两亲性梳型聚合物的合成与胶束化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性聚合物是指分子中同时含有亲水和疏水两类基团的聚合物。由于两类基团互不相容,因而在选择性溶剂等环境下,两亲性聚合物具有很多特殊的性质,这些性质已经得到了广泛的关注,很多研究成果也已经付诸应用。两亲性梳型聚合物是近年来化学研究领域的一个热门课题,梳型结构给两亲性聚合物自组装带来的影响收到了广泛的关注。但是近年来对于这个领域的研究主要集中在结构精确可控的两亲性梳型聚合物上,如利用原子转移自由基聚合(ATRP)或可逆加成-断裂链转移聚合(RAFT)等活性聚合方法制备的两亲性嵌段聚合物。采用无规共聚得到的梳型聚合物因为其结构难以控制,常常被认为是难以准确说明规律的。在应用技术层面上,无规共聚物的生产成本远远低于活性聚合产物,因此设计一种能够运用到应用技术上的两亲性梳型聚合物成为了本文所涉及研究的目标。
     自组装的说法是从生命科学开始的,一个单一的生物分子自发组织成特殊的构造。由化学的角度来看,分子自组装就是通过非共价键形成热力学稳定的结构,这个过程是一个具有明显的有序性的聚集。通过自组装,可以得到分子晶体、液晶、胶体、胶束、乳液、相聚合物和Langmuir-Blodgett膜等。通过自组装得到的新型功能材料,已经得到化学领域的普遍关注,本文令制备得到的两亲性梳型聚合物形成胶束,就是利用了自组装的机理。
     海洋采油中,为了避免污染,需要采用一些方法驱除海水中残余的微量原油。本文将梳型结构与两亲性聚合物相结合,制备了一系列可以胶束化的两亲性梳型聚合物,设计在海水中加入两亲性梳型聚合物,形成胶束包裹微量原油,再通过驱除胶束来净化海水。这一设计存在几方面的合成目的,即同时具有亲水亲油两类基团、具有长烷基侧链的梳型结构,在一定的温度和pH范围内,可以形成稳定的空心球形胶束,胶束的尺寸相对较大,同时这种胶束在一段时间内会发生聚集,聚集后的胶束形态并不发生变化。
     本文主要分为三个部分:
     第一部分分别介绍了两亲性聚合物、梳型聚合物,以及胶束的研究进展,两亲性聚合物能够自组装形成多种多样聚集形态,因而在高分子科学界引起了广泛的关注。带有梳型结构的两亲性聚合物则具有更好的自组装能力,通过对梳型结构的控制,可以得到更丰富的自组装结构。因此,两亲性梳型聚合物在油田中的应用也得到了广泛的关注,课题的设计和进行都是以此为依据的:
     第二部分是两亲性梳型聚合物的制备过程,本文采用溶液聚合方式,采用多种亲油大单体(例如丙烯酸长链烷基酯)和多种亲水小单体(例如丙烯酸类衍生物),共聚合成了具有两亲性的、梳型结构的一系列聚合物。筛选其中胶束化能力较好的两种:P (LMA-MA)和P (AA-MMA-LMA),使用傅里叶变换红外光谱(FT-IR)、核磁共振(1H-NMR)、渗透凝胶色谱(GPC)等检测手段对聚合物的组成结构进行了表征,证明聚合产物是分子量在10万上下的具有梳型结构的、同时含有长烷基侧链和亲水基团的聚合物;
     本文第三部分是两亲性梳型聚合物的胶束化研究,将筛选出来的P(LMA-MA)在选择性溶剂(水)中制备了这种两亲性梳型聚合物的胶束,通过Zeta电位粒径分析仪和透射电子显微镜(TEM)探讨了两亲性梳型聚合物在胶束化过程中胶束形态和尺寸的影响因素。通过计算胶束大小和侧链长度,可以认为所制得的胶束为空心球形胶束,TEM结果证实了这一结论。通过改变浓度、温度和pH等因素来观察这种两亲性梳型聚合物胶束的环境响应,观察到在一定的温度和pH值范围内,两亲性梳形聚合物胶束的尺寸和状态没有发生变化,也就是说,该两亲性梳型聚合物胶束具有温度和pH稳定性。将制得的胶束溶液静止放置一段时间(三天以上),TEM结果证明该胶束发生聚集,发生聚集的胶束仍然呈现球形的核壳结构。
     综合本文的工作和检测结果,可以得到这样的结论:本文采用溶液聚合方法制备了一系列的聚合物,根据形成胶束的能力进行筛选,得到目标聚合物。测得这种聚合物分子量约为10万,同时具有亲水和亲油基团,并且是含有长烷基侧链的梳型结构。该两亲性梳型聚合物P (LMA-MA)可以在选择性溶剂(水)中形成胶束,测得该聚合物在水中的临街胶束浓度约为250-300ppm,这种胶束具有较大的尺寸(200nm以上),通过计算得出该胶束是空心结构,在一定范围内具有较好的温度、pH稳定性,胶束在经过一定的时间后会发生聚集,发生聚集的胶束仍然是核壳结构的球形胶束。以上这些性质都符合前文所述的合成目的,也就是说,这些性质都有利于胶束包裹并且驱除水中残留的微量原油。
Abstract Amphiphilic polymer is a molecule containing both hydrophilic and hydrophobic groups. Two groups are mutually exclusive, in a selective solvent, amphiphilic polymers have many special properties, these properties have been paid a lot of attention, many research results have also been put to use. Amphiphilic comb polymer chemistry in recent years is a hot research topic, comb-type structure which impact to the self-assembly of amphiphilic polymers is received wide attention. But in recent years research in this area always focus on precisely controlled structure of amphiphilic comb polymer, such as amphiphilic block copolymers prepared by atom transfer radical polymerization (ATRP) or reversible addition-fragmentation chain transfer (RAFT) polymerization methods. Random comb-type copolymers are difficult to control structure, so they are often considered difficult to accurately explain the law. But in the application of the technical level, random copolymer of the production costs are far lower than the controlled polymerization products, so the designs of amphiphilic comb polymer which can be applied to the application of a technology become the research goal of this paper.
