有机蒙脱土改性遇水膨胀橡胶的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遇水膨胀橡胶(WSR)是一种具有优良弹性和吸水性能的新型特种橡胶,在密封防水等多领域有着广泛的应用前景。但是,由于WSR长期使用后力学性能和吸水膨胀性能会大幅下降,且近年来多次在地下工程中检出硫化氢(H2S)气体,其强腐蚀性易导致WSR性能劣化。因此,提高WSR的耐久性和耐H2S腐蚀性具有非常重要的意义。
     本文将钠基蒙脱土进行有机化处理,通过熔融插层法制备了不同掺量的有机蒙脱土(OMMT)改性WSR,采用X射线衍射仪(XRD)对其微观结构进行了表征,研究了OMMT对WSR力学性能、吸水膨胀性能、气体阻隔性能、耐H2S腐蚀性能和耐久性的影响。主要研究结论如下:
     (1)XRD测试结果表明,当OMMT的掺量在10phr以内时,OMMT改性WSR呈剥离型结构。
     (2) OMMT可以有效提高WSR的拉伸强度、体积膨胀倍率,同时使WSR具有较好的保水性,而仅仅导致扯断伸长率略有减小。
     (3)采用OMMT改性后,WSR的气体渗透系数显著降低,当OMMT掺量为10phr时,降低幅度达34.5%。
     (4) OMMT能显著提高WSR的耐H2S腐蚀性,且随着OMMT掺量的增加,其耐腐蚀效果逐渐增强。10phrOMMT改性WSR在10%H2S气体中腐蚀20d后的拉伸强度保留率、扯断伸长率保留率和体积膨胀倍率保留率均比普通WSR提高10%以上,而在0.04%的H2S溶液腐蚀20d后,其上述性能的保留率比普通WSR提高20%左右。
     (5)反复浸水实验和热氧老化实验结果表明,与普通WSR相比,OMMT改性WSR具有较好的耐久性。反复浸水20个周期后,10phrOMMT改性WSR的拉伸强度保留率、扯断伸长率保留率和体积膨胀倍率保留率较普通WSR分别提高了10.1%、6.2%和12%,热氧老化条件为70℃×28d时,提高幅度则分别为10.8%、7.8%和11%。
     (6)采用加速热氧老化实验和阿累尼乌斯方程图对OMMT改性前后WSR的寿命预测结果显示,OMMT可以显著延长WSR的静态使用寿命。当OMMT掺量为10phr时,改性WSR常温下的静态使用寿命比普通WSR提高58.5%。
     (7) OMMT对WSR性能的改善作用可归因于OMMT与橡胶基体形成了剥离型结构,从而使改性WSR的力学性能和阻隔性能得到提高。
Water swelling rubber (WSR) is a kind of a new special rubber with excellent elasticity and absorptivity. It can be used widely as caulking, sealing of gap and water-prove materials. However, the mechanical properties and water swelling properties of WSR will markedly decrease after long-term use, and H2S gas which was detected several times in the underground engineerings in recent years may cause WSR seal failure in the short term due to its strong corrosiveness. Consequently, it is of great importance to improve the durability and H2S resistance of WSR.
     In this paper, the Na-montmorillonite was organically modified, and organic montmorillonite (OMMT) modified WSR which contained different contents of OMMT were prepared by melt intercalation. The microstructure of OMMT modified WSR were characterized via X-ray diffraction (XRD), and their mechanical properties, water swelling properties, gas barrier properties, H2S corrosion resistance and durability was investigated. The following conclusions can be drawn in the paper.
     (1) XRD results indicated that OMMT layers were stripped off and formed exfoliated nanocomposites with rubber matrix when the OMMT content was within 10phr.
     (2) The addition of OMMT can improve the tensile strength, volume expansion ratio and water retention of WSR effectively, but only cause a slight decrease of the elongation at break.
     (3) The gas permeability coefficient of OMMT modified WSR was smaller than common WSR. When the OMMT content increased to 10phr, the lower rate was up to 34.5%.
