氯氰菊酯农药对海洋微藻和大型海藻的毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了评估拟除虫菊酯类农药对海洋生物以及海洋环境的毒性效应,了解拟除虫菊酯类农药对海洋生态系统以及海洋初级生产力的影响,研究了氯氰菊酯对重要赤潮藻类海洋卡盾藻(Chattonella marina)、锥状斯氏藻(Scrippsiella trochoidea)、中肋骨条藻(Skeletonemacostatum)和大型海藻龙须菜(Gracilaria lemaneiformis)的毒性效应及其对色素(藻红素或叶绿素a)、可溶性糖、可溶性蛋白含量以及超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量等生理生化指标的影响,同时还探讨龙须菜对拟除虫菊酯的吸收吸附能力。
     结果表明,单种培养条件下,低浓度(≤10μg·L~(-1))的氯氰菊酯对海洋微藻的生长具有明显的促进作用,而高于50μg·L~(-1)则产生较明显的抑制效应,但在暴露后期会出现一定的超补偿效应。而共培养条件下,中肋骨条藻对氯氰菊酯最为敏感,海洋卡盾藻次之,锥状斯氏藻抵抗能力最强。海洋卡盾藻只有在最低浓度1μg·L~(-1)浓度组的生长状况与对照组一致,其他浓度在对数生长期均低于对照组;锥状斯氏藻则在低浓度(≤10μg·L~(-1))表现为促进作用,高浓度(≥50μg·L~(-1))抑制;而中肋骨条藻农药处理组生长受到严重抑制,藻密度仅为对照组的10%以下。
     单独培养和共培养实验中,藻细胞所有生理生化指标均在暴露初期的6-12h较为敏感,24 h或48 h后趋于平稳。Ch1.α、可溶性糖、可溶性蛋白含量以及SOD活性等生化指标,在低浓度(≤5μg·L~(-1))时均出现诱导现象,而高于50μg·L~(-1)时则呈现先抑制后恢复的现象。而氯氰菊酯对藻体内MDA含量均具有促进作用,浓度越高促进作用越强。结果说明对SOD和细胞内含物的抑制作用以及细胞膜结构损伤可能是氯氰菊酯对藻细胞损伤、抑制藻类生长的重要原因。
     海洋微藻的各种生化指标对氯氰菊酯的响应均较为敏感,但SOD和MDA对剂量反应更为敏感,氯氰菊酯对海洋卡盾藻SOD活性和MDA含量的最低作用剂量为10μg·L~(-1),对锥状斯氏藻最低影响剂量更低,仅为5μg·L~(-1)和1μg·L~(-1),对中肋骨条藻SOD和MDA的最低作用剂量均为5μg·L~(-1)。而对其他生长和生化指标的最低抑制浓度为50μg·L~(-1)。由此可见,SOD和MDA可作为监测环境中氯氰菊酯对藻类生长影响的敏感指标和生物标记物。
     龙须菜对氯氰菊酯的敏感性低于海洋微藻。当氯氰菊酯浓度低于50μg·L~(-1)时,龙须菜的生长均受到促进,直到农药浓度超过500μg·L~(-1)。后才逐渐表现出被抑制的现象。藻体内的藻红素、Ch1.α、可溶性糖、可溶性蛋白含量以及超氧化SOD活性、MDA含量等生化指标对氯氰菊酯均较敏感,其中SOD和Ch1.α、6 h最低作用剂量为5μg·L~(-1),是龙须菜对氯氰菊酯响应的敏感指标。
     氯氰菊酯本身在水体中分解速率较快,未投放龙须菜的培养基中,氯氰菊酯96 h可降解水体中50%-70%左右的氯氰菊酯农药,而投放了龙须菜的培养基中,氯氰菊酯的去除率也只提高至52%-73%,说明龙须菜能够吸收吸附一定量的氯氰菊酯,但作用不大;另一方面,氯氰菊酯自身降解很快,可迅速降低至对生物无害的安全浓度。
In order to assess the toxic effects of pyrethroid pesticides on marine organisms and marine environments,and to understand the influence of pyrethroid pesticides on primary production of marine ecosystem,the toxicities of cypermethrin on the growth of three important harmful agla bloom species Chattonella marina,Scrippsiella trochoidea,Skeletonema costatum and seaweed Gracilaria lemaneiformis were studied.The toxic effects of cypermethrin on biochemical parameters including contents of pigment,such as chlorophyll a(chl.a) and phycoerythrin(PE), soluble sugar,soluble protein,malonyldiadehyde(MDA) and activity of superoxide dismutase superoxide dismutase(SOD),were measured as well.Meanwhile the absorption and adsorption ability of G lemaneiformis on cypermethrin were studied.
