梳型嵌段共聚物自组装形成囊泡形态变化的耗散粒子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用耗散粒子动力学(Dissipative Particle Dynamics, DPD)模拟方法,研究了梳型嵌段共聚物自组装形成囊泡的形态变化过程。主要内容包括:
     (1)囊泡自发形成过程的研究。我们发现梳型嵌段共聚物A_6 ( B_2 )_3会自组装形成长管状囊泡。为了更好地比较聚合物结构对自组装形成囊泡形态的影响,我们同时研究了线型三嵌段共聚物A_3 B_6 A_3自发形成囊泡的过程,发现线型三嵌段共聚物A_3 B_6 A_3会自组装形成球形囊泡。虽然形成囊泡的形态不同,但自组装的动力学路径是一样的。
     (2)囊泡分裂及翻转过程的研究。我们发现线张力对囊泡的分裂起着至关重要的作用。在模拟中,我们确定了两条不同的分裂路径:一种路径是通过母体囊泡出芽然后闭合完成分裂,另外一种是在区域膜的边界处产生裂缝完成分裂。分裂完成后,相同组分的小胶束或小囊泡会自发融合,最终融合为两个大的囊泡。在囊泡的翻转过程的研究中,我们发现长管状囊泡翻转后变成了多层胶束结构,洋葱状囊泡翻转后得到的仍是一个结构完整的囊泡。
Cells are common and essential structures in nature. They are closely related with the phenomenon of life and are basic units of organism. The primary roles of biomembranes are the separation between the inner and outer environments of the cell which is crucial for a variety of physiological functions, structural integrity and transmembrane transport of the cell. The complex biomembranes are deformed easily. So, it is very difficult to study the formation and structure transition of the biomembrane structures. However, the biomembranes are still membrane material, the physical and chemical nature of the self-assembly process is only connected with membrane characteristics. Therefore, it is very necessary to build a relatively simple membrane model to simulate some features of the biomembranes. Currently, the accepted model of membranemodel is vesicle obtained by molecular self-assembly. The characteristic of vesicle with hollow inner space has attracted much attention in the fields of drug and gene delivery, chemical and waste transport, and nanotechnology. The structure transitions of vesicle, such as fusion and fission, underlie the fundamental biological processes in normal and pathological conditions. Therefore, understanding the formation of various vesicle structures and elucidating the mechanism of their transitions has an important biological and technological significance.
     Computer simulation performed by establishing model based on real problems, select appropriate simulation method to depict the real process, and then obtain reinforce results for experiment and theoretical. In this dissertation, we carry out DPD simulations to study the thermodynamic influences on the vesicle structure transitions of a specific comb-like block copolymer. Within the DPD method, all the particles interact with each other through three pairwise forces: a conservative force, a dissipative force, and a random force. These forces are very soft, so the integration time steps can be very large. It is intrinsically embedded in the DPD model because of the pari-wise interactions which result the momentum of the system being conserved. DPD method has been applied on the study of microphase separation of the block copolymers, self-organizing of amphiphilic molecules into memberane, and the budding and fission of bionic micelles.
     The spontaneous vesicle structure transitions of comb-like block copolymers with semiflexible hydrophobic backbone are studied via Dissipative Particle Dynamics (DPD).simulations. The main results are as follows:
     (1) The study of spontaneous vesicle formation. We can observe a well-formed long tube vesicle from the comb-like block copolymer A_6 ( B_2 )_3 . It should be noted that for better comparing the influence of polymer architectures on the vesicle structures, we have also simulated a system composed of linear triblock copolymers A_3 B_6 A_3 and observe one well-generated spherical vesicle. Although the vesicle structures in these two systems are different, their vesicle formation pathways are rather the same.
     (2) The study of fission and reversal processes of vesicle. Line tension plays a decisive role on the fission of vesicles. We find two fission pathways: the first fission pathway is closely related to the domain budding outward from the parent vesicle, whereas the other fission pathway corresponds to the cleavage along the domain boundary. When we simulate long enough time, the separated small micelles or microvesicles are approaching to each other, and then fuse spontaneously. Finally, we can observe that the parent vesicle divides into two vesicles. We then study the vesicle reversal behavior by changing the solvent environment, and find that the tube-like vesicle forms special layered micelle structure and the onion-shape vesicle still form an onion-shape vesicle.