     (4) The H2S corrosion resistance of WSR was improved by addition of OMMT and the improvement was gradually heightened with the increase of OMMT content. The retentions of tensile strength, elongation at break and expansion rate in volume of WSR modified by 10phr OMMT increased by 10% in comparison with unmodified WSR. After corroded in H2S solution (0.04%) for 20 days, the retention of mechanical properties enhances by 20% for OMMT modified WSR.
     (5) Compared with common WSR, OMMT modified WSR showed better durability. The retentions of tensile strength, elongation at break and expansion rate in volume of OMMT modified WSR (10phr) increased by 10.1%,6.2% and 12% than unmodified WSR after 20 cycles of alternate immersion in water, while those increased by 10.8%,7.5% and 11% after the samples aged at 70℃for 28 days.
     (6) Accelerated thermal aging experiment and Arrhenius'equation figure was used to predict the life of WSR. The results showed that the static service life of WSR was prolonged by introducing OMMT. When the OMMT content was 10phr, the static service life of WSR was increased 58.5% in room temperature.
     (7) The improvement of OMMT on WSR performance can be attributed to the formation of exfoliated structure between OMMT and rubber matrix, which enhances the mechanical properties and barrier ability of WSR.
引文
[1]Namba T. In Advances in Super absorbent Polymer. Washington DC:American Chemical Society,1994.
    [2]许临,李芳,杨树昌,等.遇水膨胀橡胶—一种新型的止水材料[J].防渗技术,1999,5(2):4-9.
    [3]张玉红,邹其超,何培新.水膨胀橡胶的研究概况[J].湖北化工,1998,(6):7-10.
    [4]刘岚,向杰,罗远芳,等.吸水膨胀橡胶的研究进展[J].高分子通报,2006,(9):23-29.
    [5]Nottelmann H., Kulicke W. M.. Preparation, Characterization and Rheological Behavior of Water-Swellable Polymers[J]. Polymer Materials Science and Engineering,1989, (61): 393-397.
    [6]Jong H. P., Dunkjoon K.. Preparation and Characterization of Water-Swellable Nature Rubbers[J]. Journal of Applied Polymer Science,2001,80(1):115-121.
    [7]张汝义.油田用橡胶耐H2S性能的研究[J].天津橡胶,1994,(2):1-3.
    [8]张玉红,邹其超,何本桥,等.CPE/P (AA-AM)吸水膨胀弹性体的研究[J].高分子材料科学与工程,2002,18(2):123-126.
    [9]解竹柏,张书香,周春华,等.吸水膨胀橡塑密封材料的研究[J].山东建材,2003,(4):31-33.
    [10]杨秀利,张书香,樊庆春,等.氯化聚乙烯共混丙烯酸钠制备吸水膨胀橡塑材料[J].应用化学,2002,19(8):764-767.
    [11]Liu C. Y., Ding J. P., Zhou L., et al. Mechanical properties, water-swelling behavior, and morphology of water-swellable rubber prepared using crosslinked sodium polyacrylate[J]. Journal of Applied Polymer Science,2006, (102):1489-1496.
    [12]Wang G. J., Li M., Chen X. F., et al. Preparation and water-absorbent properties of a water-swellable rubber[J]. Journal of Applied Polymer Science,1998,68(8):119-121.
    [13]Xie Z. Y., Li M., Chen X. F., et al. Studies on water-swellable elastomer. Ⅰ. Synthesis and characterization of amphiphilic polymer[J]. Journal of Applied Polymer Science,1996,61(3): 495-499.
    [14]冯东东,何培新.共混型吸水膨胀橡胶的研究及应用[J].特种橡胶制品,2001,22(2):46-50.
    [15]冯东东,李玉林,何培新CPE/PHPAM共混型吸水膨胀弹性体的力学性能[J].胶体与聚合物,2001,19(2):15-18.