     Results showed that,in mono-species culture condition,cypermethrin obviously accelerated the growth of microalga at concentration below 10μg·L~(-1),and inhibited the growth significantly when concentrations were over 50μg·L~(-1).However over-compensation growth occurred in the late exposure period under high cypermethrin concentrations.
     Under co-culture condition,S.costatum was the most sensitive species to cypermethrin,nest sensitive species was C.marina,and S.trochoidea had the strongest resistance.C.marina had the similar growth curve with the control group at the lowest concentration group(1μg·L~(-1)),and growth rates were lower than that in control group at concentration over 5μg·L~(-1).The growth of S.trochoidea accelerated at lower concentrations(≤10μg·L~(-1)) and was inhibited at higher ones (≥50μg·L~(-1)).The growth of S.costatum was severely inhibited under the conjunct stress of cypermethrin and co-cultures,and the cell densities were less than 10%of the control group.
     All of the biochemical parameters were sensitive at the early 6-12 h exposure stages,and became to be stable after 24 h or 48 h exposure in both mono-cultures and co-cultures.The contents of Chl.a,soluble sugar,soluble protein and the activity of SOD were induced at lower concentrations(≤5μg·L~(-1)),and were initially inhibited and then recovered at high concentrations (≥50μg·L~(-1)).However,MDA content increased significantly with the increasing of concentrations.Results showed that the inhibition of SOD activity and cellular inclusions and the damage of cell membrane structure might be the important reasons for the toxicity of cypermethrin to algal cells.
     The results showed that all biochemical parameters measured in this study were sensitive to cypermethrin.Furthermore SOD and MDA were more sensitive.The lowest effective concentrations of cypermethrin to SOD activity and MDA content of were both 10μg·L~(-1) for C. marinas,were 5μg·L~(-1) and 1μg·L~(-1) respectively for S.trochoidea,and were both 5μg·L~(-1) for S. costatum.While the inhibition concentrations on growth and other biochemical parameters were all 50μg·L~(-1).Therefore,SOD and MDA of microalga might be capable to be used as biomarks for early warning of cypermethrin pesticide contamination.
     The sensitivity of G lemaneiformis to cypermethrin was much lower than marine algae. Cypermethrin obviously accelerated the growth of G lemaneiformis at concentration below 50μg·L~(-1),and inhibited the growth significantly over 500μg·L~(-1).All biochemical indicators, including the cellular contents of PE,Chl.a,soluble sugar and soluble protein,MDA and SOD activity,were sensitive to cypermethrin.SOD activity and MDA content were the most sensitive parameters with the lowest effective concentrations of 5μg·L~(-1).
     Cypermethrin decomposed fast in water that 50%-70%was decomposed within 96 hours,and the degradation rate increased slightly to 52%-73%in cultures with G lemaneiformis.Results showed that the removal rates of G lemaneiformis to cypermethrin were too low to function as an effective bio-filter.On the other hand,the pollution of cypermethrin would be decrease to the safety levels in marine environments,due to its quick self degradation.
引文
[1]Al-Makkawy H K,Madbouly M D.Persistence and accumulation of some organic insecticides in Nile water and fish[J].Resources,Conservation and Recycling,1999,27(1-2):105-115
    [2]安鑫龙,齐遵利,李雪梅等.大型海藻龙须菜的生态特征[J].水产科学,2009,28(2):109-112.
    [3]Boucard T k,Parry J,Jones,et al.Effects of Organophosphates and Synthetic Pyrethroid Sheep Dip Formulations on Protozoan Survival and Bacterial Survival and Growth[J].FEMS Microb Ecol,2004,47(1):121-127.
    [4]Bradbury S P,Coats J R.Comparative toxicology of the pyrethroid insecticides[J].Rev Environ Contam Toxicol,1989,08:133-177.
    [5]Bruin W P,Kotterman M J,Posthumus M A,et al.Complete Biological Reductive Transformation of Tetrachloroethene to Ethane[J].Appl Envir Microbiol,1992,58(6):1996-2000
    [6]蔡道基,龚瑞忠,汤国才等.稻田使用溴氰菊酯农药对水生生物的安全评价[J].环境科学研究,1997,10(3):30-35.
    [7]陈碧鹃,陈民山,吴彰宽.氰戊菊酯、胺菊酯对海洋藻类、贝类的毒性研究[J].中国水产科学,1997,4(2):52-56.