     The concept self-assembly that is from the beginning of life science, a single biological molecule is self-organized into a special structure. From chemical point of view, molecular self-assembly is through non-covalent bond formatting thermo dynamically stable structure; this process is a clear order of aggregation. Through self-assembly, molecular crystals can be obtained, also liquid crystal, colloids, micelles, emulsions, phase polymer and Langmuir-Blodgett film. Obtained by self-assembly of new functional materials, the field of chemistry has been widespread concerned. Amphiphilic comb polymer micelles was prepared by the self-assembly mechanism.
     This paper is divided into three parts:
     Firstly, amphiphilic polymers and comb polymers were introduced, as well as micelles research progress. Variety of forms could be self-assemble together to forma, so it was attracted wide attention in polymer science. Comb structure has a better ability in amphiphilic polymers self-assembly, through the control of the polymer structure; more extensive self-assembled structures could be prepared. Therefore, amphiphilic comb polymers in oilfield has also been widespread concerned in the design and conduct of all subjects on this basis;
     Secondly, the amphiphilic comb polymer preparation process was shown. The solution polymerization method was used. Using a variety of pro-big oleophilic monomer (for example, long chain alkyl acryl ate) and a variety of small hydrophilic monomer (e.g. propylene acid derivatives), a series of polymers with amphiphilic, comb-type structures were synthesized by copolymerization.' Better micellization capabilities which two micelles:P (LMA-MA) and P (AA-MMA-LMA) were chosen, Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H-NMR), infiltration Gel Permeation Chromatography (GPC) and other means were used to detect the structure of the polymer. It was characterized to prove that the molecular weight of polymer products were down 100 thousands with comb-type structure, and contained a long alkyl side chains and hydrophilic groups of the polymers;
     Lastly, P (LMA-MA) was putted into selective solvent (water) to prepare amphiphilic comb polymer micelles to research the amphiphilic comb polymer micelles. The amphiphilic comb polymer micelles were characterized by Zeta potential of particle size analyzer and transmission electron microscopy (TEM). By calculating the micelle size and side chain length, that the hollow spherical micelles were prepared, the conclusion was confirmed TEM results. By changing the concentration, temperature and pH and other factors were changed to observe that the amphiphilic comb polymer micelles of environmental response, it is observed that in a certain range of temperature and pH value, size and state of the amphiphilic comb polymer micelle does not change, that is, temperature and pH stability of the amphiphilic comb polymer micelles was shown. The micelle solution with placing a period of time (more than three days) is test by TEM. the results showed that the micelle aggregation occurred; the micelle aggregation with spherical shell structure was still present.