引文
[1] ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1987.
    [2] FRENKEL D, SMIT B. Understanding Molecular Simulation: From Algorithms to Applications [M]. San Diego: Academic Press, 1996.
    [3] WOOLFSON M M, PERT G J. An Introduction to Computer Simulation [M]. Oxford: Oxford Univ. Press, 1999.
    [4]杨小震.高分子科学的今天与明天:高分子的计算机模拟[M].北京:化学工业出版社,1994:182-193.
    [5] BINDER K. Monte Carlo and Molecular Dynamics Simulations in Polymer Science [M]. Oxford: Oxford Univ. Press, 1996.
    [6] LIU T W. Flexible polymer chain dynamics and rheological properties in steady flows [J]. J. Chem. Phys., 1989, 90: 5826-5842.
    [7] ZYLKA W, ?TTINGER H C. A comparision between simulations and various approximations for Hookean dumbbells with hydrodynamic interaction [J]. J. Chem. Phys., 1989, 90: 474-480.
    [8] GRASSIA P, HINCH E J. Computer simulations of polymer chain relaxation via Brownian motion [J]. J. Fluid Mech., 1996, 308: 255-288.
    [9] DOYLE P S, SHAQFEH E S G, GAST A P. Dynamics simulation of freely draining flexible polymers in steady linear flows [J]. J. Fluid Mech., 1997, 334: 251-291.
    [10] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhys. Lett., 1992, 19: 155-160.
    [11] KOELMAN J M V A, HOOGERBRUGGE P J. Dynamic simulations of hard-sphere suspensions under steady shear [J]. Europhys. Lett., 1993, 21: 363-368.
    [12] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997, 107: 4423-4435.
    [13] CHEN S, DOOLEN G D. Lattice boltzmann method for fluid flows [J]. Annu. Rev. Fluid Mech. 1998, 30: 329-364.
    [14] FRAAIJE J G E M, VLIMMEREN VAN B A C, MAURITS N M, et al. The dynamic mean-fiel density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts [J]. J. Chem. Phys., 1997, 106: 4260-4269.
    [15] VLIMMEREN B A C V, MAURITS N M, ZVELINDOVSKY A V, et al. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13 (propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. application of dynamic mean-field density functional theory [J]. Macromolecules, 1999, 32: 646-656.
    [16] FREDRICKSON G H, GANESAN V, DROLET F. Field-theoretic computer simulation methods for polymers and complex fluids [J]. Macromolecules, 2002, 35: 16-39.
    [17] ANDERSON J D. Computational Fluid Dynamics: The basic with application [M].北京:清华大学出版社,2002.
    [18] KONG Y, MANKE C W, MADDEN W G, et al. Simulation of a confined polymer in solution using the dissipative particle dynamics method [J]. Int. J. Themophys., 1994, 15: 1093-1101.
    [19] SCHLIJPER A G, HOOGERBRUGGE P J, MANKE C W. Computer simulation of dilute polymer solutions with the dissipative particle dynamics method [J]. J. Rheol., 1995, 39: 567-579.
    [20] ESPA?OL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhys. Lett., 1995, 30: 191-196.
    [21] QIAN H J, LU Z Y, CHEN L J, LI Z S, SUN, C C. Dissipative particle dynamics study on the interfaces in incompatible A/B homopolymer blends and with their block copolymers [J]. J. Chem. Phys., 2005, 122:184907.
    [22] CHEN S, GUO C, HU G H, LIU H Z, LIANG X F, WANG J, MA J H, ZHENG L. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO-PPO-PEO block copolymer micelles [J]. Colloid Polym Sci, 2007, 285: 1543-1552.
    [23] ZHAO Y, LIU Y T, LU Z Y, SUN C C. Effect of molecular architecture on the morphology diversity of the multicompartment micelles: A dissipative particle dynamics simulation study [J]. Polymer, 2008, 49: 4899-4909.
    [24] YOU L Y, CHEN L J, QIAN H J. LU Z Y. CHEN L J. Microphase transitions of perforated lamellae of cyclic diblock copolymers under steady shear [J]. Macromolecules, 2007, 40: 5222-5227.
