H B, Yang X L, Liu Q, Wang H T, Gan L. The signal transduction inROS-mediated apoptosis induced by selenium Compounds. Prog. Chem.2002,14:305-310.
    [18]Wang H T, Yang X L, Zhang Z H, Lu J L, Xu H B. Reactive oxygen species frommitochondria mediate SW480cells apoptosis induced by Na2SeO3. Trace Elem. Res.2002,85:241-254.
    [19]Fu L, Liu Q, Shen L, Wang Y. Proteomic study on sodium selenite-induced apoptosisof human cervical cancer HeLa cells. J. Trace Elem. Med. Biol.2011,25(3):130-137.
    [20]Guan L, Jiang Q, Li Z, Huang F, Ren Y, Yang Y, Xu C. The subcellular distribution ofMnSOD alters during sodium selenite-induced apoptosis. BMB Rep.2009,42(6):361-366.
    [21]Chen X J, Duan F D, Zhang H H, Xiong Y, Wang J. Sodium selenite-inducedapoptosis mediated by ROS attack in human osteosarcoma U2OS cells. Biol. TraceElem. Res.2012,145(1):1-9.
    [22]Luo H, Yang Y, Huang F, Li F, Jiang Q, Shi K, Xu C. Selenite induces apoptosis incolorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis. CancerLett.2012,315(1):78-85.
    [23]Králová V, Bene ová S, Cervinka M, Rudolf E. Selenite-induced apoptosis andautophagy in colon cancer cells. Toxicol. In Vitro.2012,26(2):258-268.
    [24]Ferrington D A, Tran T N, Lew K L, Van Remmen H, Gregerson D S. Different deathstimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells.Exp. Eye Res.2006,83(3):638-650.
    [25]Mosmann T. Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays. J. Immunol. Methods1983,65:55-63.
    [26]Martin S J, McGahon A J, Rader J A, LaFace D M, Green D R. Early redistribution ofplasma membrane phosphatidylserine is a general feature of apoptosis regardless ofthe initiating stimulus: inhibition by overexpression of Bcl-2and Abl. J. Exp. Med.1995,182:1545-1556.
    [27]Zhang G, Gurtu V, Kain S R, Yan G. Early detection of apoptosis using a fluorescentconjugate of annexin V. Biotechniques1997,23:525-531.
    [28]Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay forapoptosis. Flow cytometric detection of phosphatidylserine expression on earlyapoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods1995,184(1):39-51.
    [29]Tamada Y, Fukiage C, Nakamura Y, Azuma M, Kim Y H, Shearer T R. Evidence forapoptosis in the selenite rat model of cataract. Biochem. Biophys. Res. Commun.2000,275(2):300-306.
    [30]Sundaresan M, Yu Z X, Ferrans V J, Irani K, Finkel T. Requirement for generation ofH2O2for platelet-derived growth factor signal transduction. Science1995,270(5234):296-299.
    [31]Salvioli S, Dobrucki J, Moretti L, Troiano L, Fernandez M G, Pinti M, Pedrazzi J,Franceschi C, Cossarizza A. Mitochondrial heterogeneity duringstaurosporine-induced apoptosis in HL60cells: analysis at the single cell and singleorganelle level. Cytometry2000,40(3):189-197.
    [32]Jin G F, Hurst J S, Godley B F. Hydrogen peroxide stimulates apoptosis in culturedhuman retinal pigment epithelial cells. Curr. Eye Res.2001,22:165-173.
    [33]王凯军. Caspase家族与眼科疾病.国外医学眼科学分册,2001,25:193-196.
    [34]Thornbery N A, Lazebnik Y. Caspases: enemies within. Science1998,281(5381):1312-1316.
    [35]Yao K, Wang K, Xu W, Sun Z, Shentu X, Qiu P. Caspase-3and its inhibitorAc-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro.Chinese Medical Journal2003,116(7):1034-1038.
    [36]Li D W, Xiang H, Mao Y W, Wang J, Fass U, Zhang X Y, Xu C. Caspase-3is activelyinvolved in okadaic acid-induced lens epithelial cell apoptosis. Exp. Cell Res.2001,266(2):279-91.
    [37]Shen H M, Yang C F, Ong C N. Sodium selenite-induced oxidative stress andapoptosis in human hepatoma HepG2cells. Int. J. Cancer1999,81:820-828.
    [38]Li G X, Hu H, Jiang C, Schuster T, Lv J. Differential involvement of reactive oxygenspecies in apoptosis induced by two classes of selenium compounds in human prostatecancer cells. Int. J. Cancer2007,120:2034-2043.