    [16]Takashi K.. Water-swellable resin compositions and water stopping strip with them[P]. JPN: JP 62284847.1987-12-10.
    [17]Shioji N., Okamura K., Shimomura T.. Water-swelling rubber[P]. JPN:JP 09040837. 1997-02-10.
    [18]郁维铭,徐文君,朱杰.JSP遇水膨胀橡胶的研究[J].中国建筑防水,1998,(5):36-37.
    [19]Hasegawa Y., Tanaka H., Ideguchi S.. Water-swellable rubbers with stable dimension and elasticity for water seals in constructions[P]. JPN:JP 2002293999.2002-10-09.
    [20]张涛.遇水膨胀橡胶的研究[J].橡胶工业,1999,(6):353-355.
    [21]陈明亮.高吸水性聚丙烯酸钠树脂[J].化工新型材料,2001,29(5):17-19.
    [22]周爱军,刘长生.多嵌段共聚物增容的遇水膨胀橡胶研究[J].化肥设计,2002,40(5):15-18.
    [23]张书香,夏宇正,陈勇,等EPDM基吸水膨胀橡胶的力学性能[J].合成橡胶工业,1999,22(5):294-296.
    [24]Sperling H. L.. Dry-heat Age Humidity-heat of CR Vulcanizate[J]. Polymer Engineering And Science,1997, (9):5-17.
    [25]Zhang Y. H., He P. X., Zou Q. C.. Preparation and properties of water-swellable elastomer[J]. Journal of Applied Polymer Science,2004,93(4):1719-1723.
    [26]Wang G. J., Li M., Chen X. F.. Preparation and water-absorbent properties of a water-swellable rubber[J]. Journal of Applied Polymer Science,1998,68(8):1219-1225.
    [27]张志豪,张国,刘志成.PVC-g-PBA在氯醇型遇水膨胀橡胶中的增容作用[J].弹性体,1998,8(4):1-6.
    [28]王彩旗,张国,董宇平,等PEO-b-PBA对天然橡胶/高吸水树脂共混体系增容作用的研究[J].材料科学与工程,2002,20(2):180-182.
    [29]刘士平.吸水膨胀橡胶性能的改进[J].中国橡胶,2001,17(10):23-24.
    [30]Yamaji I sao. The Development of Water Swelling Rubbers and Their component[J]. Polymer Digest,1984,36(10):17-25.
    [32]Choudhury N. R., Bhowmick A. K.. Compatbilization of Natural Rubber-polyolefin Thermoplastic Elastomeric Blends by Phase Modification. Journal of Applied Polymer Science,1989,38(6):1091-1109.
    [33]郑邦乾,张洁辉,蒋序林.高吸水性树脂与PVC共混的研究[J].塑料工业,1992,(5):35-39.
    [34]陈福林,危仲祯,余炯杨.遇水膨胀橡胶的研究[J].特种橡胶制品,1991,(4):1-2.
    [35]林莲贞,杨治中,林果,等.天然橡胶/部分水解聚丙烯酰胺乳液共混水膨胀性橡胶的研究[J].橡胶工业,1991,(3):132-137.
    [36]林莲贞,杨治中,林果,等.乳液共混NR-PHPAM水膨胀性橡胶[J].广州化学,1990,(3): 44-51.
    [37]Kimura T., Shinjo H.. Waterproofing sealants[P]. JPN:JP78109557.1978-09-25.
    [38]Wang G. J., Li M., Chen X. F.. Inverse Suspension Polymerization of Sodium Acrylate[J]. Journal of Applied Polymer Science,1997,65(4):789-794.
    [39]任文坛,彭宗林,张勇,等.原位合成丙烯酸盐改性氯化聚乙烯制备吸水膨胀橡胶的研究[J].橡胶工业,2005,(2):69-74.
    [40]许临,李芳,付红旗.遇水膨胀橡胶的研制及应用进展[J].中国建筑防水,2000,(2):27-29.