    [8]陈碧鹃,陈民山,吴彰宽.氰戊菊酯、胺菊酯对紫贻贝生长的影响[J].水产学报,1997,21(1):89-92.
    [9]陈良燕,蔡道基.溴氰菊酯农药对鱼塘浮游动物影响的研究[J].中国环境科学,1996,16(6):466-69.
    [10]陈建勋,王晓峰.植物生理学实验[M].广州:华南理工大学出版社,2002.
    [11]陈明,任仁,王子健等.北京市工业废水和城市污水中聚酯类农药残留分析[J].安全与环境工程,2005,12(4):15-21.
    [12]陈明,任仁,王子健等.城市污水处理厂水样中菊酯类农药残留分析[J].中国环境监测,2007,(01):27-29.
    [13]陈剑刚,朱克先,张亦庸等.固相萃取-气相色谱-质谱联用测定水体中拟除虫菊酯残留 [J].现代预防医学,2005,32(6):648-649.
    [14]Cisar J L,Snyder G H.Fate and Management of Turf Grass Chemicals[J].ACS Symp Series,2000,743:106-126.
    [15]Clark J R,Patrick J M,Moore J C,et al.Waterborne and sediment-source toxicities of six organic A Chemicals to grass shrimp(Palaemonetes pugio) and amphioxus(Branchiostoma caribaeum)[J].Arch Environ Contam Toxicol,1987,16:401-407.
    [16]Colborn T,Dumanoski,Myers J p.Our Stolen Future Abacus[M].London,1996.
    [17]党亚爱,王国栋,辛宝平等.几种染料抑制斜生栅藻生长的毒性效应[J].西北植物学报,2003,23(2):332-335.
    [18]Doggett S M,Rhodes R G.Effects of a diazinon formulation on unialgal growth rates and phytoplankton diversity[J].Bull Environ Contam Toxicol,1991,47:36-42.
    [19]Dutta G R,AdhikA RIS.Accumulation of malathion in different organs of Heteropneuste fossilis(Bloch)[J].J Freshw ater biology,1994,6(2):183-186.
    [20]Enan E,Marsumura F.Aetivation of Phos Phoinositide / Proteinkinase C Path way in ratbraintissue by Pyrethroids[J].Bioehem Phar naeol,1993,45(3):703-710.
    [21]EPA.Review of Chlorpyrifos Poisoning Data[R].US EPA,1995,1-46
    [22]范岳荣.从拟除虫菊酯在菲律宾水稻上使用的现状看在我国水稻上开发的可能性[J].农药译丛,1993,15(6):26-31.
    [23]冯深,路新枝,于文功.逆境胁迫对条斑紫菜生理生化指标的影响[J].海洋湖沼通报,2004,(3):22-26.
    [24]Galloway T,Handy R.Immunotoxicity of Organophosphorus Pesticides[J].Ecotoxicol,2003,12:345-363.
    [25]高炜锋,刘洁生 杀灭菊酯对鲤鱼血液影响初探[[J].环境污染与防治,1996,18(6):4-7.
    [26]高尚德.有机锡对海洋微藻的生理效应[J].海洋与湖沼,1994,25(4):362-366.
    [27]龚瑞忠,蔡道基.拟除虫菊酯类农药对水生生物的毒性评价研究[J].环境科学研究,1988,1(4):39-44.
    [28]龚瑞忠,蔡道基,钟巧云.溴氰菊酯对鱼虾的毒性与安全评价研究[J].农村生态环境,1996,12(1):29-32.
    [29]Haglund K,Pedersen M.Outdoor pond cultivation of the subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden:Growth,nutrient uptake,cocultivation with rainbow trout and epiphyte control[J].Journal of Applied Phycology,1993.5:271-84.
    [30]Hadzi-Panzov J S,Petrovski Alazarevski A.Overview on the Waste Material from the Former Lindane Plant in Skopji Plant[J].Protection institute,2001,1:129-134.
    [31]Hilal P,Figen U E,Rukiye V,Oner K.Investigation of acute toxicity of beta-cypermethrin on guppies Poecilia reticulates[J].AChEmosphere,2002,49:39-44.
    [32]He L H,Wu M,Qian P Y.Effects of co-culture and salinity on the growth and agar yield of Gracilaria tenuistipitatavar,liui zhang etxia[J].Chinese Journal of Oceanology and Limnology,2002,20(4):365-370.