    [39]张杰刘祯景鹏李国君。细胞线粒体膜电位的测量方法。首都医科大学学报,2006,27(1):124-125.
    [40]Cai J, Wu M, Nelson K C, Sternberg P Jr, Jones D P. Oxidant-induced apoptosis incultured human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci.1999,40(5):959-966.
    [41]McElnea E M, Quill B, Docherty N G, Irnaten M, Siah W F, Clark A F, O'Brien C J,Wallace D M. Oxidative stress, mitochondrial dysfunction and calcium overload inhuman lamina cribrosa cells from glaucoma donors. Mol. Vis.2011,17:1182-1191.
    [42]Mashimo K, Ohno Y. Ethanol hyperpolarizes mitochondrial membrane potential andincreases mitochondrial fraction in cultured mouse myocardial cells. Arch. Toxicol.2006,80:421-428.
    [43]Guan L, Han B, Li J, Li Z, Huang F, Yang Y, Xu C. Exposure of human leukemiaNB4cells to increasing concentrations of selenite switches the signaling frompro-survival to pro-apoptosis. Ann. Hematol.2009,88(8):733-742.
    [44]左路,李剑,沈悌,张之南.亚硒酸钠和三氧化二砷诱导人急性早幼粒细胞白血病细胞系NB4细胞凋亡机制的比较.中国实验血液学杂志2002,10(3):195-200.
    [45]Zuo L, Li J, Yang Y, Wang X, Shen T, Xu C M, Zhang Z N. Selenite induces apoptosisin acute promyelocytic leukemiaderived NB4cells by a caspase-3-dependentmechanism and a redox pathway different from that of arsenic trioxide. Ann. Hematol.2004,83:751-758.
    [46]Cao T M, Hua F Y, Xu C M, Han B S, Dong H, Zuo L, Wang X, Yang Y, Pan H Z,Zhang Z N. Distinct effects of different concentrations of selenite on apoptosis, cellcycle, and gene expression profile in acute promyeloytic leukemia-derived NB4cells.Ann. Hematol.2006,85:434-442.
    [47]Oyadomari S, Mori M. Roles of CHOP/GADD153in endoplasmic reticulum stress.Cell Death Differ.2004,11:381-389.
    [48]Park S H, Kim J H, Chi G Y, Kim G Y, Chang Y C, Moon S K, Nam S W, Kim W J,Yoo Y H, Choi Y H. Induction of apoptosis and autophagy by sodium selenite in A549human lung carcinoma cells through generation of reactive oxygen species. Toxicol.Lett.2012,212(3):252-261.
    [49]Pan J S, Hong M Z, Ren J L. Reactive oxygen species: a double-edged sword inoncogenesis. World J. Gastroenterol.2009,15:1702-1707.
    [50]Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis,necrosis and reactive oxygen damage. Oncogene1999,18:7719-7730.
    [51]Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeuticimplications. Drug Resistance Updates2004,7:97-110.
    [52]Green D R, Reed J C. Mitochondria and apoptosis. Science1998,281:1309-1312.
    [53]Li J, Zuo L, Shen T, Xu C M, Zhang Z N. Induction of apoptosis by sodium selenitein human acute promyelocytic leukemia NB4cells: involvement of oxidative stressand mitochondria. J. Trace Elem. Med. Biol.2003,17(1):19-26.
    [54]Guan L, Han B, Li Z, Hua F, Huang F, Wei W, Yang Y, Xu C. Sodium selenite inducesapoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrialdysfunction in human acute promyelocytic leukemia NB4cells. Apoptosis2009,14(2):218-225.
    [55]Slater A F, Nobel C S, Orrenius S. The role of intracellular oxidants in apoptosis.Biochim. Biophys. Acta.1995,1271(1):59-62.
    [56]Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3(-like)protease-mediated hydrogen peroxide production for apoptosis induced by variousanticancer drugs. J. Biol. Chem.1998,273(41):26900-26907.
    [57]Polyak K, Xia Y, Zweier J L, Kinzler K W, Vogelstein B. A model for p53-inducedapoptosis. Nature1997,389:300-305.
    [58]Kroemer G, Reed J C. Mitochondrial control of cell death. Nat. Med.2000,6(5):513-519.
    [59]Zou H, Li Y, Liu X, Wang X. An APAF-l cytochrome c multimeric complex is afunctional apoptosome that activates procaspase-9. J. Biol. Chem.1999,274:11549-11556.