    [41]张群,王振华,方伟,等.吸水膨胀橡胶的研究进展[J].世界橡胶工业,2010,37(3):19-24.
    [42]胡为民,宋伟强,刘克波,等.辐射硫化法制备CR/PAAS遇水膨胀橡胶膨胀性能研究[J].特种橡胶制品,2002,23(1):42-44.
    [43]Cameron G. G., Duncan A. W. S.. Chemical modification of polydiene. I. Grafting of chlorohydrinated polybutadiene and nitrile rubbers with poly(tetrahydrofuran)[J]. Macromolecular Chemistry and Physics,1983,184(6):1 153-1 161.
    [44]Cameron G. G, Duncan A. W. S.. Chemical modification of polydiene. Ⅱ. Properties of polybutadiene and nitrile rubbers grafted with poly(tetrahydrofuran)[J]. Macromolecular Chemistry and Physics,1983,184(8):1645-1651.
    [45]郑邦乾,张洁辉,蒋序林.部分水解聚(丙烯酸甲酯-醋酸乙烯酯-甲基丙烯酸甲酯)高吸水性树脂的合成及结构研究[J].功能高分子学报,1993,6(4):329-337.
    [46]Showa Denko Co., Ltd. Water-absorbing rubber[P]. JPN:JP 59126448.1984-07-21.
    [47]Burnside S. D., Giannels E.P.. Synthesis and properties of new poly(dimethelsiloxane) nanocomposites[J]. Chemistry of Materials,1995,7(9):1597-1600.
    [48]Tjong S. C., Meng Y. Z. Preparation and characterization of melt-compounded polyethylene/vermiculite nanocomposites[J]. Journal of Polymer Scienee:Part B:Polylmer Physies,2003, (41):1476-1484.
    [49]杨雅秀,张乃娴.中国粘土矿物[M].地质出版社,1994.
    [50]王旭.膨润土的有机化及其产品应用[J].辽宁化工,2000,29(5):295-297.
    [51]Alexandre M., Dubois P.. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials[J]. Material Sience and Engineering,2000,28(1-2): 1-63.
    [52]章永化,龚克成.Sol-Gel法制备有机/无机纳米复合材料的进展[J].高分子材料科学与工程,1997,13(4):14-16.
    [53]张立群,孙朝晖,王一中,等.粘土/NBR纳米复合材料的性能研究[J].橡胶工业,1998,46(4):213-216.
    [54]Sinha R. S., Yamada K., Okamoto M., et al. New Polylactide/Layered silicate nanocomposites.3. High Performance biodegradable materials[J]. Chemistry of Materials, 2003,15(7):1456-1465.
    [55]Changwoon N., Hyune J. R., Wan D. K., et al. Barrier Property of clay/acrylonitrile-butadiene copolymer nanocomposite[J]. Polymers for Advanced Technologies,2002,13(9):649-652.
    [56]谷正.橡胶/蒙脱土纳米复合材料的结构与性能研究[D].青岛大学,2008.
    [57]Brindley G. W., Brown G.. Structure of clay minerals and their X-ray identification, London: Mineralogical Society Monograph No 5,1980.
    [58]李芬,张杰,姜安玺,等.低温脱硫剂的研究进展[J].化工进展,2007,26(4):519-525.
    [59]张书香,陈勇,焦书科.吸水膨胀弹性体在不同介质中的溶胀行为[J].高分子学报,1998(4):438-443.
    [60]张惠峰,王益庆,吴友平等.粘土/橡胶纳米复合材料老化性能研究[J].橡胶工业,2004,51(8):453-459.
    [61]王思静,熊金平,左禹.橡胶老化机理与研究方法进展[J].合成材料老化与应用,2009,38(2):23-30.
    [62]肖琰,魏伯荣,杜茂平.橡胶加速老化试验及贮存期推算方法[J].合成材料老化与应用,2007,36(1):40-43.
    [63]李昂.橡胶的老化现象及其老化机理[J].特种橡胶制品,2009,30(5):56-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700