    [33]贺全仁,聂星湖.拟除虫菊酯类农药的临床毒理学研究现状[J].中国工业医学杂志,1997,10(1):46-48.
    [34]黄玉山,罗广华,关棨文.镉诱导植物的自由基过氧化损伤[J].植物学报(英文版),1997,6
    [35]胡志强,许良忠,任雪景,郭玉晶.拟除虫菊酯类杀虫剂的研究进展[J].青岛化工学院学报,2002,23(1):48-51.
    [36]胡海燕,卢继武,周毅等.龙须菜在鱼藻混养系统中的生态功能[J].海洋科学集刊,2003,45:169-175.
    [37]黄健,宫相忠,唐学玺等.链霉素对海洋微藻的毒物刺激效应[J].青岛海洋大学学报,2000,30(4):642-644.
    [38]何运转,李梅,冯国营等.拟除虫菊酯对家蝇Na~+-K~+-ATPase抑制作用的研究[J].昆虫学报,1999,42(1):19-24.
    [39]洪华嫦,周海云,蓝崇钰.五氯酚对斜生栅藻的毒性效应研究[J].环境科学研究,2003,16(6):23-25,28.
    [40]华小梅,单正军.我国农药的生产、使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33-45.
    [41]黄小花,杨秀娜,徐虹等.铜绿微囊藻对5种抗生素敏感性的研究[J].厦门大学学报(自然科学版),2006,45(1):106-109.
    [42]黄玉山,罗广华.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526.
    [43]Iwata H,Tanabe S,Sakai N,et al.Distrbution of Persistent Organochlorinesin the Oceanic Air and Surfurce Seawater and Therole of Ocean on Their Global Transpoor and Fate[J].Environ Sci Technol,1993,27(4):1080-1098.
    [44]纪瑾,吴垠,陈雷等.氯氰菊酯和氰戊菊酯对栉孔扇贝抗氧化能力的影响[J].大连水产学院学报,2006(3):236-241.
    [45]贾树林.锦州湾污染对海洋生物的影响[J].海洋环境科学,1983,2(4):1-10.
    [46]Jiang X,Martens D,Schramm K-W,et al.Polychlorinated organic compounds(PCOCs) in waters,suspended solids and sediments of the Yangtse River[J].Chemosphere,2000,41:901-905.
    [47]姜辉,林荣华,陶传江等.菊酯类农药对水田生物影响研究进展[J].农药科学与管理,2005,26(10):14-19.
    [48]姜允申,肖杭.拟除虫菊酯农药的神经毒作用研究[J].劳动医学,1997,14(1):51-52.
    [49]靳晓敏,吴垠,卢刚等.两种菊酯类农药对鲤血清溶菌酶和转氨酶的影响[J].水产科学,2006,25(8):383-386.
    [50]靳晓敏,吴垠,杨松等.两种菊酯类农药对鲤血清CAT和SOD的影响[J].农业环境科学学报,2006,25(3):615-618.
    [51]Karalliedde L,Senanayake N.Organophosphorus Insecticide Poisoning[J].Int Fed Clin Chem,999.11:4-9.
    [52]Ken R A,Weinberger P.Multibiological-level responses of freshwater phytoplankton to pesticide stress[J].Environ Toxicol Chem,1991,10:209-216.
    [53]Kolaczinski J H,Curtis C F.Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides:A review of the debate[J].Food and Chemical Toxicology,2004,42(5):697-706.
    [54]Kukkola E,Rautio P,Huttunen S.Stress indications in copper and nickel-exposed Scots pine seedlings[J].Environ Exp Bot,2000,43:197-210.
    [55]李筠.三苯基氯化锡(TPTC)对海洋微藻的毒性效应[D].青岛:青岛海洋大学,1993.
    [56]李钧,李正炎.三苯基氧化锡(TPTC)对孔石莼光合作用及生长的影响[J].海洋与湖沼, 2000,31(4):404-07.
    [57]李钦,魏凤琴,陈纪新.甲胺磷、辛硫磷对坛紫菜叶状体的生理效应[J].水产学报,2004,(2):110-113.
    [58]李涛.锰、铜和锌增强黄瓜(Cucumis sativus L.)幼苗抗冷性的生理机制研究[D].济南:山东农业大学,2007.
    [59]黎艳霞,杨俭美.4种杀虫药剂对大型蚤的毒性和酶活性影响的比较[J].北京大学学报(自然科学版),1997,33(2):197-202.
    [60]刘广民,姜桂兰,张辉等.有机氯类农药在包气带及地下水中长期残留研究[J].农业环境保护,2001,20(6):408-410.