    [25] QIAN H J, CHEN L J, LU Z Y, ET AL. Surface Diffusion Dynamics of a Single Polymer Chain in Dilute Solution [J]. Phys. Rev. Lett., 2007, 99: 068301.
    [26]钱虎军。嵌段共聚物微观相分离及高分子表面扩散动力学的耗散粒子动力学研究[D].长春:吉林大学理论化学研究所,2007.
    [27]陈梨俊。以耗散粒子动力学为纽带的多尺度贯通模拟研究[D].长春:吉林大学理论化学研究所,2007.
    [28]王晓琳。表面吸附受限高分子体系结构及动力学性质的计算机模拟研究[D].长春:吉林大学理论化学研究所,2008.
    [29]刘鸿。高分子体系活性聚合反应的计算机模拟研究[D].长春:吉林大学理论化学研究所,2010.
    [30]刘英涛。梳型嵌段共聚物聚集态结构的耗散粒子动力学模拟[D].长春:吉林大学理论化学研究所,2010.
    [31]张景明。乳液聚合中分子量分布特性的耗散粒子动力学模拟研究[D].长春:吉林大学理论化学研究所,2010.
    [32] GROOT R D, MADDEN T J, TILDESLEY D J. On the role of hydrodynamic interactions in block copolymer microphase separation [J]. J. Chem. Phys., 1999, 110: 9739-9749.
    [33] LEIBLER L. Theory of microphase separation in block copolymers [J]. Macromolecules, 1980, 13: 1602-1617.
    [34] HELFAND E. Theory of inhomogeneous polymers: Fundamentals of the gaussian random-walk model [J]. J. Chem. Phys., 1975, 62: 999-1005.
    [35] FREDRICKSON G H, HELFAND E. Fluctuation effects in the theory of microphase separation in block copolymers [J]. J. Chem. Phys., 1987, 87: 697-705.
    [36] MATSEN M W, SCHICK M. Stable and unstable phases of a diblock copolymer melt [J]. Phys. Rev. Lett., 1994, 72: 2660-2663.
    [37] BATES F S, FREDRICKSON G H. Block copolymer thermodynamics: theory and experiment [J]. Annu. Rev. Phys. Chem., 1990, 41: 525-557.
    [38] RIESS G. Micellization of block copolymers [J]. Prog. Polym. Sci., 2003, 28: 1107-1170.
    [39] KITA-TOKARCZYK K, GRUMELARD J, HAEFELE T, et al. Block copolymer vesicles–using concepts from polymer chemistry to mimic biomembranes [J]. Polymer, 2005, 46: 3540-3563.
    [40] JAIN S, BATES F S. On the origins of morphological complexity in block copolymer surfactants [J]. Science, 2003, 300: 460-464.
    [41] LI Z B, KESSELMAN E, TALMON Y, et al. Multicompartment micelles from ABC miktoarm stars in water [J]. Science, 2004, 306: 98-101.
    [42] DISCHER D E, EISENBERG A. Polymer vesicles [J]. Science, 2002, 297: 967-973.
    [43] SIMOES S, MOREIRA J N, FONSECA C, DUZGUNE N, LIMA M C P D. pH-responsive carriers for enhancing the cytoplasmic delivery of macromolecular drugs [J]. Adv Drug Deliver Rev, 2004, 56: 947-965.
    [44] YAMAMOTO S, MARUYAMA Y, HYODO S. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules [J]. J Chem Phys, 2002, 116: 5842-5849.
    [45] HITZ T, LUISI P L. Liposome-assisted selective polycondensation ofα-amino acids and peptides [J]. J Pept Sci, 2000, 55: 381-390.
    [46] GILL I, BALLESTEROS A. Immunoglobulin-polydiacetylene Sol-Gel nanocomposites as solid-state chromatic biosensors [J]. Angew Chem Int Edit, 2003, 42: 3264-3267.
    [47] KNECHT V, MARRINK S-J. Molecular dynamics simulations of lipid vesicle fusion in atomic details [J]. Biophys. J., 2007, 92: 4254-4261.
    [48] NOGUCHI H, TAKASU M. Fusion pathways of vesicles: a Brownian dynamics simulation [J]. J. Chem. Phys., 2001, 115: 9547-9551.