    [60]Saleh A, Srinivasula S M, Acharya S, Fishel R, Alnemri E S. Cytochrorne c anddATP-mediated oligomerization of Apaf-1is a prerequisite for procaspase-9activation. J. Biol. Chem.1999,274:17941-17945.
    [61]Yang X, Stennicke H R, Wang B, Green D R, J nicke RU, Srinivasan A, Seth P,Salvesen G S, Froelich C J. Granzyme B mimics apical caspases. Description of aunified pathway for trans-activation of executioner caspase-3and-7. J. Biol. Chem.1998,273(51):34278-34283.
    [62]Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB J.1995,9:1173-1182.
    [63]Ottonello S, Foroni C, Carta A, Petrucco S, Maraini G. Oxidative stress andage-related cataract. Ophthalmologica.2000,214(1):78-85.
    [64]Truscott R J. Age-related nuclear cataract-oxidation is the key. Exp. Eye Res.2005,80:709-725.
    [65]Mathé G. Red wine, green tea and vitamins: do their antioxidants play a role inimmunologic protection against cancer or even AIDS? Biomed. Pharmacother.1999,53(4):165-167.
    [66]Caderni G, De Filippo C, Luceri C, Salvadori M, Giannini A, Biggeri A, Remy S,Cheynier V, Dolara P. Effects of black tea, green tea and wine extracts on intestinalcarcinogenesis induced by azoxymethane in F344rats. Carcinogenesis2000,21:1965-1969.
    [67]Simon H U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) inapoptosis induction. Apoptosis2000,5:415-418.
    [68]Skulachev V P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis2006,11:473-485.
    [69]Sies H. Introductory remarks. In: Sies H, editor. Oxidative stress. London: AcademicPress,1985,1-9.
    [70]Halliwell B, Cross C E. Oxygen-derived species: their relation to human disease andenvironmental stress. Environ. Health Perspect.1994,102:5-12.
    [71]Williams D L. Review: oxidation, antioxidants and cataract formation: a literaturereview. Vet. Ophthalmol.2006,9:292-298.
    [72]Beebe D C. The lens. In: Kaufman P L, Alm A, editors. Adler's physiology of the eye.10th ed. St Louis: Mosby Year Book Inc,2003,117-158.
    [73]Colitz C M, Bomser J A, Kusewitt D F. The endogenous and exogenous mechanismsfor protection from ultraviolet irradiation in the lens. Int. Ophthalmol. Clin.2005,45(1):141-155.
    [74]Shearer T R, Ma H, Fukiage C, Azuma M. Selenite nuclear cataract: review of themodel. Mol. Vis.1997,3:8-16.
    [75]Mulhern M L, Madson C J, Kador P F, Randazzo J, Shinohara T. Cellular osmolytesreduce lens epithelial cell death and alleviate cataract formation in galactosemic rats.Mol. Vis.2007,13:1397-1405.
    [76]Zhu Y, Xu H, Huang K. Mitochondrial permeability transition and cytochrome crelease induced by selenite. J. Inorg. Biochem.2002,90:43-50.
    [77]Belusko P B, Nakajima T, Azuma M, Shearer T R. Expression changes in mRNAs andmitochondrial damage in lens epithelial cells with selenite. Biochim. Biophys. Acta.2003,1623(2-3):135-142.
    [78]Chung Y W, Kim T S, Lee S Y, Lee S H, Choi Y, Kim N, Min B M, Jeong D W, Kim IY. Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway.Toxicol. Lett.2006,160(2):143-150.
    [79]Hu H, Jiang C, Schuster T, Li G X, Daniel P T, Junxuan Lu J. Inorganic seleniumsensitizes prostate cancer cells to TRAIL-induced apoptosis throughsuperoxide/p53/Bax-mediated activation of mitochondrial pathway. Mol. Cancer Ther.2006,5:1873-1882.
    [80]Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transitionin cell death. Apoptosis2007,12:835-840.
    [1] Ljubicic V, Adhihetty P J, Hood D A. Application of animal models: chronic electricalstimulation-induced contractile activity. Can. J. Appl. Physiol.2005,30(5):625-643.
    [2] Festing M. Design and statistical methods in studies using animal models ofdevelopment. ILAR J.2006,47(1):5-14.
    [3] McCormack E, Bruserud Gjertsen B. Animal models of acute myelogenousleukaemia-development, application and future perspectives. Leukemia2005,19(5):687-706.
    [4] Rockenstein E, Crews L, Masliah E. Transgenic animal models of neurodegenerativediseases and their application to treatment development. Advanced drug deliveryreviews2007,59(11):1093-1102.