    [61]刘国光,王莉霞,徐海娟等.氰戊菊酯和锐劲特对原生动物群落的联合毒性试验研究[J].环境科学学报,2005,25(1):86-89.
    [62]刘国光,王莉霞,徐海娟等.高效氯氰菊酯对原生动物群落的毒性研究[J].中国环境科学,2005,25(增刊):115-117.
    [63]刘尚钟,王敏,陈馥衡.拟除虫菊酯类农药的研究和展望[J].农药,2004,43(7):289-293.
    [64]刘现明,徐学仁,张笑天等.大连湾沉积物中的有机物农药和多氯联苯[J].海洋环境科学,2001,20(4):40-44.
    [65]刘朝阳,孙晓庆.龙须菜的生物学作用及应用前景[J].养殖与饲料,2007,(5):55-58.
    [66]宁黔冀,尚稚珍.昆虫ATPase活性的测定与应用[C].中国有害生物综合治理论文集,北京:中国农业科技出版社,1996,1068-1071.
    [67]林光恒,张小庆,吴超元.苯并(a)芘对紫菜(Porphyra)的致突变效应[J].海洋科学,1990,2(2):57-59.
    [68]林玉,龚瑞忠,朱忠林.农药与生态环境保护[M].北京:化学工业出版社,1999.
    [69]林建清,洪华生,王新红等.海水中多环芳烃的暴露浓度对鲈鱼体内脂质过氧化程度的影响[J].台湾海峡,2005,24(3):310-315.
    [70]鹿金雁.叔丁基对羟基茴香醚和诺氟沙星对水生生物的毒性效应.广州:暨南大学硕士论文,2007.
    [71]Lund A E,Narahashi T.Modification of sodium channel kinetics by the insecticide tetramethrin in crayfish giant axons[J].Neurotoxicology,1981,2:213-219.
    [72]马志卿.不同类杀虫药剂的致毒症状与作用机理关系研究[D].杨凌:西北农林科技大学,2002.
    [73]Manahan Se.Toxicological Chemistry[M].2nd edn Lewis,London,1992
    [74]Malaviya M,Husain R,Seth P K,Husain R.Perinatal effects of two pyrethroid insecticides on brain neurotransmitter functions in the neonatal rat[J].Vet Hum Toxicol,1993,35(2):119-122.
    [75]McConnell R,Pacheoco F,Wahlberg K,et al.Subclinical Health Effects of Environmental Pesticide Contamination in a Developing Country Cholinesterase depression in children[J].Environ Res,1999,81:87-91.
    [76]National Consumer Council.Farm Policies and Our Food-The Need for Change[C].London,1998.
    [77]牛玉杰,石年,严红,刘毓谷.溴氰菊酯对大鼠神经细胞内游离钙的影响[J].卫生毒理学杂志,2001,15(4):216-219.
    [78]聂湘平,蓝崇钰,林里等.多氯联苯对蛋白核小球藻和斜生栅藻生长影响的研究[J].中山大学学报(自然科学版),2002,41(1):68-71.
    [79]Nystrom B,Bjomsater B,Blanck H.Effects of sulfonylurea herbicides on non-target aquatic micro-organisms,growth inhibition of micro-algae and short-term inhibition of adenine and thymidine incorporation in periphyton communities[J].Aquatic Toxicology,1999,47:9-22.
    [80]欧祖兰,曹福亮,郑军.高温胁迫下银杏形态及生理生化指标的变化[J].南京林业大学学报(自然科学版),2008,32(3):31-34.
    [81]潘厚军,呈淑勤,黄志诚等.鱼类对有机磷和溴氰菊酯农药的敏感性研究[J].淡水渔业,2000,30(7):44-45.
    [82]Philips E J.Effect of the herbicide diquat on the growth of microalga and yanobacteria[J].Bull Environ Contain Toxicol,1992,49:750-756.
    [83]Piska R S,Waghray S.Toxic effects of dimethoate on primary production of lake ecosystem [J].Indian J Environ Health,1991,33(1):126-127.
    [84]Pesticide,Trust.Pesticide Trust Review Pesticide[J].Trust,London,1996
    [85]齐红莉,吴垠,桂远明.功夫菊酯对鲤红细胞生理生化指标的影响[J].水利渔业,2006,26(1):104-107.
    [86]齐雨藻,郑磊,汪蓉.锥状斯氏藻生活史及其生理生态调控[J].海洋与湖沼,1997,28(6):588-593.