    [49] MULLER M, KATSOV K, SCHICK M. A new mechanism of model membrane fusion determined from Monte Carlo simulation [J]. Biophys. J., 2003, 85: 1611-1623.
    [50] SEVINK G J A, ZVELINDOVSKY A V. Self-assembly of complex vesicles [J]. Macromolecules, 2005, 38: 7502-7513.
    [51] YAMAMOTO S, HYODO S. Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles [J]. J. Chem. Phys., 2005, 122: 204907-204915.
    [52] WU S, GUO H X. Simulation Study of Protein-Mediated Vesicle Fusion [J] J. Phys. Chem. B, 2009, 113: 589-591.
    [53] LARADJI M, SUNIL KUMAR P B. Domain growth, budding, and fission in phase-separating self-assembled fluid membranes [J]. J. Chem. Phys. 2005, 123: 224902.
    [54] YANG K, MA Y Q. Computer Simulations of Vesicle fission induced by external amphipathic inclusions [J]. J. Phys. Chem. B, 2009, 113: 1048-1057.
    [55] HONG B, QIU F, ZHANG H, YANG Y L. Budding Dynamics of Individual Domains in Multicomponent Membranes Simulated by N-Varied Dissipative Particle Dynamics [J]. J. Phys. Chem. B, 2007, 111: 5837-5849.
    [56] GAO L, LIPOWSKY R, SHILLCOCK J C. Tension-induced vesicle fusion: Pathways and pore dynamics [J]. Soft Matter, 2008, 4: 1208-1214.
    [57] SHILLCOCK J C, LIPOWSKY R. The computational route from bilayer membranes to vesicles fusion [J]. J. Phys.: Condens. Matter, 2006, 18: S1191-S1219.
    [58] DüNWEG B, PAUL W. Brownian dynamics simulations without Gaussian random numbers [J]. Int. J. Mod. Phys. C, 1991, 2: 817-827.
    [59] TUCKERMAN M E, MARTYNA G J. Understanding Modern Molecular Dynamics: Techniques and Applications [J]. J. Phys. Chem. B, 2000, 104: 159-178.
    [60] NOVIK K E, COVENEY P V. Finite-difference methods for simulation models incorporating nonconservative forces [J]. J. Chem. Phys., 1998, 109: 7667-7677.
    [61] PAGONABARRAGA I, HAGEN M H J, FRENKEL D. Self-consistent dissipative particle dynamics algorithm [J]. Europhys. Lett., 1998, 42: 377-382.
    [62] GIBSON J B, CHEN K, CHYNOWETH S. The equilibrium of a velocity-Verlet type algorithm for DPD with finite time steps [J]. Int. J. Mod. Phys. C, 1999, 10: 241-261.
    [63] VATTULAINEN I, KARTTUNEN M, BESOLD G, et al. Integration schemes for dissipative particle dynamics simulations: From softly interacting systems towards hybrid models [J]. J. Chem. Phys., 2002, 116: 3967-3979.
    [64] NIKUNEN P, KARTTUNEN M, VATTULAINEN I. How would you integrate the equations of motion in dissipative particle dynamics simulations?[J]. Comp. Phys. Comm., 2003, 153: 407 -423.
    [65] LOWE C P. An alternative approach to dissipative particle dynamics [J]. Europhys. Lett., 1999, 47: 145-151.
    [66] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. J. Chem. Phys., 1980, 72: 2384-2393.
    [67] DüNWEG B. Advanced Simulations for Hydrodynamic Problems: Lattice Boltzmann and Dissipative Particle Dynamics[R], In Attig N, Binder K, Grubmüller H, K. Kremer, editors, Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes[I]. Jülich, John von Neumann Institute for Computing, NIC Series, 2004, Vol. 23, ISBN 3-00-012641-4: pp. 61-82.
    [68] SCHNEIDER T, STOLL E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions [J]. Phys. Rev. B., 1978, 17: 1302-1322.
    [69] CHANDRASEKHAR S. Stochastic Problems in Physics and Astronomy [J]. Rev. Mod. Phys., 1943, 15: 1-89.
    [70] RISKEN H. The Fokker-Planck Equation [M]. Berlin: Springer-Verlag, 1984.