     Comprehensive paper work and test results, the conclusion was reached:in this article, a series of polymers were prepared by solution polymerization, according to the ability to form micelles, target polymers were chosen. This measured molecular weight of the polymers was about 100 thousand, both hydrophilic and hydrophobic groups were in the molecule, and they had a long alkyl side chain and comb-type structure. Micelles were formatted when the amphiphilic comb polymer P (LMA-MA) putted in the selective solvent (water), CMC of the polymer micelle concentration in water is about 250-300ppm. These micelles have large size (200nm and above), hollow structure of the micelles were known by calculation, in a certain range, temperature, pH stability of the micelles were characterized. After a certain period of time the aggregation occurred, but core-shell structure was still present. These properties were consistent with previously described purpose of the synthesis, that is, these properties were beneficial to format micelles to get rid of residues of crude oil.
引文
[1]张鹏.两亲性梳型共聚物PAA-g-PMMA的合成及其溶胀行为.青岛科技大学硕士论文,2009-06-11.
    [2]徐坚.高分子表面活性剂研究进展.油田化学,1997,14(3):290-294.
    [3]徐坚.AM/AEOn/NaMAA三元共聚物的结构、水溶液表面活性及流变性能.油田化学,1998,15(1):58-63.
    [4]王莹.两亲性梳状聚合物的合成与研究.吉林大学2008硕士论文.
    [5]YU K, ZHANG L F, EISENBERG A. Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution. [J]. Langmuir,1996, 12 (25):5980-5984.
    [6]ZHANG L F, EISENBERG A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution. [J]. J Polym Sci. Part B:Polym Phys,1999,37 (13):1469-1484.
    [7]SOO P L, EISENBERG A. Preparation of block copolymer vesicles in solution. [J]. J Polym Sci, Part B:Polym Phys,2004,42 (6):923-938.
    [8]LIU F T, EISENBERG A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine). [J]. J Am Chem Soc,2003,125 (49):15059~15064.
    [9]江明,A 艾森伯格,刘国军,张希等.大分子自组装.ISBN:7-03-017236-1,科学出版社.
    [10]MITSUKAMI Y, HASHIDZUME A, YUSA S. MORISHIMA Y, LOWE A B, MCCORMICK C L. Characterization of pH-dependent micellization of polystyrene-based ationic block copolymers prepared by reversible addition-fragmentation chain transfer (RAFT) radical polymerization. [J]. Polymer 47 (2006) 4333-4340.
    [11]FUKUMINE Y, INOMATAA K, TAKANO A. NOSE T. Micellization behavior of diblock copolymers in solution near the critical micelle temperature. [J]. Polymer 41 (2000)5367-5374.
    [12]GROMADZKI D, JIGOUNOV A, STEPANEK P, MAKUSKA R. Synthesis of thermally responsive cylindrical molecular brushes via a combination of nitroxide-mediated radical polymerization and "grafting onto" strategy. [J]. European Polymer Journal 46 (2010) 804-813.
    [13]华慢,杨伟,薛乔.陈明清.两亲性嵌段共聚物PS-b-PMAA的合成与胶束化行为研究[J].化学学报,(2005)7,631-636.
    [14]孙芳,徐群,孙贵友等.新型高分子表面活性剂的合成.精细石油化工,1994.6:12-14.
    [15]徐坚.高分子表面活性剂的分子设计.高分子通报.1997.2:90-92.
    [16]孙立力,杨旭,杨世光.一种新型高分子表面活性剂的性能研究.西南石油学院学报,2002,24(4):53-55.