    [87]秦文弟,钟仙龙.有机磷农药对鱼腥藻和铜绿微囊藻的急性毒性效应[J].江苏农业科学,2006(4):189-192.
    [88]Ragnarsdottir Kv.Environmental Fate and Toxicology of Organophosphate Pesticides[J].Geological Soc,2000,157:859-876.
    [89]Round F E.The ecology of algae[D].London:Cambridge University Press,1981,1-653.
    [90]汝少国,李永琪,敬永畅.十种有机磷农药对扁藻的毒性[J].环境科学学报,1991,6(3):337-341.
    [91]Santhakumar M,Balaji M,Ramudu K.Effect of sublethal concentrations of monocrotophos on erythropoietic activity and certain hematological parameters of fish Anabas testudineus(Bloch)[J].Bull Environ Contam Toxicol,1999,63:379-384.
    [92]Shen D,Wu M.Chromosomal and mutagenic of the marine macroalga,Gracilaria tenuistipitat[J].Journal of Applied Phycoligy.1995,7:25-31.
    [93]沈国英,施并章.海洋生态学[M].北京:科技出版社,2002.
    [94]沈宏,宋立荣,周培疆等.有机磷农药对滇池微囊藻生长和摄磷效应的影响[J].水生生物学报,2007,31(6):863-868.
    [95]Sinha G,Agrawal A K,Islam F,et al.Mosquito repellent(pyrethroid-based) induced dysfunction of blood-brain barrier permeability in developing brain[J].International Journal of Developmental Neuroscience,2004,22(1):31-37.
    [96]Smith D W,Horne A J.Experimental measurement of resource competition between plank tonic microalga and macro algae(seaweeds) in mesocosms simulating the San Francisco Bay-Estuary,California[J].Hydrobiologia,1988,159:259-268.
    [97]Smith T M,Stratton G W.Effects of synthetic pyrethroid insecticides on nontarget organisms[J].Residue Rev,1986,97:93-119.
    [98]Sogorb Ma,Vilanova,Carrera.Future Application of Phosphotriesterases in the Prophylaxis and Treatment of Organophosphorus Insecticide and Nerve agent Poisoning[J].Toxicol Lett,2004,151:219-233.
    [99]宋稳成.二氯喹啉酸对浮萍和湘云鲫的毒性及其在水溶液中的光降解研究[D].长沙:湖南农业大学资源环境学院,2002.
    [100]Sresty TVS,Madhava RKV.Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeon pea[J].Environ Exp Bot.1999,41:3-13.
    [101]Szegletes T,Balint T,Szegletes Zs,Nemcsok J.Changes caused by methidathion in activity and distribution of molecular forms of carp(CyprinuscarpioL.) AchE[J].Pestic Biochem Physiol,1995,52:71-79.
    [102]Stebbing A R D.Hormesis the stimulation of growth by low levels of inhibitors[J].Science Total Environment.1982,22:213-234.
    [103]Stobart A K,Griffiths W T,Ameen B I.The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley.Plant Physiology,1985,63:293-298.
    [104]隋正红,张学成.藻红蛋白研究进展[J].海洋科学,1998,4:24-27.
    [105]谭亚军,李少南,吴小毛.几种杀虫剂对大型蚤的慢性毒性[J].农药学学报,2004,6(3):62-66.
    [106]唐除痴,李煌赦,陈彬等.农药化学[M].天津:南开大学出版社,1998,174-175.
    [107]唐学玺.有机磷农药对海洋微藻制毒性的生物学研究[J].海洋环境科学,1995,14(2):1-5.
    [108]唐学玺,李永棋,李春雁.有机磷农药对海洋微藻致毒性的生物学研究Ⅱ:久效磷胁迫下扁藻和三角褐指藻脂质过氧化伤害的研究[J].海洋学报,1997,19(1):139-143.
    [109]唐学玺.有机磷农药对海洋微藻制毒性的生物学研究[J].海洋环境科学,1998,17(1):1-5.
    [110]田雨,冷欣夫.溴氰菊酯对不同品系家蝇脑突触体膜蛋白磷酸化及ATP酶活性的影响[J].昆虫学报,1999,42(2):113-119.
    [111]Tarhanen S.Ultrastructural responses of the Lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition[J].Ann Bot,1998,82:735-746.
    [112]Toole Toole.Understanding Biology[C].3rd edn Stanley Thornes,Cheltenham,UK,1995
    [113]Tse H,Comba Alaee.Methods for the Determination of Organophosphate Insecticides in Water,Aediments and Biota[J].Chemosphere,2004,54(1):41-47.