    [71] DüNWEG B. Langevin methods, In Dünweg B, Landau D P, Milchev A I, editors, Computer Simulation of Surfaces and Interfaces [M]. Dordrecht: Kluwer, 2003.
    [72] GARDINER C W. Handbook of Stochastic Methods [M]. Berlin: Springer-Verlag, 1983.
    [73] GROOT R D, RABONE K L. Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants [J]. Biophysical Journal, 81: 725– 736.
    [74] SUN H. Ab initio characterizations of molecular structures, conformation energies, and hydrogen-bonding properties for polyurethane hard segments [J]. Macromolecules, 1994, 26: 5924-5936.
    [75] CHERNOMORDIK L V, KOZLOV M M. Protein-lipid interplay in fusion and fission of biological membranes [J]. Annu. Rev. Biochem., 2003, 72:175-207.
    [76] BONIFACINO J S, GLICK B S. The Mechanisms of Vesicle Budding and Fusion [J]. Cell, 2004, 116:153-166.
    [77] LIPOWSKY R. The conformation of membranes [J]. Nature, 1991,349:475– 481.
    [78] DOBEREINER H G, EVANS E, KRAUS M, SEITERT U, WORTIS M. Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory [J]. Phys. Rev. E., 1997, 55:4458–4474.
    [79] MECKE A, DITTRICH C, MEIER W. Biomimetic membranes designed from amphiphilic block copolymers [J]. Soft Matter, 2006, 2:751-759.
    [80] KANTSLER V, SEGRE E, STEINBERG V. Vesicle Dynamics in Time-Dependent Elongation Flow: Wrinkling Instability [J]. Phys. Rev. Lett., 2007, 99:178102-178106.
    [81] ABKARIAN M, VIALLAT A. Vesicles and red blood cells in shear flow [J]. Soft Matter, 2008, 4:653-657.
    [82] PIVKIN I V, KARNIADAKIS G E. Accurate Coarse-Grained Modeling of Red Blood Cells [J]. Phys. Rev. Lett., 2008, 101:118105-118109.
    [83] DANKER G, VLAHOVSKA P M, MISBAH C. Vesicles in Poiseuille Flow [J]. Phys. Rev. Lett., 2009, 102:148102-148106.
    [84] LI M H, KELLER P. Stimuli-responsive polymer vesicles [J]. Soft Matter, 2009, 5:927-937.
    [85] NJIKANG G, KWAN I C.M., WU G, LIU G J. NMR quantification of the partition of coronal chain segments of block copolymer vesicles [J]. Polymer, 2009, 50:5262-5267.
    [86] ZHAO Y, YOU L Y, LU Z Y, SUN C C. Dissipative particle dynamics study on the multicompartment micelles selfassembled from the mixture of diblock copolymer poly(ethyl ethylene)-block-poly(ethylene oxide) and homopolymer poly(propylene oxide) in aqueous solution [J]. Polymer, 2009, 50:5333-5340.
    [87] CHEN H Y, RUCKENSTEIN E. Structure and particle aggregation in block copolymer-binary nanoparticle composites [J]. Polymer, 2010, 51:5869-5882.
    [88] LI M, LI G L, ZHANG Z G, LI J, NEOH K G, KANG E T. Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media [J]. Polymer, 2010, 51:3377-3386.
    [89] ZHU Y J, YANG Q H, TONG C H, LI M, YU X. The vesicle formation in a binary amphiphilic diblock copolymer/homopolymer solution [J].Polymer, 2010, 51:702-708.
    [90] XU L M, ZHANG X K, YANG H, LI X, LI C S, ZHANG S X. Vesicle formation of polystyrene-block-poly (ethylene oxide) block copolymers induced by supercritical CO2 treatment [J]. Polymer, 2010, 51:3808-3813.
    [91] BERNDL K, KAS J, LIPOWSKY R, SACKMANN E, SEIFERT U. Shape Transformations of Giant Vesicles: Extreme Sensitivity to Bilayer Asymmetry [J]. Europhys. Lett., 1900 13:659-664.
    [92] KAS J, SACKMANN E. Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes [J]. Biophys. J., 1991, 60:825-844.
    [93] SEIFERT U, BERNDL K, LIPOWSKY R. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models [J]. Phys. Rev. A., 1991, 44:1182–1202.