    [5] Hirokawa K, Utsuyama M. Animal models and possible human application ofimmunological restoration in the elderly. Mechanisms of ageing and development2002.123(8):1055-1063.
    [6] US Department of Health and Human Services, Public Health Service, NationalInstitutes of Health, National Eye Institute,1998. Vision Research, a National Plan1999-2002. Report of the National Advisory Council59.
    [7] Boyle D L, Blunt D S, Takemoto L J. Confocal Microscopy of Cataracts from AnimalModel Systems: Relevance to Human Nuclear Cataract. Exp. Eye Res.1997,64(4):565-572.
    [8] Shearer T R, Ma H, Fukiage C, Azuma M. Selenite nuclear cataract: review of themodel. Mol. Vis.1997,3:8-16.
    [9] Kyselova Z. Different experimental approaches in modelling cataractogenesis: Anoverview of selenite-induced nuclear cataract in rats. Interdiscip. Toxicol.2010,3:3-14.
    [10]Lohr J W, Willsky G R, Acara M A. Renal Drug Metabolism. PharmacologicalReviews1998,50(1):107-141.
    [11]Hawkins R A, O'Kane R L, Simpson I A, Vi a J R. Structure of the blood-brainbarrier and its role in the transport of amino acids. J. Nutr.2006,136(1Suppl):218S-226S.
    [12]Li G, Chen C. Mechanism and therapeutic effect of antioxidants on curing cataract.Ophthalmological Section of Foreign Medical Science1992,16:110-114.
    [13]Shang F, Chen C. Oxidation and cataract. Ophthalmological Section of ForeignMedical Science1989,13:297-300.
    [14]Guengerich F P. Cytochrome P450s and other enzymes in drug metabolism andtoxicity. AAPS J.2006,8(1): E101-E111.
    [15]Chen H, Tian W, Huang K. Effect of blood-retinal barrier development on formationof selenite nuclear cataract in rat. Toxicol. Lett.2013,216(2-3):181-188.
    [16]Stibilj V, Mazej D, Falnoga I. A study of low level selenium determination by hydridegeneration atomic fluorescence spectrometry in water soluble protein and peptidefractions. Anal. Bioanal. Chem.2003,377:1175-1183.
    [17]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the2-ΔΔCtmethod. METHODS2001,25(4):402-408.
    [18]Bulvik B, Grinberg L, Eliashar R, Berenshtein E, Chevion M M. Iron, ferritin andproteins of the methionine-centered redox cycle in young and old rat hearts. Mech.Ageing Dev.2009,130:139-144.
    [19]Barnes K M, Evenson J K, Raines A M, Sunde R A. Transcript analysis of theselenoproteome indicates that dietary selenium requirements of rats based onselenium-regulated selenoprotein mRNA levels are uniformly less than those based onglutathione peroxidase activity. J. Nutr.2009,139:199-206.
    [20]Moghadaszadeh B, Beggs A H. Selenoproteins and their impact on human healththrough diverse physiological pathways. Physiology (Bethesda)2006,21:307-315.
    [21]Papp L V, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis,identity, and their role in human health. Antioxid. Redox Signal.2007,9(7):775-806.
    [22]Kryukov G V, Castellano S, Novoselov S V, Lobanov A V, Zehtab O, Guigó R,Gladyshev V N. Characterization of mammalian selenoproteomes. Science2003,300(5624):1439-1443.
    [23]Wingler K, B cher M, Flohé L, Kollmus H, Brigelius-Flohé R. mRNA stability andselenocysteine insertion sequence efficiency rank gastrointestinal glutathioneperoxidase high in the hierarchy of selenoproteins. Eur. J. Biochem.1999,259(1-2):149-157.
    [24]Chu F F, Esworthy R S, Doroshow J H. Role of Se-dependent glutathione peroxidasesin gastrointestinal inflammation and cancer. Free Radic. Biol. Med.2004,36(12):1481-1495.
    [25]Cheng W H, Ho Y S, Ross D A, Valentine B A, Combs G F, Lei X G. Cellularglutathione peroxidase knockout mice express normal levels of selenium-dependentplasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J.Nutr.1997,127(8):1445-1450.
    [26]Fu Y, Sies H, Lei X G. Opposite roles of selenium-dependent glutathione peroxidase-1in superoxide generator diquat-and peroxynitrite-induced apoptosis and signaling. J.Biol. Chem.2001,276(46):43004-43009.
    [27]Lei X G, Cheng W H, McClung J P. Metabolic regulation and function of glutathioneperoxidase-1. Annu. Rev. Nutr.2007,27:41-61.