    [17]范仲勇,李娜,吴大诚.一类活性极高的表面活性剂.高等学校化学学报,1996,17(12):1962-1964.
    [18]罗向东,李瑞霞,吴大诚.氟碳端基聚合物合成及其表面吸附性能.功能高分子学报,1999,12(2):225-229.
    [19]韩利娟,陈洪,蒋珍菊等.高分子表面活性剂的研究现状.西南石油学院学报,2003.25(4):63-65.
    [20]HAYASHI H, KONO K, TAKAGISHI T. Temperature-controlled release property of phosphohilipid vesicles bearing a thermo-sensitive polymer. Biochimica et Biophysica Acta,1996,1280:127-134.
    [21]POLOZOVA A, WINNIK F M. Aechanism of the interaction of hydrophobically-modified poly (N-isopropylacrylamides) with liposomes. Biochimica et Biophysica Acta,1997,1326:213-224.
    [22]郭艳玲,赵军,任翔宇等.两亲性接枝聚天冬氨酸的合成与降解性能研究.天津科技大学学报,2008,23(3):49-51.
    [23]赵军,郭艳玲.两亲性接枝聚天冬氨酸胶束作为药物载体的研究.山西大学学报(自然科学版),2008,31(4):570-572.
    [24]陈卫星,范哓东,刘郁杨等.以季戊四醇为核的多臂星形链转移剂的合成及表征.高分子材料科学与工程.2008.24(9):56-59.
    [25]陈卫星.范哓东,刘郁杨.星形两亲性嵌段共聚物的自组装及其药物控释行为研究.功能材料,2008,4(39):663-666.
    [26]宋玉林,郑启新,郭晓东等.两亲性含IKVAV的肽体内诱导血管生成的研究.组织工程与重建外科杂志,2008,4(5):254-258.
    [27]LUXENHOFER R, SCHULZ A, ROQUES C, LI S, BRONICH T K. BATRAKOVA E V, JORDAN R, KABANOV A V. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. [J]. Biomaterials xxx (2010) 1-8.
    [28]WANG M, JIANG M, NING F L, LIU S Y. Block-copolymer-free strategy for preparing micelles and hollow spheres:self-assembly of poly(4-vinylpyridine) and modified polystyrene. [J]. Macromolecules 2002,35,5980-5989.
    [29]LIU X Y, JIANG M, YANG S L, CHEN M Q, CHEN D Y, WU K. Micelles and hollow nanospheres based on s-caprolactone-containing polymers in aqueous media. [J]. Angew. Chem., Int. Ed.2002,41,2950-2953.
    [30]程杰成,罗健辉,李振乾等.梳形抗盐聚合物的应用与研究进展.精细与专用化学品,[J].2004,3:10.
    [31]BEKTUROV E A, et al. J Macromol Sci-Rev Macromol Chem Phys,1990, C30(2):233~303.
    [32]SALAMONE J C, VOLKSEN W, OLSON A P, et al. Polymer,1978,18:1058.
    [33]MONROY SOTO V M, GALIN J C. Polymer,1984,25:121.
    [34]SALAMONE J C, RICE W C. Polyampholytes, in Encyclopedia of Polymer Science and Engineering, Vol 11:514.
    [35]MC CORMICK C L, JOHNSON C B. Macromolecules,1988,21:686.
    [36]MC CORMICK C L, SALAZAR L C. Macromolecules,1992,25:1896.
    [37]PEIFFER D G, LUNDBERG R D. Polymer,1985,26:1058.
    [38]景峰.黄荣华.AMPS-DMAEMA两性聚合物溶液性能的研究.[J].高分子材料科学与工程,1997,11:109-103.
    [39]陈永春,易昌风,程时远等.高分子表面活性剂的研究现状.[J].日用化学工业.1997.5:25-27.
    [40]张凤英,杨光,刘延彪等.高温高盐油藏用化学驱油剂的研究.[J].精细石油化工进展,2005,5:8-11.
    [41]罗文利等.油田化学.2000,17(1):55-57.
    [42]杨玉良.胡汉杰.高分子物理.化学工业出版社.2001.