    [114]Vijverberg H P M,Van den Bercken J.Neuro toxicological effects and the mode of action of Pyrethroid insecticides[J].Crit Rev Toxicol,1990,21(2):105-126.
    [115]Voldner E C,Y.F.Li.Global Usage of Selected Persistent Organochlorrines[J].Sci Total Environ,1995,161(1):201-210.
    [116]王焕明.藻虾混养的研究Ⅰ:江蓠与新对虾、青蟹在鱼塘中混养的试验[J].海洋湖沼通报,1994(3):52-59.
    [117]王美娥.豆磺隆-重金属生态毒理联合效应及分子诊断[D].沈阳:中国科学院沈阳应用生态研究所,2006.
    [118]王明学,周志刚,张财兵.溴氰菊酯对草鱼种的急性毒性试验[J].水利渔业,1998,97(3):11-12.
    [119]王彦华,王鸣华.试论拟除虫菊酯类农药在水稻田中的应用[J].农药科学与管理,2006,27(5):41-45.
    [120]王媛,熊丽,刘喜平等.氯氰菊酯对鲤鱼亚急性毒性研究[J].农业环境科学学报,2006,25(1):200-203.
    [121]王朝晖,尹伊伟.甲氰菊酯对白鳝(Hypophthalmichthys molitrix)鳃组织病理学研究[J].暨南大学学报(自然科学版),1996,17(1):74-79.
    [122]王朝晖,尹伊伟.常见拟除虫菊酯(原药、商品)及助溶剂对水生生物毒性的比较[J].暨南大学学报(自然科学版),1997,18(1):98-103.
    [123]王朝晖,尹伊伟,许忠能等.8种拟除虫菊酯农药对稀有鮈鲫的急性、亚慢性毒性研究[J].应用与环境生物学报,1998,4(4):379-382.
    [124]王朝晖,尹伊伟,林小涛等.拟除虫菊酯农药对水生态系统的生态毒理学研究综述[J].暨南大学学报(自然科学版),2000,21(3):123-127.
    [125]王兆守,李顺鹏.拟除虫菊酯类农药微生物降解研究进展[J].土壤,2005,37(6):577-580.
    [126]王沈玉.恶性肿瘤患者脂质过氧化损伤的临床研究[J].辽宁中医杂志,2006,33(2):186.
    [127]王金发.细胞生物学.北京:科学出版社,2004.
    [128]魏渲辉,汝少国.有机磷农药对鱼类的毒性效应及内分泌扰乱作用[[J].海洋科学, 2002,26(9):45-48.
    [129]Wang S Y,Wang G K.Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins[J].Cell Signal,2003,15(2):151-159.
    [130]Wendt-Raseh L,Pirzadeh P,Woin P.Effects of metsulfuron methyl and cypermethrin exposure on freshwater model ecosystems[J].Aquat Toxicol,2003,63(3):243-256
    [131]Wu A,Liu Y.Deltamethrin induces delayed apoptosis and altered expression of p53 and bax in rat brain[J].Environ Toxicol Phanmacol,2000,8(3):183-186.
    [132]吴玲玲.长江口水体中典型有机污染物的分布及其对鱼类的毒性效应[D].上海:同济大学,2007.
    [133]吴伟,陈家长,冷春梅等.溴氰菊酯对罗非鱼谷胱甘肽及S转移酶的影响[J].中国环境科学,2006,26(4):474-477.
    [134]吴文君.农药学原理[M].北京:中国农业出版社,1999:26-32.
    [135]吴瑜端.厦门港湾重金属污染与海域生产力关系[J].海洋与湖沼,1986,17(3):173-184.
    [136]伍一军,冷欣夫.杀虫药剂的神经毒理学研究进展[J].昆虫学报,2003,46(3):382-389.
    [137]向枭,周维禄等.溴氰菊酯对黄鳝的急性毒性[[J].渔业现代化,2000(5):16-17.
    [138]谢涛,熊丽,王奎等.拟除虫菊酯类杀虫剂对鱼类的毒性研究[J].生物学教学,2005,30(7):47-49.
    [139]谢文平,马广智.氯氰菊酯对草鱼鳃和肝组织超氧化物歧化酶(SOD)活性的影响[J].水产科学,2003,22(6):5-7.
    [140]熊丽,吴振斌,况琪军等.氯氰菊酯对斜生栅藻的毒性研究[J].水生生物学报,2002,261):66-73.