    [28]Qin S, Huang K, Gao J, Huang D, Cai T, Pan C. Comparison of glutathioneperoxidase1and iodothyronine deiodinase1mRNA expression in murine liver afterfeeding selenite or selenized yeast. J. Trace Elem. Med. Biol.2009,23(1):29-35.
    [29]Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M. Effect ofcurcumin on selenite-induced cataractogenesis in Wistar rat pups. Curr. Eye Res.2010,35(2):122-9.
    [30]Eltayeb A A, Liu Q, Gan L, Liu H, Xu H. Antagonistic effect of scutellarin on thetoxicity of selenium in rat livers. Biol. Trace Elem. Res.2004,98(3):253-264.
    [31]Gan L, Liu Q, Xu H, Zhu Y S, Yang X L. Effects of selenium overexposure onglutathione peroxidase and thioredoxin reductase gene expressions and activities. Biol.Trace Elem. Res.2002,89(2):165-175.
    [32]Allan C B, Lacourciere G M, Stadtman T C. Responsiveness of selenoproteins todietary selenium. Annu. Rev. Nutr.1999,19:1-16.
    [33]Fan P, Yamauchi T, Noble L J, Ferriero D M. Age-dependent differences inglutathione peroxidase activity after traumatic brain injury. J. Neurotrauma.2003,20(5):437-445.
    [34]Moskovitz J, Bar-Noy S, Williams W M, Requena J, Berlett B S, Stadtman E R.Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense andlifespan in mammals. Proc. Natl. Acad. Sci. USA2001,98(23):12920-12925.
    [35]Ruan H, Tang X D, Chen C, Joiner M A, Sun G, Brot N, Weissbach H, Heinemann SH, Linda Iverson L, Wu C, Hoshi T. High-quality life extension by the enzymepeptide methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA2002,99(5):2748-2753.
    [36]Novoselov S V, Kim H Y, Hua D, Lee B C, Astle C M, Harrison D E, Friguet B,Moustafa M E, Carlson B A, Hatfield D L, Gladyshev V N. Regulation ofselenoproteins and methionine sulfoxide reductases A and B1by age, calorierestriction, and dietary selenium in mice. Antioxid. Redox Signal.2010,12(7):829-838.
    [37]Petropoulos I, Mary J, Perichon M, Friguet B. Rat peptide methionine sulphoxidereductase: Cloning of the cDNA, and down-regulation of gene expression and enzymeactivity during aging. Biochem. J.2001,355(Pt3):819-825.
    [38]Liang X, Fomenko D E, Hua D, Kaya A, Gladyshev V N. Diversity of protein andmRNA forms of mammalian methionine sulfoxide reductase B1due to intronizationand protein processing. PLoS One2010,5(7): e11497.
    [39]Dougherty J J, Hoekstra W G. Stimulation of lipid peroxidation in vivo by injectedselenite and lack of Stimulation by selenate. Proc. Soc. Exp. Biol. Med.1982,169(2):209-215.
    [40]Orhan H, Marol S, Hepsen I F, Sahin G. Effects of some probable antioxidants onselenite-induced cataract formation and oxidative stress-related parameters in rats.Toxicology1999,139:219-232.
    [41]Dong D, Lu A, Liu Y, Jia W, Hou W. The early biochemical changes of cataractouslenses of rats cultured in vitro. Chin. J. Ophthalmol.2000,36:344-347,21.
    [42]David L L, Shearer T R. Calcium-activated proteolysis in the lens nucleus duringselenite cataraetogenesis. Invest. Ophthalmol. Vis. Sci.1984,25:1275-1283.
    [43]Palmquist B M, Fagerholm P, Landau I. Selenium-induced cataract--a correlation ofdry mass content and light scattering. Exp. Eye Res.1986,42(1):35-42.
    [44]Esterbauer H, Cheeseman K H. Determination of aldehydic lipid peroxidationproducts: malonaldehyde and4-hydroxynonenal. Methods Enzymol.1990,186:407-421.
    [45]Li N, Zhu Y, Deng X, Gao Y, Zhu Y, He M. Protective effects and mechanism oftetramethylpyrazine against lens opacification induced by sodium selenite in rats. Exp.Eye Res.2011,93:98-102.
    [46]Gupta A, Gupta A, Nigam D, Shukla G S, Agarwal A K. Profile of reactive oxygenspecies generation and antioxidative mechanisms in the maturing rat kidney. J. Appl.Toxicol.1999,19:55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700