    [43]SHALABY S W. MCCORMICK C L, BUTTLER G B. Water Soluble Polymers Synthesis. Solution Properiies and Applications. (A).Washington DC:Am Chem Soc, 1991. ACS Symposium Series.467.
    [44]曹宝格,罗平亚,李华斌,张勇.疏水缔合聚合物溶液粘弹性及流变性研究.[J].石油学报,2006,27(1)85-88.
    [45]冯茹森,郭拥军,罗平亚,张健,杨爱武.疏水缔合型聚丙烯酰胺溶液流变性研究进展.[J].中国海上油气,2009,21(5),324-328.
    [46]钟传蓉,邓俊,罗平亚,刘文祥.离子型疏水缔合共聚物的分子复合.[J].石油学报(石油加工),(2009)1,78-83.
    [47]徐坚.AM/AEOnA/NaMAA三元共聚物的结构、水溶液表面活性及流变性能.[J].油田化学,1998,15(1):58-63.
    [48]陈洪,韩利娟,徐鹏等.疏水改性聚丙烯酞胺的增粘机理研究.[J].物理化学学报,2003,19(11):1020-024.
    [49]任鲲,姜桂元,徐春明等.疏水缔合聚合物溶液形态的研究.[J].石油大学学报(自然科学版),2005,2:117-120.
    [50]朱怀江,杨静波,曲波等.3种新型聚合物驱油效率对比研究.[J].油田化学,2003,3:35-39.
    [51]赖南君,叶仲斌,周扬帆等.新型疏水缔合聚合物溶液性质及提高采收率研究.[J].油气地质与采收率,2005,4:63-65.
    [52]李弘.活性开环歧化聚合合成梳形聚合物.化学通报.2002,1:24-28.
    [53]PLATE N A, SHIBAEV V P. Comb-Shaped Polymers and Liquid Crystals, New York:PlenumPress,1987.1-8.
    [54]齐力,林云青,景遐斌等.具有多重玻璃化转变的梳状聚合物的合成、表征和导电性—侧链分子量为550的聚乙二醇单甲醚.功能高分子学报,2000,13:266-270.
    [55]张田林,郝庆英,蔡泉源等.一种双离子梳状聚合物电解质的合成与性能研究.化工科技.2004,12(2):26-30.
    [56]张静智,张其震.侧基含偶氮基的硅氧烷梳状聚合物的光致变色性.1997,9:930-936.
    [57]姜海峰,王德民,夏惠芬.梳形聚合物溶液的流变性及驱油效果分析.大庆石油学院学报,2008,32(4):61-65.
    [58]何卫东,许建烟,刘群峰.结构规整支化聚合物的制备方法.功能高分子学报,2001,2:237-244.
    [59]PANNELL J. Polystyrenes of known structure:Part 2, Comb-shaped Molecules. Polymer,1971,12(9):558-578.
    [60]TAKAKI M. ASAMI R. ICHIKAWA M. Coupling reaction between living polystyrene and poly(chloromethylstyrene). Macromolecules,1977,10(4):850-855.
    [61]CANDAU F, TAROMI F A. REMPP P. Synthesis and characterization of PST-PEO graft copolymers. Polymer,1977,18(12):1253-1257.
    [62]PRICE C, WOODS D. Synthesis and solution behavior of polystyrene-g-polyisoprene coplymers. Polymer,1973,14(3):82-86.
    [63]张洪敏.候元雪.活性聚合.北京:中国石化出版社,1997,259-260.
    [64]ZHANG H M, RUCKENSTEIN E. Graft.block-graft and star-shaped copolymers by an in-situ coupling reaction. Macromolecules,1998,31(15):4753-4759.
    [65]TAKAKI M, ASAMI R, MIZUNO M. Anionic grafting reaction of living polystyrene with poly (p-vinylstyrene oxide) and its styrene copolymers. Macromolecules,1977,10(4):845-850.
    [66]江立鼎,高保娇,孔德轮.丙烯酰胺型阴离子表面活性单体与丙烯酰胺共聚物水溶液的流变特性.高分子学报,2007,4:349-355.