    [94] HEINRICH V, SVETINA S, ZEKS B. Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes [J]. Phys. Rev. E., 1993, 48:3112–3123.
    [95] MIAO L, SEIFERT U, WORTIS M, DOBEREINER H G. Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity [J]. Phys. Rev. E., 1994, 49:5389–5407.
    [96] MARKVOORT A J, VAN SANTEN R A, HILBERS P A J. Vesicle Shapes from Molecular Dynamics Simulations [J]. J. Phys. Chem. B., 2006, 110:22780-22785.
    [97] MARKVOORT A J, SMEIJERS A F, PIETERSE K, VAN SANTEN R A, HILBERS P A J. Lipid-Based Mechanisms for Vesicle Fission [J]. J. Phys. Chem. B., 2007, 111:5719-5725.
    [98] LARADJI M, KUMAR P B S. Dynamics of Domain Growth in Self-Assembled Fluid Vesicles [J]. Phys. Rev. Lett., 2004, 93:198105-198109.
    [99] YANG K, SHAO X, MA Y Q. Shape deformation and fission route of the lipid domain in a multicomponent vesicle [J]. Phys. Rev. E., 2009, 79:051924-051934.
    [100] DISCHER D E, EISENBERG A. Polymer Vesicles [J]. Science, 2002, 297:967-973.
    [101] ALLEN T M, CULLIS P R. Drug delivery systems: Entering the mainstream [J]. Science, 2004, 303:1818-1822.
    [102] HILLMYER M A. Micelles Made to Order [J]. Science, 2007, 317:604-605.
    [103] HAMLEY IW, CASTELLETTO V. Biological Soft Materials [J]. Angew. Chem. Int. Ed., 2007, 46:4442-4455.
    [104] LIU Y T, ZHAO Y, LIU H, LIU Y H, LU Z Y. Spontaneous Fusion between the Vesicles Formed by A2 n ( B2 )n Type Comb-Like Block Copolymers with a Semiflexible Hydrophobic Backbone [J]. J. Phys. Chem. B., 2009, 113:15256-15262.
    [105] LI X J, LIU Y, WANG L, DENG M G, LIANG H J. Fusion and fission pathways of vesicles from amphiphilic triblock copolymers: a dissipative particle dynamics simulation study [J]. Phys. Chem. Chem. Phys., 2009, 11:4051-4059.
    [106] LI X J, PIVKIN I V, LIANG H J, KARNIADAKIS G E. Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study [J]. Macromolecules, 2009, 42:3195-3200.
    [107] POTEMKIN, I. I. Elasticity-Driven Spontaneous Curvature of a 2D Comb-Like Polymer with Repulsive Interactions in the Side Chains Eur. Phys. J. E 2003, 12: 207-210.
    [108] POTEMKIN, I. I.; POPOV K. I. Effect of grafting density of the side chains on spontaneous curvature and persistence length of two-dimensional comblike macromolecules, J. Chem. Phys., 2008, 129(12): 124901.
    [109] HAN Y Y, YU H Z, DU H B, JIANG W. Effect of Selective Solvent Addition Rate on the Pathways for Spontaneous Vesicle Formation of ABA Amphiphilic Triblock Copolymers [J]. J. Am. Chem. Soc., 2010, 132:1144-1150.
    [110] SEIFERT U. Curvature-induced lateral phase segregation in two-component vesicles [J]. Phys. Rev. Lett., 1993, 70:1335–1338.
    [111] CHEN C M, HIGGS P G, MACKINTOSH F C. Theory of Fission for Two-Component Lipid Vesicles [J]. Phys. Rev. Lett., 1997, 79:1579–1582.
    [112] COOKE I R, KREMER K, DESERNO M. Tunable generic model for fluid bilayer membranes [J]. Phys. Rev. E., 2005, 72:011506-011510.
    [113] NOGUCHI H. Polyhedral vesicles: A Brownian dynamics simulation[J]. Phys. Rev. E., 2003, 67:041901-041906.
    [114] ATILGAN E, SUN S X. Shape transitions in lipid membranes and protein mediated vesicle fusion and fission [J]. J. Chem. Phys., 2007, 126: 095102-095112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700