    [141]徐晓平,席贻龙,储昭霞等.溴氰菊酯对萼花臂尾轮虫试验种群动态的影响[J].动物学报,2005,51(2):251-256.
    [142]徐燕.CO:浓度和温度升高对红桦可溶性蛋白含量和分配的影响[D].成都:中国科学院成都生物研究所,2007.
    [143]严国安,沈国兴,严雪,彭金良.农药对藻类的生态毒理学研究Ⅰ:毒性效应[J].环境 科学进展,1998,7(5):96-106.
    [144]杨桂春,黄绵霞,程时远等.国内的拟除虫菊酯研究及开发[J].鄂州大学学报,2000,7(2):72-74.
    [145]杨嘉漠,王赞,苏青青.有机氯农药在长江武汉段的残留状况调查[J].武汉化工学院学报,2004,26(4):38-41.
    [146]杨燕涛.水稻害虫可持续治理中杀虫剂适用性评述[J].农药,2007,46(9):580-585.
    [147]杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望[J].青岛海洋大学学报,2003,33(1):053-057.
    [148]杨祖英,马永健,常风启.食品检验[M].北京:化学工业出版社,2001,165-166.
    [149]姚爱琴,翟良安,李纪芳等.农药杀灭菊酯对鱼类毒性的研究[J].淡水渔业,1989(2):29-32.
    [150]尹晓晖,赵震宇,姜辉等.亚致死剂量溴氰菊酯对麦穗鱼骨谷胱甘肤S-转移酶活性的影响[J].安全与环境学报,2005,5(4):58-60.
    [151]郁亚娟,黄宏,王斌等.淮河(江苏段)水体有机氯农药的污染水平[J].环境化学,2004,23(5):568-572.
    [152]岳伟萍.四种微藻对氨节青霉素敏感性的研究[J].水产养殖,2005,26(6):9-11.
    [153]翟良安,姚爱琴,赵小春等.溴氰菊酯对鱼类毒性的研究[J].淡水渔业,1990,(4):10-13.
    [154]余江.大型海藻龙须菜对环境胁迫的响应及其在医学上的应用初探.广州:暨南大学博士论文,2008
    [155]张学成,程晓杰,隋正红等.江篱属藻胆体的研究Ⅰ:藻胆体的分离及吸收光谱特性[J].青岛海洋大学学报(自然科学版),1999,29(2):265-270.
    [156]张明,李盾,陈仪本等.乙酰酸胆碱酯酶分子生物学研究进展[J].农药,2006,45(1):8-11.
    [157]张善东,宋秀贤,曹西华等.龙须菜对锥状斯氏藻抑制作用的机制[J].环境科学,2008,29(8):2291-2295.
    [158]张曙东.韭菜越冬期间的休眠特性及可溶性糖含量与酶活性的变化[D].济南:山东农业大学,2004.
    [159]张为农.部分拟除虫菊酯杀虫剂品种市场行情分析[J].中国农药,2008:49-50.
    [160]张友军,张文吉.乙酰胆碱酯酶分子生物学研究[J].昆虫知识,1997,34(4):242-246.
    [161]张征,李今,梁威等.拟除虫菊酯杀虫剂对水生态系统的毒性作用[J].长江流域资源与环境,2006(01):125-129.
    [162]张宗炳.昆虫毒理学的新进展[M].北京:北京大学出版社,1992:7-8.
    [163]张祖麟,陈伟琪,哈里德等.九龙江口水体中有机氯农药的分布特征及归宿[J].环境科学,2001,22(3):88-92.
    [164]张祖麟.河口流域有机农药污染物的环境行为及其风险影响评价[D].厦门:厦门大学,2001.
    [165]赵玉琴,李丽娜,李建华.常见拟除虫菊酯和有机磷农药对鱼类的急性及其联合毒性研究[J].环境污染与防治,2008,30(11):53-57.
    [166]郑伟华,赵建庄,马德英等.溴氰菊酯的毒性和致突变性的研究进展[J].北京农学院学报,2004(01):77-80.
    [167]郑永华,赵杨,王朝晖.灭扫利农药对螂鱼及其他几种水生生物的毒性研究[J].西南农业学报,1999,12(3):117-121.
    [168]周明耀.环境有机污染与致癌物质[M].成都:四川大学出版社,1992:179-228.
    [169]周志刚,王明学,吕敢堂.溴氰菊酯对草鱼鱼种脑AChE及ATP酶活性的影响[J].华中农业大学学报,1999,18(2):176-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700