    [67]于亚明,高保娇,江立鼎.丙烯酰胺型阴离子表面活性单体的化学结构与其胶束化行为.化学学报,2006,18:1859-1864.
    [68]吕茂森,李季,王中华等.耐温抗盐共聚物AMPS/AM/AMC14S的合成.油田化学,1999 16(4):362-364.
    [69]王玉鹏,武玉民.于跃芹等.AM/AA/AMPS/AMC14S共聚物的制备与表征. 青岛科技大学学报,2006,27(1):1-4.
    [70]刘慷慨,高保娇,郭浩鹏.阳离子型表面活性单体(2-丙烯酰胺基)乙基十四烷基二甲基溴化铵的合成及其胶束化行为.胶体与聚合物.2006,24(3):10-15.
    [71]刘慷慨,李蕾,高保娇.季铵盐型阳离子型表面活性单体AMC16AB胶束化行为的研究化工中间体.2007,2:33-36.
    [72]李永胜,李弘,何炳林.梳型接枝共聚物的合成(Ⅳ)-氯乙酸降冰片烯甲酯引发苯乙烯、甲基丙烯酸甲酯原子转移自由基聚合的研究.化学学报,2002,60:1485-1489.
    [73]李岸龙,梁晖,卢江.活性正离子聚合与原子转移自由基聚合转换合成聚p-蒎烯接枝共聚物.高分子学报,2006,1:151-155.
    [74]李爱香,鲁在君.结构明确的梳形支化聚合物的合成与表征.高分子学报,2008.3:203-208.
    [75]LUO X L, WANG G W, PANG X C, et al. Synthesis of a Novel Kind of Amphiphilic Graft Copolymer with Miktoarm Star-Shaped Side Chains. Macromolecules,2008.41:2315-2317.
    [76]RZAYEV J. Synthesis of Polystyrene-Polylactide Bottlebrush Block Copolymers and Their Melt Self-Assembly into Large Domain Nanostructures. Macromolecules,2009,42:2135-2141.
    [77]ZHANG N, HUBER S, SCHULZ A. et al. Cylindrical Molecular Brushes of Poly(2-oxazoline)s from 2-Isopropenyl-2-oxazoline. Macromolecules,2009,42: 2215-222.
    [78]夏惠芬,王德民,侯吉瑞等.聚合物溶液的粘弹性对驱油效率的影响.[J].大庆石油学院学报.2002,6:109.
    [79]严瑞,王宣.水处理剂应用手册.[M].化学工业出版社.2000:138.
    [80]杨玉良,胡汉杰.高分子物理.化学工业出版社.2001,70.
    [81]王玉普,罗健辉,卜若颖等.梳形KYPAM抗盐聚合物在油田中的应用.[J].化工进展.2003,5:509.
    [82]朱怀江,杨静波,曲波等.3种新型聚合物驱油效率对比研究.[J].油田化学.2003.3:35-39.
    [83]WHITESIDES G M, MATHIAS J E, SETO C T. Molecular Self-Assembly and Nanochemistry:A Chemcal Strategy for the Synthesis of Nanostructures. Science 1991.254.1312-1319.
    [84]WHITESIDES G M. GRZYBOWSKI B. Self-Assembly at All Scales. Science 2002.295,2418-2421.
    [85]FENDLER J H. Self-Assembled Nanostructrued Materials. Chem. mater: 1996,8, (8),1616-1624.
    [86]MALLNSTEN M, UNDMAN B. Self-assembly in aqueous block copolymer solutions. Macromolecules 1992,25,(20),5440-5445.
    [87]ZHANG L E. EISENBERG A. Multiplemo Morphologies of crew-cut aggegates of Polystyrene-b-Poly(acrylicacid) block-copolymers. Science,1995,268, (5218),1728-1731.
    [88]ZHANG L. EISENBERG A. Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-Poly(acrylieaeid) Diblock Copolymers in Aqueous Solutions. J.Am.Chem.Soc.1996,118, (13),3168-3181.
    [89]MOMTT M, KHOUGAZ K. EISENBERG A. Micellization of Ionic Block Copolymers. Acs.Chem.Resc.1996,29,(2).95-102.
    [90]LUO L B, EISENBERG A. One-Step Preparation of Block Copolymer Vesicles With Preferentially Segregated Acidic and Basie Corona Chains. Angew Chem. Int. Ed.2002.41,(6).1001-1004.
    [91]SHEN H W, EISENBERG A. Control of Architecture in Block-Copolymer Vesicles. Angew Chem.Int.Ed.2000.39,(18)3310-3312.
    [92]SHEN H, ZHANG L, EISENBERG A. Thermodyllamies of Crew-Cut Micelle Formation of Polystyrene-b-Poly(acrylieaeid) Diblock Copolymers in DMF/H2O Mixtures. J.Phys.Chem.B 1997,101, (24),4697-4708.
    [93]TERREAU O. BARTELS C, EISENBERG A. Effect of Poly(acrylieaeid) Block Length Distribution on Polystyrene-b-Poly(acrylieacid) Block Copolymer Aggregates in Solution.2.A Partial Phase Diagram. Langmuir2004.20,(3),637-645.
    [94]CAO T. MUNK R, RAMIREDDY C, TUZAR Z, WEBBER S E. Fluorescence studies of am Phiphilie Poly (methaerylicaeid)-block-Polystyrene-block-Poly (methaerylieacid) micelles. Macromolecules 1991,24,(23),6300-6305.
    [95]DESBAUMES L. EISENBERG A. Single-Solvent Preparation of Crew-Cut Aggregates of Various Morphologies from an Amphiphilie Diblock Copolymer. Langmuir 1999,15,(1),36-38.
    [96]CHENG D, NG S C, CHAN H SO. Morphology of Polyaniline nano Particles Synthesized in triblock copolymers micelles. Thin Solid Films 2005,477,(1-2),19-2
    [97]BURKE S E, EISENBERG A. Kinetics and Mechanisms of the Sphere-to-Rod and Rod-to-Sphere Transitions in the Ternary System PS310-b-RAA52/Dioxane/Water.Langmuir,2001,17,(21),6705-6714.
    [98]ZHANG L E, EISENBERG A. Multiple Morphologies and Characteristies of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-Poly(acrylieacid) Diblock Copolymers in Aqueous Solutions. J.Am.Chem.SOc.1996,118,(13),3168-3181.
    [99]DUXIN N, LIU E T. VALI H, EISENBERG A. Cadmium Sulphide Quantum Dot in Morphologically Tunable Triblock Copolymer Aggregates. J.Am.Chem.Soc 2005 127,(28),10063-10069.
    [100]HIGUCHI M. PH-induced structural changes of a Polymer micelle composed of Amphiphilic Polyallylamine containing hydrophilic Poly(Lglutamic acid) in the side chain. Polymer Journal 1999,31,(3),279-284.
    [101]POCHAN D J, CHEN Z Y, CUI H, HALES K, QI K, WOOLEY K L. Toroidal Triblock Copolymer Assemblies. Science 2004,306,94-97.
    [102]LIU S Y, MA Y H, ARMS S P. Direct Verification of the Core-Shell Structure of Shell Cross-Linked Micelles in the Solid State Using X-ray Photoelectron Spectroscopy. Langmuir 2002,18,(21),7780-7784.
    [103]GOHY J E, KHOUSAKOUN E, WILLER N, VARSLMEY S K, JEROME R. Segregation of Coronal Chains in Micelles Formed by Supramolecular Interactions. Macromol Rapid Commun 2004,25,(17),1536-1539.
    [104]ETHARDT R, BOKER A. ZETTL H, KAYA H, PYCKOUT-HINTZEN W, KRAUSCH G. ABETZ V, MULLER A H E. Janus Micelles. Macromolecules 2001,34,(4),1069-1075.
    [105]XU H. ETHARDT R, ABETZV, MULLER A H E, GOEDELW. A Janus Micelles at The Air/Water Interface. Langmuir 2001,17,(22),6787-6793.
    [106]ERHARDT R. ZHANG M, BOKER A, ZETTL H. ABETZ C. FREDERIK R, KRAUSCH G. ABETZ V. MULLER A H E. Amphiphilic Janus Micelles with Polystyrene and Poly (methacrylieaeid) Hemis Pheres. J.Am.Chem.Soc 2003.125,(11),3260-3267.
    [107]LIU YE, ABETZ V, MULLER A H E. Janus Cylinders. Macromolecules 2003,36,(21),7894-7898.
    [108]CREUTZ S, VANSTAM J. DESCHRYVER E C, JEROME R. Dynamics of Poly ((dimethylamino) alkylmethaerylate-block-sodium methaerylate) Micelles Influence of Hydrophobicity and Molecular Architecture on the Exchange Rate of Copolymer Molecules. Macromolecules 1998,31,(3),681-689.
    [109]HALILOGLU T, BAHAR L, ERMAN B, MATTIEE W L. Mechanisms of the Exchange of Diblock Copolymers between Micelles at Dynamie Equilibrium. Macromolecules 1996,29,(13).4764-4771.
    [110]ASTAFIEVA I, ZHONG X E, EISENBER A. Critical micellization phenomenain block Polyelectrolyte solutions. Macromolecules 1993, 26,(26),7339-7352.
    [111]NAKAMURA K, ENDO R, TAKEDA M. The Physical Properties of critical micelle concentration of Polymer micelles. J.Polym.Sci.1976.14,1287-1289.
    [112]THRRO N J, CHUNG C J. Photoluminescent probes for Watersoluble polymers. Pressure and temperature effects on a Polyolsuifaetant. Macromolecules 1984,17,(10),2123-2126.
    [113]WILHELM M, ZHAO C L, WANG Y, XU R, WINNIK M A, MURA J L, RIESS G, CROUCHER M D. Poly(styrene-ethyleneoxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 1991,24,(5),1033-1040.
    [114]KALYANASUNDARAM K, THOMAS J K. Environrnental effects on vibronic band intensities in Pyrene monomer fluorescence and their application in studies of mieellar systems. J.Am.Chem.Soc.1977,99,(7),2039-2044.
    [115]WINNLK F M, DAVIDSON A R. HAMER G K. KITANO H. Amphiphilic Poly(N-isopropylacrylamides) Prepared by using a lipophilie radical initiator: synthesis and solution Properties in water. Macromolecules,1992,25.(7).1876-1880.
    [116]KWON G. NAITO M, YOKOYAMA M, OKANO T, SAKURAI Y. KATAOKA K. Micelles based on AB block copolymers of Poly (ethyleneoxide) and Poly (beta-benzyllaspartate). Langmuir1993,9,(4),945-949.
    [117]SPEVAEEK J. Proton NMR study of styrene-butadiene block copolymer micelles in selective solvents. Macromolecular Chemistry, Rapid communication 1982,3,697-703.
    [118]KATAOKA K, TOGAWA H, HARADA A, YASUGI K, MATSUMOTO T, KATAYOSE S. Spontaneous Formation of Polyion Complex Mieelles with Narrow Distribution from Antisense oligonucleotide and Cationie Block Copolymer in Physiological Saline. Macromolecules 1996.29.(26).8556-8557.
    [119]NAGASAKI Y, OKADA T, SCHOLZ C, LIJIMA M, KATO M. KATAOKA K. The Reactive Polylnerie Micelle Based on An Aldehyde-ended Poly(ethylene glycol/Poly(lactide) Block Copolymer. Macromolecules 1998,31,(5),1473-1479.
    [120]ALL6MANN E. LEROUX J C, GUMY R. Biodegradable nanopartieles of Poly(lactieacid) and Poly(laetic-o-lyeolicacid) for parenteral administration, in: Lieberman H, Rieger M, Banker G. (Eds.), Pharmaeeutical Dosage Forms:Disperse Systems, Vol.3, Marcel Dekker, NewYork,1998,PP.163-193.
    [121]K HOLMBERG, B JONSSON, B KRONBERG, B LINDMAN. [M]. Surfactants and Polymers in Aqueous Solution, Ed:Chemical Industry Press,2005, p.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700